Electron. J. Diff. Equ., Vol. 2016 (2016), No. 114, pp. 1-14.

Radial solutions with a prescribed number of zeros for a superlinear Dirichlet problem in annular domain

Boubker Azeroual, Abderrahim Zertiti

Abstract:
In this article we study the existence of radially symmetric solutions to a superlinear Dirichlet problem in annular domain in $\mathbb{R}^N$. Using fairly straightforward tools of the theory of ordinary differential equations, we show that if k is a sufficiently large nonnegative integer, there is a solution u which has exactly (k-1) interior zeros.

Submitted February 4, 2016. Published May 3, 2016.
Math Subject Classifications: 35J25, 35B05, 35A24.
Key Words: Superlinear; radial solution; Bessel's equation.

Show me the PDF file (250 KB), TEX file for this article.

Azeroual Boubker
Université Abdelmalek Essaadi
Faculté des sciences
Département de Mathématiques
BP 2121, Tetouan, Morocco
email: boubker_azeroual@yahoo.fr
Abderrahim Zertiti
Université Abdelmalek Essaadi
Faculté des sciences
Département de Mathématiques
BP 2121, Tetouan, Morocco
email: abdzertiti@hotmail.fr

Return to the EJDE web page