EXISTENCE OF SOLUTIONS FOR SEMILINEAR PROBLEMS WITH PRESCRIBED NUMBER OF ZEROS ON EXTERIOR DOMAINS

JANAK JOSHI, JOSEPH IAIA

Abstract

In this article we prove the existence of an infinite number of radial solutions of $\Delta(u)+f(u)=0$ with prescribed number of zeros on the exterior of the ball of radius $R>0$ centered at the origin in \mathbb{R}^{N} where f is odd with $f<0$ on $(0, \beta), f>0$ on (β, ∞) where $\beta>0$.

1. Introduction

In this article we study radial solutions of

$$
\begin{gather*}
\Delta(u)+f(u)=0 \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega \tag{1.2}\\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where $x \in \Omega=\mathbb{R}^{N} \backslash B_{R}(0)$ is the complement of the ball of radius $R>0$ centered at the origin.

The function f is odd, locally Lipschitz and is defined by

$$
\begin{equation*}
f(u)=|u|^{p-1} u+g(u) \quad \text { with } p>1, f^{\prime}(0)<0 \text { and } \lim _{u \rightarrow \infty} \frac{g(u)}{u^{p}}=0 \tag{1.4}
\end{equation*}
$$

We assume that there exists $\beta>0$ such that $f(0)=f(\beta)=0$ and $F(u)=\int_{0}^{u} f(s) d s$ where

$$
\begin{equation*}
f<0 \text { on }(0, \beta), f>0 \text { on }(\beta, \infty) \tag{1.5}
\end{equation*}
$$

As f is odd, it follows that $F(u)=\int_{0}^{u} f(s) d s$ is even. Also F has a unique positive zero, γ, with $\beta<\gamma<\infty$ and F is bounded below by some $-F_{0}<0$ so that

$$
\begin{equation*}
F<0 \text { on }(0, \gamma), F>0 \text { on }(\gamma, \infty), \text { and } F \geq-F_{0} \text { on }(0, \infty) \tag{1.6}
\end{equation*}
$$

Since we are interested in radial solutions of 1.1 -1.3) we assume that $u(x)=$ $u(|x|)=u(r)$, where $r=|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}}$ so that u solves

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+f(u(r))=0 \quad \text { on }(R, \infty) \text { where } R>0 \tag{1.7}\\
u(R)=0, \quad u^{\prime}(R)=a>0 \tag{1.8}
\end{gather*}
$$

[^0]We will occasionally denote the solution of the above by $u_{a}(r)$, to emphasize the dependence on the initial parameter a.
Theorem 1.1. For each nonnegative integer n, there exists a solution $u(r)$ of (1.7)-(1.8) on $[R, \infty)$ such that $\lim _{r \rightarrow \infty} u(r)=0$ and $u(r)$ has exactly n zeros on (R, ∞).

The radial solutions of (1.1), (1.3) have been well-studied when $\Omega=\mathbb{R}^{N}$. These include [1, 2, 6, 8, 10. Recently there has been an interest in studying these problems on $\mathbb{R}^{N} \backslash B_{R}(0)$. These include [4, 5, 7, 9]. Here we use a scaling argument as in [8] to prove existence of solutions.

2. Preliminaries

For $R>0$ existence and uniqueness of solutions of 1.7$)-(1.8]$ on $[R, R+\epsilon)$ for some $\epsilon>0$ and continuous dependence of solutions with respect to a follows from the standard existence-uniqueness theorem for ordinary differential equations 3. For existence on $[R, \infty)$ we consider

$$
\begin{equation*}
E_{a}(r)=\frac{1}{2} u_{a}^{\prime 2}+F\left(u_{a}\right) . \tag{2.1}
\end{equation*}
$$

Using (1.7) we see that

$$
\begin{equation*}
E_{a}^{\prime}(r)=-\frac{N-1}{r} u_{a}^{\prime 2} \leq 0 \tag{2.2}
\end{equation*}
$$

so E_{a} is non-increasing on $[R, \infty)$. Therefore

$$
\begin{equation*}
\frac{1}{2} u_{a}^{\prime 2}+F\left(u_{a}\right)=E_{a}(r) \leq E_{a}(R)=\frac{1}{2} a^{2} \quad \text { for } r \geq R \tag{2.3}
\end{equation*}
$$

Therefore by 1.6 ,

$$
\frac{1}{2} u_{a}^{\prime 2} \leq \frac{1}{2} a^{2}+F_{0} .
$$

So for a fixed a we see that u_{a}^{\prime} is uniformly bounded and hence existence on all of $[R, \infty)$ follows.

Lemma 2.1. Let $u_{a}(r)$ be the solution of 1.7)-1.8. If a is sufficiently large then there exists $r>R$ such that $u_{a}(r)>\beta$. In particular, there exists $r_{a}>R$ such that $u_{a}\left(r_{a}\right)=\beta$.

Proof. Since $u_{a}^{\prime}(R)=a>0$ we see that $u_{a}(r)$ is increasing on $[R, R+\delta)$ for some $\delta>0$. If $u_{a}(r)$ has a first critical point $M_{a}>R$ with $u_{a}^{\prime}(r)>0$ on $\left[R, M_{a}\right)$ then we must have $u_{a}^{\prime}\left(M_{a}\right)=0, u_{a}^{\prime \prime}\left(M_{a}\right) \leq 0$. In fact $u_{a}^{\prime \prime}\left(M_{a}\right)<0$ (by uniqueness of solutions of initial value problems). Therefore from 1.7 it follows that $f\left(u_{a}\left(M_{a}\right)\right)>0$ and using (5) we see that $u_{a}\left(M_{a}\right)>\beta$.

On the other hand, if $u_{a}(r)$ has no critical point then $u_{a}^{\prime}(r)>0$ for each $r \geq R$. Suppose now by the way of contradiction that $u_{a}(r) \leq \beta$ for each $r \geq R$. Since $u_{a}(r)$ is increasing and bounded above then $\lim _{r \rightarrow \infty} u_{a}(r)$ exists. Thus there exists $L>0, L \leq \beta$ such that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} u_{a}(r)=L \tag{2.4}
\end{equation*}
$$

Since $E_{a}(r)$ is non-increasing and bounded below, it follows that $\lim _{r \rightarrow \infty} E_{a}(r)$ exists. This implies $\lim _{r \rightarrow \infty} u_{a}^{\prime}(r)$ exists and in fact $\lim _{r \rightarrow \infty} u_{a}^{\prime}(r)=0$ since otherwise u_{a} would become unbounded contradicting 2.4). Hence by 1.7), $\lim _{r \rightarrow \infty} u_{a}^{\prime \prime}(r)$ exists and as with $u_{a}^{\prime}(r)$ we see that $\lim _{r \rightarrow \infty} u_{a}^{\prime \prime}(r)=0$. Taking limits in 1.7) we see that $f(L)=0$. Since $L>0$ it follows that $L=\beta$.

Suppose now that this is true for all values of $a>0$. We then let $y_{a}(r)=\frac{u_{a}(r)}{a}$ and we see that:

$$
\begin{gather*}
y_{a}^{\prime \prime}+\frac{N-1}{r} y_{a}^{\prime}+\frac{f\left(a y_{a}\right)}{a}=0 . \tag{2.5}\\
y_{a}(R)=0, \quad y_{a}^{\prime}(R)=1 . \tag{2.6}
\end{gather*}
$$

Since

$$
\left(\frac{y_{a}^{\prime 2}}{2}+\frac{F\left(a y_{a}\right)}{a^{2}}\right)^{\prime}=y_{a}^{\prime} y_{a}^{\prime \prime}+\frac{f\left(a y_{a}\right)}{a} y_{a}^{\prime}=-\frac{(N-1)}{r} y_{a}^{\prime 2} \leq 0
$$

it follows that

$$
\frac{y_{a}^{\prime 2}}{2}+\frac{F\left(a y_{a}\right)}{a^{2}} \leq \frac{1}{2} \quad \forall r \geq R
$$

In addition, from 1.6 it follows that

$$
\frac{y_{a}^{\prime 2}}{2}-\frac{F_{0}}{a^{2}} \leq \frac{1}{2}
$$

Hence

$$
\frac{y_{a}^{\prime 2}}{2} \leq \frac{1}{2}+\frac{F_{0}}{a^{2}} \leq 1
$$

if a is sufficiently large. Therefore $\left|y_{a}^{\prime}\right|$ is uniformly bounded if a is sufficiently large. Also $0 \leq u_{a} \leq \beta$ implies $0 \leq y_{a} \leq \frac{\beta}{a} \leq 1$ if a is large so y_{a} is uniformly bounded. And since $a y_{a}$ is bounded it follows that $\frac{f\left(a y_{a}\right)}{a} \rightarrow 0$ as $a \rightarrow \infty$. Thus it follows from 2.5 that $\left|y_{a}^{\prime \prime}\right|$ is uniformly bounded for sufficiently large a. Hence by the Arzela-Ascoli theorem $y_{a} \rightarrow y$ and $y_{a}^{\prime} \rightarrow y^{\prime}$ uniformly on the compact subsets of $[R, \infty)$ as $a \rightarrow \infty$ for some subsequence still denoted by y_{a}. Moreover from (2.6) we see $y(R)=0$ and $y^{\prime}(R)=1$.

On the other hand, $0 \leq y_{a} \leq \frac{\beta}{a}$ so it follows that $y_{a} \rightarrow 0$ as $a \rightarrow \infty$. So $y \equiv 0$ and therefore $y^{\prime} \equiv 0$ which is a contradiction to $y^{\prime}(R)=1$. Hence there exists $r_{a}>R$ such that $u_{a}\left(r_{a}\right)=\beta$ and $0<u_{a}<\beta$ on $\left(R, r_{a}\right)$.

If $u_{a}^{\prime}\left(r_{a}\right)=0$ then $u_{a} \equiv \beta$ by uniqueness of solutions of initial value problems. But this contradicts the fact that $u_{a}^{\prime}(R)=a>0$. Thus $u_{a}^{\prime}\left(r_{a}\right)>0$. Hence $u_{a}(r)$ must get larger than β. Thus there exists $r_{a}>R$ such that $u_{a}\left(r_{a}\right)=\beta, u_{a}^{\prime}\left(r_{a}\right)>0$ and $u_{a}<\beta$ on $\left[R, r_{a}\right)$. This completes the proof.

Lemma 2.2. If a is sufficiently large then $u_{a}(r)$ has a maximum at $M_{a}>r_{a}$. In addition, $\left|u_{a}\right|$ has a global maximum at M_{a} and $u_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$.

Proof. Suppose by the way of contradiction that $u_{a}^{\prime}(r)>0$ for each $r>R$. Then $u_{a}(r)>\beta$ for $r>r_{a}$ as we saw in the proof of the Lemma 2.1. Also as in Lemma 2.1. $u_{a}^{\prime}\left(r_{a}\right)>0$ thus $\exists r_{a_{1}}>r_{a}$ such that $u\left(r_{a_{1}}\right)>\beta+\epsilon$ for some $\epsilon>0$ and since $u_{a}^{\prime}>0$, for $r>r_{a_{1}}$ we have $f\left(u_{a}\right) \geq f(\beta+\epsilon)>0$. Therefore,

$$
u_{a}^{\prime \prime}+\frac{N-1}{r} u_{a}^{\prime}+f(\beta+\epsilon) \leq u_{a}^{\prime \prime}+\frac{N-1}{r} u_{a}^{\prime}+f\left(u_{a}\right)=0 \quad \text { for } r>r_{a_{1}} .
$$

This implies

$$
\left(r^{N-1} u_{a}^{\prime}(r)\right)^{\prime} \leq-f(\beta+\epsilon) r^{N-1} \quad \text { for } r>r_{a_{1}}
$$

Hence for $r>r_{a_{1}}$ we have

$$
r^{N-1} u_{a}^{\prime}(r)<r_{a_{1}}^{N-1} u_{a}^{\prime}\left(r_{a_{1}}\right)-f(\beta+\epsilon)\left(\frac{r^{N-1}-r_{a_{1}}^{N-1}}{N-1}\right) \rightarrow-\infty
$$

as $r \rightarrow \infty$. This contradicts the assumption that $u_{a}^{\prime}>0$ for $r>R$. So $\exists M_{a}>r_{a}$ such that $u_{a}^{\prime}\left(M_{a}\right)=0$ and $u_{a}^{\prime \prime}\left(M_{a}\right) \leq 0$. By uniqueness of solutions of initial value problems it follows that $u_{a}^{\prime \prime}\left(M_{a}\right)<0$ so M_{a} is a local maximum. Thus $f\left(u_{a}\left(M_{a}\right)\right)>0$ and therefore $u_{a}\left(M_{a}\right)>\beta$. To see this is a global maximum for $\left|u_{a}\right|$ suppose there exists $M_{a_{2}}>M_{a}$ with $\left|u_{a}\left(M_{a_{2}}\right)\right|>u_{a}\left(M_{a}\right)>\beta$. Then since F is even and increasing for $u>\beta$ it follows that

$$
F\left(u_{a}\left(M_{a_{2}}\right)\right)=F\left(\left|u_{a}\left(M_{a_{2}}\right)\right|\right)<F\left(u_{a}\left(M_{a}\right)\right) .
$$

On the other hand, E_{a} is nonincreasing so

$$
F\left(u_{a}\left(M_{a_{2}}\right)\right)=E_{a}\left(M_{a_{2}}\right) \leq E_{a}\left(M_{a}\right)=F\left(u_{a}\left(M_{a}\right)\right),
$$

a contradiction. Hence M_{a} is the global maximum for $\left|u_{a}\right|$.
We now show that $u_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$. Suppose not. Then $\left|u_{a}(r)\right| \leq C$ where C is a constant independent of a. As in Lemma 2.1, let $y_{a}(r)=\frac{u_{a}(r)}{a}$. Then as in Lemma 2.1, $y_{a} \rightarrow y$ with $y \equiv 0$ and $y^{\prime}(R)=1$, a contradiction. Hence $u_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$. This proves the lemma.

Next we proceed to show that $u_{a}(r)$ has zeros on (R, ∞) and the number of zeros increases as $a \rightarrow \infty$. First we let $v_{a}(r)=u_{a}\left(M_{a}+r\right)$. It follows that v_{a} satisfies

$$
\begin{gather*}
v_{a}^{\prime \prime}(r)+\frac{N-1}{M_{a}+r} v_{a}^{\prime}(r)+f\left(v_{a}(r)\right)=0 \quad \text { on }[R, \infty), \tag{2.7}\\
v_{a}(0)=u_{a}\left(M_{a}\right) \equiv \lambda_{a}^{\frac{2}{p-1}} \quad \text { and } \quad v_{a}^{\prime}(0)=0 . \tag{2.8}
\end{gather*}
$$

By Lemma 2.2, $\lim _{a \rightarrow \infty} u_{a}\left(M_{a}\right)=\infty$ and thus $\lambda_{a} \rightarrow \infty$ as $a \rightarrow \infty$.
Next we let $w_{\lambda_{a}}(r)=\lambda_{a}^{-\frac{2}{p-1}} v_{a}\left(\frac{r}{\lambda_{a}}\right)$ as in [8]. Then using (1.4) and (2.7)-2.8) we see that

$$
\begin{gather*}
w_{\lambda_{a}}^{\prime \prime}(r)+\frac{N-1}{\lambda_{a} M_{a}+r} w_{\lambda_{a}}^{\prime}(r)+\left|w_{\lambda_{a}}\right|^{p-1} w_{\lambda_{a}}+\frac{g\left(\lambda_{a}^{\frac{2}{p-1}} w_{\lambda_{a}}\right)}{\lambda_{a}^{\frac{2 p}{p-1}}}=0 \tag{2.9}\\
w_{\lambda_{a}}(0)=1, \quad w_{\lambda_{a}}^{\prime}(0)=0 \tag{2.10}
\end{gather*}
$$

Lemma 2.3. $w_{\lambda_{a}} \rightarrow w$ uniformly on compact subsets of $[0, \infty)$ as $a \rightarrow \infty$ and w satisfies $w^{\prime \prime}+|w|^{p-1} w=0$.
Proof. From (1.4) we know that $f(u)=|u|^{p-1} u+g(u)$ with $p>1$ where $\frac{g(u)}{u^{p}} \rightarrow 0$ as $u \rightarrow \infty$. Letting $G(u)=\int_{0}^{u} g(s) d s$ then it follows that $\frac{G(u)}{u^{p+1}} \rightarrow 0$ as $u \rightarrow \infty$. Let $w_{\lambda_{a}}(r)$ be the solution of the system 2.9-2.10 and $E_{\lambda_{a}}(r)$ be the energy associated with $w_{\lambda_{a}}(r)$ defined by

$$
\begin{equation*}
E_{\lambda_{a}}=\frac{w_{\lambda_{a}}^{\prime 2}}{2}+\frac{\left|w_{\lambda_{a}}\right|^{p+1}}{p+1}+\frac{1}{\lambda_{a}^{\frac{2(p+1)}{p-1}}} G\left(\lambda_{a}^{\frac{2}{p-1}} w_{\lambda_{a}}\right) \tag{2.11}
\end{equation*}
$$

Then $E_{\lambda_{a}}^{\prime}(r)=\frac{-(N-1)}{\lambda_{a} M_{a}+r} w_{\lambda_{a}}^{\prime 2} \leq 0$ which implies $E_{\lambda_{a}}(r)$ is a non-increasing function of r. Therefore,

$$
E_{\lambda_{a}}(r) \leq E_{\lambda_{a}}(0)=\frac{1}{p+1}+\frac{1}{\lambda_{a}^{\frac{2(p+1)}{p-1}}} G\left(\lambda_{a}^{\frac{2}{p-1}}\right)
$$

Since $\frac{G(u)}{u^{p+1}} \rightarrow 0$ as $u \rightarrow \infty$ it follows for a sufficiently large that

$$
E_{\lambda_{a}}(r) \leq E_{\lambda_{a}}(0) \leq \frac{1}{p+1}+1<2
$$

Also it follows that $|G(u)| \leq \frac{1}{2(p+1)}|u|^{p+1}$ if $|u| \geq T_{1}$ for some $T_{1}>0$. And since G is continuous on the compact set $|u| \leq T_{1}$, there exists a constant $C_{G}>0$ such that $|G(u)| \leq C_{G}$ if $|u| \leq T_{1}$. Thus

$$
|G(u)| \leq C_{G}+\frac{1}{2(p+1)}|u|^{p+1} \text { for all } u
$$

Therefore if a is sufficiently large we see from this upper bound for G and 2.11 that

$$
\frac{w_{\lambda_{a}}^{\prime 2}}{2}+\frac{\left|w_{\lambda_{a}}\right|^{p+1}}{p+1} \leq 2-\frac{1}{\lambda_{a}^{\frac{2(p+1)}{p-1}}} G\left(\lambda_{a}^{\frac{2}{p-1}} w_{\lambda_{a}}\right) \leq 2+\frac{C_{G}}{\lambda_{a}^{\frac{2(p+1)}{p-1}}}+\frac{\left|w_{\lambda_{a}}\right|^{p+1}}{2(p+1)}
$$

Thus if a is sufficiently large we have

$$
\begin{equation*}
\frac{w_{\lambda_{a}}^{\prime 2}}{2}+\frac{\left|w_{\lambda_{a}}\right|^{p+1}}{2(p+1)} \leq 2+\frac{C_{G}}{\lambda_{a}^{\frac{2(p+1)}{p-1}}} \leq 3 \tag{2.12}
\end{equation*}
$$

Therefore $w_{\lambda_{a}}$ and $w_{\lambda_{a}}^{\prime}$ are uniformly bounded for large a. So by the Arzela-Ascoli theorem $w_{\lambda_{a}} \rightarrow w$ uniformly on compact subsets of $[0, \infty)$ for some subsequence still labeled $w_{\lambda_{a}}$.

Now using the definition of f from (1.4) we have:

$$
\begin{gathered}
w_{\lambda_{a}}^{\prime \prime}+\frac{N-1}{\lambda_{a} M_{a}+r} w_{\lambda_{a}}^{\prime}+\left|w_{\lambda_{a}}\right|^{p-1} w_{\lambda_{a}}+\lambda_{a}^{\frac{-2 p}{p-1}} g\left(\lambda_{a}^{\frac{2}{p-1}} w_{\lambda_{a}}\right)=0 \\
w_{\lambda_{a}}(0)=1, w_{\lambda_{a}}^{\prime}(0)=0
\end{gathered}
$$

Since $\lim _{u \rightarrow \infty} \frac{g(u)}{u^{p}}=0$, it follows that for all $\epsilon>0$ there exists a $T_{2}>0$ such that $|g(u)| \leq \epsilon|u|^{p}$ if $|u|>T_{2}$ and the continuity of g on the compact set $|u| \leq T_{2}$ implies $|g(u)| \leq C_{g}$ for some $C_{g}>0$ if $|u| \leq T_{2}$. Thus,

$$
|g(u)| \leq C_{g}+\epsilon|u|^{p} \quad \text { for all } u
$$

and hence

$$
\left|g\left(\lambda_{a}^{\frac{2}{p-1}} w_{\lambda_{a}}\right)\right| \leq C_{g}+\epsilon \lambda_{a}^{\frac{2 p}{p-1}}\left|w_{\lambda_{a}}\right|^{p} .
$$

Recall from 2.12 that $\left|w_{\lambda_{a}}\right| \leq[6(p+1)]^{\frac{1}{p+1}}<4$ for $p>1$. So:

$$
\frac{\left|g\left(\lambda_{a}^{\frac{2}{p-1}} w_{\lambda_{a}}\right)\right|}{\lambda_{a}^{\frac{2 p}{p-1}}} \leq \frac{C_{g}+\epsilon \lambda_{a}^{\frac{2 p}{p-1}} 4^{p}}{\lambda_{a}^{\frac{2 p}{p-1}}}=\frac{C_{g}}{\lambda_{a}^{\frac{2 p}{p-1}}}+\epsilon 4^{p} .
$$

This implies

$$
0 \leq \limsup _{a \rightarrow \infty} \frac{\left|g\left(\lambda_{a}^{\frac{2}{p-1}} w_{\lambda_{a}}\right)\right|}{\lambda_{a}^{\frac{2 p}{p-1}}} \leq \limsup _{a \rightarrow \infty} \frac{C_{g}}{\lambda_{a}^{\frac{2 p}{p-1}}}+\epsilon 4^{p}=\epsilon 4^{p}
$$

This is true for each $\epsilon>0$. Hence

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \frac{\left|g\left(\lambda_{a}^{\frac{2}{p-1}} w_{\lambda_{a}}\right)\right|}{\lambda_{a}^{\frac{2 p}{p-1}}}=0 \tag{2.13}
\end{equation*}
$$

In addition, recall that $M_{a} \geq R$ and so for $r \geq R$ we have

$$
\frac{1}{\lambda_{a} M_{a}+r} \leq \frac{1}{\left(\lambda_{a}+1\right) R}
$$

and since $\left|w_{\lambda_{a}}^{\prime}\right|$ is uniformly bounded (by 2.12) we see that $\frac{N-1}{\lambda_{a} M_{a}+r} w_{\lambda_{a}}^{\prime} \rightarrow 0$ as $a \rightarrow \infty$. From this and 2.13 we see that the second and fourth terms on the left-hand side of (2) go to 0 as $a \rightarrow \infty$. In addition, $w_{\lambda_{a}}$ is bounded by 2.12 and therefore it follows from (2) that $\left|w_{\lambda_{a}}^{\prime \prime}\right|$ is uniformly bounded.

Therefore by the Arzela-Ascoli theorem for some subsequence still labeled $w_{\lambda_{a}}$ we have $w_{\lambda_{a}} \rightarrow w$ and $w_{\lambda_{a}}^{\prime} \rightarrow w^{\prime}$ uniformly on compact subsets of $[0, \infty)$ and from (2) we have $\lim _{a \rightarrow \infty} w_{\lambda_{a}}^{\prime \prime}+|w|^{p-1} w=0$. Thus $\lim _{a \rightarrow \infty} w_{\lambda_{a}}^{\prime \prime}$ exists and in fact $\lim _{a \rightarrow \infty} w_{\lambda_{a}}^{\prime \prime}=w^{\prime \prime}$. Hence

$$
\begin{gather*}
w^{\prime \prime}+|w|^{p-1} w=0 \tag{2.14}\\
w(0)=1, \quad w^{\prime}(0)=0 \tag{2.15}
\end{gather*}
$$

Therefore $\frac{1}{2} w^{2}+\frac{1}{p+1}|w|^{p+1}=\frac{1}{p+1}$.
It is straightforward to show that solutions of 2.14-2.15 are periodic with period $\sqrt{2(p+1)} \int_{0}^{1} \frac{d t}{\sqrt{1-t^{p+1}}}$ and they have an infinite number of zeros on $[0, \infty)$.

Since $w_{\lambda_{a}} \rightarrow w$ uniformly on compact subsets of $[0, \infty)$ as $a \rightarrow \infty$ it follows that $w_{\lambda_{a}}$ has zeros on $(0, \infty)$ and the number of zeros of $w_{\lambda_{a}}$ gets arbitrarily large by taking a sufficiently large. Recalling that

$$
w_{\lambda_{a}}(r)=\lambda^{-\frac{2}{p-1}} u_{a}\left(M_{a}+\frac{r}{\lambda_{a}}\right)
$$

we see that $u_{a}(r)$ has zeros (R, ∞) for large a and the number of zeros of $u_{a}(r)$ increases as a increases.

Next we examine (1.7)-1.8 when $a>0$ is small.
Lemma 2.4. $r_{a} \rightarrow \infty$ as $a \rightarrow 0^{+}$where r_{a} is defined in Lemma 2.1.
Proof. From 2.3) we have $\frac{1}{2} u_{a}^{\prime 2}+F\left(u_{a}\right) \leq \frac{1}{2} a^{2}$ for $r \geq R$, and from Lemma 2.2 we have $u_{a}^{\prime}>0$ on $\left[R, r_{a}\right]$. So rewriting this inequality and integrating on $\left(R, r_{a}\right)$ gives

$$
\int_{R}^{r_{a}} \frac{u_{a}^{\prime}}{\sqrt{a^{2}-2 F\left(u_{a}\right)}} \leq \int_{R}^{r_{a}} 1 d r=r_{a}-R
$$

Letting $s=u_{a}(r)$ we see that

$$
\begin{equation*}
\int_{0}^{\beta} \frac{d s}{\sqrt{a^{2}-2 F(s)}}=\int_{R}^{r_{a}} \frac{u_{a}^{\prime} d r}{\sqrt{a^{2}-2 F\left(u_{a}\right)}} \leq r_{a}-R \tag{2.16}
\end{equation*}
$$

From (1.4) we have $f^{\prime}(0)<0$, thus $f(u) \geq-\frac{3}{2}\left|f^{\prime}(0)\right| u$ for small u. So $a^{2}-2 F(u) \leq$ $\frac{3}{2}\left|f^{\prime}(0)\right| u^{2}+a^{2}$ for small u and so

$$
\sqrt{a^{2}-2 F(u)} \leq \sqrt{a^{2}+\frac{3}{2}\left|f^{\prime}(0)\right| u^{2}} \leq a+\sqrt{\frac{3}{2}\left|f^{\prime}(0)\right|} u \text { for small } u
$$

Therefore,

$$
\frac{1}{\sqrt{a^{2}-2 F(u)}} \geq \frac{1}{a+\sqrt{\frac{3}{2}\left|f^{\prime}(0)\right|} u} \quad \text { for small } u
$$

So for some ϵ with $0<\epsilon<\beta$ we have

$$
\int_{0}^{\epsilon} \frac{d s}{\sqrt{a^{2}-2 F(s)}} \geq \int_{0}^{\epsilon} \frac{d s}{a+\sqrt{\frac{3}{2}\left|f^{\prime}(0)\right|}}=\sqrt{\frac{2}{3\left|f^{\prime}(0)\right|}} \ln \left(1+\sqrt{\frac{3}{2}\left|f^{\prime}(0)\right|} \frac{\epsilon}{a}\right) \rightarrow \infty
$$

as $a \rightarrow 0^{+}$. Therefore from 2.16 and the above computation we see that

$$
r_{a}-R \geq \int_{0}^{\beta} \frac{d s}{\sqrt{a^{2}-2 F(s)}} \geq \int_{0}^{\epsilon} \frac{d s}{\sqrt{a^{2}-2 F(s)}} \rightarrow \infty \quad \text { as } a \rightarrow 0^{+}
$$

thus $r_{a} \rightarrow \infty$ as $a \rightarrow 0^{+}$. Hence the lemma is proved.
Note that if $E\left(r_{0}\right)<0$, then

$$
\begin{equation*}
u(r)>0 \quad \text { for each } r>r_{0} . \tag{2.17}
\end{equation*}
$$

Suppose not. Then there exists $z>r_{0}$ such that $u(z)=0$ and so $F(u(z))=0$. By 2.2, $E(r)$ is non-increasing so $E(z) \leq E\left(r_{0}\right)<0$. Therefore

$$
0 \leq \frac{u^{\prime}(z)^{2}}{2}=\frac{u^{\prime}(z)^{2}}{2}+F(u(z))=E(z)<0
$$

which is impossible. Hence $u(r)>0$ for all $r>r_{0}$.
Lemma 2.5. If $a>0$ and a is sufficiently small then $u_{a}(r)>0$ for each $r>R$.
Proof. Assume by the way of contradiction that $u_{a}\left(z_{a}\right)=0$ for some $z_{a}>R$. Since $u_{a}(R)=0$ and $u_{a}^{\prime}(R)=a>0$ we see that $u_{a}(r)$ has a positive local maximum, M_{a}, with $R<M_{a}<z_{a}$ and since the energy function $E_{a}(r)$ is non-increasing then

$$
0<E_{a}\left(z_{a}\right) \leq E_{a}\left(M_{a}\right)=F\left(u_{a}\left(M_{a}\right)\right)
$$

Thus by 1.6 $u_{a}\left(M_{a}\right)>\gamma$ and so in particular there exist p_{a}, q_{a} with $R<p_{a}<$ $q_{a}<M_{a}$ such that $u_{a}\left(p_{a}\right)=\frac{\beta}{2}, u_{a}\left(q_{a}\right)=\beta$ and $0<u_{a}(r)<\beta$ for $\left[R, q_{a}\right)$. Then by 1.5 we see that $f\left(u_{a}\right)<0$ on $\left[R, q_{a}\right)$ so $u_{a}^{\prime \prime}+\frac{N-1}{r} u_{a}^{\prime}>0$ on $\left[R, q_{a}\right)$ by (1.7). Therefore $\int_{R}^{r}\left(r^{N-1} u_{a}^{\prime}\right)^{\prime} d r>0$ from which it follows that

$$
r^{N-1} u_{a}^{\prime}>R^{N-1} u_{a}^{\prime}(R)>0 \quad \text { on }\left[R, q_{a}\right)
$$

Thus $u_{a}(r)$ is increasing on $\left[R, q_{a}\right)$. In addition, $p_{a} \rightarrow \infty$ as $a \rightarrow 0^{+}$for if the p_{a} were bounded then a subsequence would converge to say some finite p_{0} as $a \rightarrow 0^{+}$. Since $E_{a}(r)$ is non-increasing this would imply $u_{a}(r)$ and $u_{a}^{\prime}(r)$ would be uniformly bounded on $\left[R, p_{0}+1\right]$ and so by the Arzela-Ascoli theorem for a subsequence $u_{a}(r) \rightarrow u_{0}(r) \equiv 0$ as $a \rightarrow 0^{+}$. On the other hand, $\frac{\beta}{2}=u_{a}\left(p_{a}\right) \rightarrow u_{0}\left(p_{0}\right)=0$ as $a \rightarrow 0^{+}$which is a contradiction. Thus we see that $p_{a} \rightarrow \infty$ as $a \rightarrow 0^{+}$.

Next we return to 2.3 and after rewriting we have

$$
\frac{u_{a}^{\prime}}{\sqrt{a^{2}-2 F\left(u_{a}\right)}} \leq 1 \quad \text { for each } r \geq R
$$

Integrating on $\left[p_{a}, q_{a}\right]$ and setting $u_{a}(r)=t$ we obtain

$$
\begin{equation*}
\int_{\frac{\beta}{2}}^{\beta} \frac{d t}{\sqrt{a^{2}-2 F(t)}}=\int_{p_{a}}^{q_{a}} \frac{u_{a}^{\prime}}{\sqrt{a^{2}-2 F\left(u_{a}\right)}} d r \leq \int_{p_{a}}^{q_{a}} 1 d r=q_{a}-p_{a} \tag{2.18}
\end{equation*}
$$

Now on $\left[\frac{\beta}{2}, \beta\right]$ we have $0<a^{2}-2 F(t) \leq 1+2|F(\beta)|$ if $0<a \leq 1$. It follows that

$$
\int_{\frac{\beta}{2}}^{\beta} \frac{d t}{\sqrt{a^{2}-2 F\left(u_{a}\right)}} \geq \frac{\beta}{2 \sqrt{1+2|F(\beta)|}} \equiv c>0
$$

for some constant $c>0$ and sufficiently small a. Combining this with 2.18 we see that

$$
\begin{equation*}
q_{a}-p_{a} \geq c \quad \text { if } a \text { is sufficiently small. } \tag{2.19}
\end{equation*}
$$

Now by the definition of $E_{a}(r)$ it is straightforward to show that

$$
\left(r^{2(N-1)} E_{a}(r)\right)^{\prime}=\left(r^{2(N-1)}\right)^{\prime} F\left(u_{a}\right)
$$

Integrating on $\left[p_{a}, q_{a}\right]$ gives

$$
q_{a}^{2(N-1)} E_{a}\left(q_{a}\right)=p_{a}^{2(N-1)} E_{a}\left(p_{a}\right)+\int_{p_{a}}^{q_{a}}\left[r^{2(N-1)}\right]^{\prime} F\left(u_{a}\right) d r
$$

Since $F\left(u_{a}\right) \leq F\left(\frac{\beta}{2}\right)<0$ on $\left[p_{a}, q_{a}\right]$ we have

$$
\begin{aligned}
& p_{a}^{2(N-1)} E_{a}\left(p_{a}\right)+\int_{p_{a}}^{q_{a}}\left(r^{2(N-1)}\right)^{\prime} F\left(u_{a}\right) d r \\
& \leq p_{a}^{2(N-1)} E_{a}\left(p_{a}\right)-\left|F\left(\frac{\beta}{2}\right)\right|\left[q_{a}^{2(N-1)}-p_{a}^{2(N-1)}\right]
\end{aligned}
$$

But

$$
p_{a}^{2(N-1)} E_{a}\left(p_{a}\right)=R^{2(N-1)} E_{a}(R)+\int_{R}^{p_{a}}\left[r^{2(N-1)}\right]^{\prime} F\left(u_{a}\right) d r
$$

and

$$
\int_{R}^{p_{a}}\left[r^{2(N-1)}\right]^{\prime} F\left(u_{a}\right) d r \leq 0
$$

as $F\left(u_{a}\right) \leq 0$ on $\left[R, p_{a}\right]$. Thus

$$
p_{a}^{2(N-1)} E_{a}\left(p_{a}\right) \leq R^{2(N-1)} E_{a}(R)=\frac{1}{2} a^{2} R^{2(N-1)} .
$$

Therefore,

$$
q_{a}^{2(N-1)} E_{a}\left(q_{a}\right) \leq \frac{1}{2} a^{2} R^{2(N-1)}-\left|F\left(\frac{\beta}{2}\right)\right|\left[q_{a}^{2(N-1)}-p_{a}^{2(N-1)}\right]
$$

So

$$
\begin{equation*}
q_{a}^{2(N-1)} E_{a}\left(q_{a}\right) \leq \frac{a^{2} R^{2(N-1)}}{2}-\left|F\left(\frac{\beta}{2}\right)\right|\left(q_{a}^{2(N-1)}-p_{a}^{2(N-1)}\right) \tag{2.20}
\end{equation*}
$$

Now by 2.19 we have

$$
q_{a}^{2(N-1)}-p_{a}^{2(N-1)} \geq\left(q_{a}-p_{a}\right) p_{a}^{2 N-3} \geq c p_{a}^{2 N-3}
$$

and from earlier in the proof of this lemma we saw $\lim _{a \rightarrow 0^{+}} p_{a}^{2 N-3}=\infty$. Thus $q_{a}^{2(N-1)}-p_{a}^{2(N-1)} \rightarrow \infty$ as $a \rightarrow 0^{+}$.

It follows then from 2.20 that $q_{a}^{2(N-1)} E_{a}\left(q_{a}\right)$ is negative if a is sufficiently small. Thus by 2.17 it follows that $u_{a}(r)>0$ for $r \geq q_{a}$. Also, since we have $u_{a}^{\prime}>0$ on $\left[R, q_{a}\right]$ and $u_{a}(R)=0$ we see that $u_{a}(r)>0$ on (R, ∞) if a is sufficiently small. This completes the proof.

3. Proof of Theorem 1.1

Let

$$
S_{0}=\left\{a>0 \mid u_{a}(r)>0 \forall r>R\right\} .
$$

By Lemma 2.5 we know that for $a>0$ and a sufficiently small that $u_{a}(r)>0$ so S_{0} is nonempty. Also from Lemma 2.3 we know that if a is sufficiently large then $u_{a}(r)$ has zeros. Hence S_{0} is bounded above and so the supremum of S_{0} exists. Let $a_{0}=\sup \left(S_{0}\right)$.

Lemma 3.1. $u_{a_{0}}(r)>0$ on (R, ∞).

Proof. Suppose by the way of contradiction that there exists z_{0} such that $u_{a_{0}}\left(z_{0}\right)=$ 0 and $u_{a}(r)>0$ on $\left[R, z_{0}\right)$. Then $u_{a_{0}}^{\prime}\left(z_{0}\right) \leq 0$ and by uniqueness in fact $u_{a_{0}}^{\prime}\left(z_{0}\right)<0$. Thus $u_{a_{0}}(r)<0$ for $z_{0}<r<z_{0}+\epsilon$. If $a<a_{0}$ and a is close enough to a_{0} then the continuity of solutions of boundary value problems with respect to the initial conditions implies that $u_{a}(r)$ also gets negative which contradicts the definition of a_{0}. So $u_{a_{0}}(r)>0$ on (R, ∞). This completes the lemma.

Lemma 3.2. $u_{a_{0}}(r)$ has a local maximum, $M_{a_{0}}>R$.
Proof. Suppose not. Then $u_{a_{0}}^{\prime}(r)>0$ for all $r \geq R$. Since $E_{a_{0}}(r) \leq E_{a_{0}}(R)$ for all $r \geq R$, we have

$$
\frac{u_{a_{0}}^{\prime 2}(r)}{2}+F\left(u_{a_{0}}(r)\right) \leq \frac{a_{0}^{2}}{2}
$$

This implies $F\left(u_{a_{0}}(r)\right) \leq \frac{a_{0}^{2}}{2}$ and hence $u_{a_{0}}(r)$ is bounded. Since we are also assuming $u_{a_{0}}^{\prime}(r)>0$ it follows that $\lim _{r \rightarrow \infty} u_{a_{0}}(r)$ exists. Let us denote $\lim _{r \rightarrow \infty} u_{a_{0}}(r)=$ L. Since $E_{a_{0}}(r)$ is a non-increasing function which is bounded below, it follows that $\lim _{r \rightarrow \infty} E_{a_{0}}(r)=\lim _{r \rightarrow \infty}\left[\frac{u_{a_{0}}^{\prime 2}}{2}+F\left(u_{a_{0}}\right)\right]$ exists.

Since we also know that $\lim _{r \rightarrow \infty} u_{a_{0}}(r)$ exists it follows that $\lim _{r \rightarrow \infty} u_{a_{0}}^{\prime}(r)$ exists and in fact $\lim _{r \rightarrow \infty} u_{a_{0}}^{\prime}(r)=0$ (since otherwise $u_{a_{0}}(r)$ would be unbounded). Therefore from 1.7) it follows that $\lim _{r \rightarrow \infty} u_{a_{0}}^{\prime \prime}(r)=-f(L)$ and in fact $f(L)=0$. (Otherwise, $u_{a_{0}}^{\prime}$ would be unbounded but we know $u_{a_{0}}^{\prime} \rightarrow 0$). So $L=-\beta, 0$, or β. Since $u_{a_{0}}(r)>0$ and $u_{a_{0}}^{\prime}(r)>0$ thus $L=\beta$.

Now by the definition of a_{0} we know $u_{a}(r)$ has a zero if $a>a_{0}$, say $u_{a}\left(z_{a}\right)=0$. Next we show that

$$
\begin{equation*}
\lim _{a \rightarrow a_{0}^{+}} z_{a}=\infty \tag{3.1}
\end{equation*}
$$

Suppose not. Then $\left|z_{a}\right| \leq K$ for some constant K and so there is a subsequence of z_{a} still denoted z_{a} such that $z_{a} \rightarrow z_{0}$ as $a \rightarrow a_{0}^{+}$. But $u_{a}(r) \rightarrow u_{a_{0}}(r)$ uniformly on the compact subset $\left[R, z_{0}+1\right]$ as $a \rightarrow a_{0}^{+}$so $0=\lim _{a \rightarrow a_{0}^{+}} u_{a}\left(z_{a}\right)=u_{a_{0}}\left(z_{0}\right)$ which contradicts that $u_{a_{0}}(r)>0$ from Lemma 3.1. Thus $\lim _{a \rightarrow a_{0}^{+}} z_{a}=\infty$. In addition, $E_{a}\left(z_{a}\right)=\frac{u_{a}^{\prime 2}\left(z_{a}\right)}{2} \geq 0$. Also:

$$
\lim _{r \rightarrow \infty} E_{a_{0}}(r)=\lim _{r \rightarrow \infty}\left[\frac{u_{a_{0}}^{\prime 2}(r)}{2}+F\left(u_{a_{0}}(r)\right)\right]=F(\beta)<0
$$

So there exists $R_{0}>R$ such that $E_{a_{0}}\left(R_{0}\right)<0$.
Since $\lim _{a \rightarrow a_{0}} u_{a}(r)=u_{a_{0}}(r)$ uniformly on the compact set $\left[R, R_{0}+1\right]$, it follows that $\lim _{a \rightarrow a_{0}} E_{a}\left(R_{0}\right)=E_{a_{0}}\left(R_{0}\right)<0$. Since $E_{a}\left(R_{0}\right)<0<E_{a}\left(z_{a}\right)$ and E_{a} is non-increasing it follows that $z_{a}<R_{0}$ if a is sufficiently close to a_{0}.

However, by (3.1), we have $z_{a} \rightarrow \infty$ as $a \rightarrow a_{0}^{+}$which is a contradiction since $R_{0}<\infty$.

Hence $u_{a_{0}}(r)$ has a local maximum at $r=M_{a_{0}}$ for some $M_{a_{0}}>R$. This completes the proof.

Lemma 3.3. $u_{a_{0}}^{\prime}(r)<0$ if $r>M_{a_{0}}$.
Proof. Suppose $u_{a_{0}}^{\prime}\left(m_{a_{0}}\right)=0$ for some $m_{a_{0}}>M_{a_{0}}$. Then $u_{a_{0}}^{\prime \prime}\left(m_{a_{0}}\right)>0$ and so $f\left(u\left(m_{a_{0}}\right)\right)<0$. Since we also know that $u_{a_{0}}(r)>0$ (by Lemma 3.1) it follows that $0<u_{a_{0}}\left(m_{a_{0}}\right)<\beta$. Therefore, $E_{a_{0}}\left(m_{a_{0}}\right)=F\left(u_{a_{0}}\left(m_{a_{0}}\right)\right)<0$ and so by the continuity of the solution with respect to initial conditions we have $E_{a}\left(m_{a_{0}}\right)<0$ if a is sufficiently close to a_{0}.

Now by the definition of a_{0} if $a>a_{0}$ then $u_{a}(r)$ has a zero, z_{a}, with $E_{a}\left(z_{a}\right) \geq 0$ and by (31) we have seen that $\lim _{a \rightarrow a_{0}} z_{a}=\infty$. Since E_{a} is non-increasing we therefore have $z_{a}<m_{a_{0}}$. But $z_{a} \rightarrow \infty$ as $a \rightarrow a_{0}^{+}$and $m_{a_{0}}<\infty$ so we obtain a contradiction. This completes the proof.

So $u_{a_{0}}^{\prime}(r)<0$ for all $r \geq M_{a_{0}}$. Also, $u_{a_{0}}(r)>0$ so $\lim _{r \rightarrow \infty} u_{a_{0}}(r)=L$ with $L \geq 0$. Since $E_{a_{0}}(r)$ is non-increasing, we see as we did earlier that $f(L)=0$. Thus $L=0$ or β. We now show $E_{a_{0}}(r) \geq 0$ for all $r \geq R$. So suppose there is an $r_{0}>R$ such that $E_{a_{0}}\left(r_{0}\right)<0$. Then $E_{a}\left(r_{0}\right)<0$ for a close to a_{0} and in particular if $a>a_{0}$. But then we know that z_{a} exists and since $E_{a}\left(z_{a}\right) \geq 0$ it follows that $z_{a}<r_{0}$ since E_{a} is non-increasing. But this contradicts that $z_{a} \rightarrow \infty$ from (3.1). Thus $E_{a_{0}}(r) \geq 0$ for all $r \geq R$.

Let us suppose now that $L=\beta$. Since $E_{a}(r)$ is non-increasing and bounded below:

$$
\lim _{r \rightarrow \infty} E_{a_{0}}\left(r, a_{0}\right) \quad \text { exists. }
$$

This implies

$$
\lim _{r \rightarrow \infty} u_{a_{0}}^{\prime 2}(r) \quad \text { exists }
$$

and as we have seen earlier this implies $\lim _{r \rightarrow \infty} u_{a_{0}}^{\prime}(r)=0$. Therefore,

$$
0 \leq \lim _{r \rightarrow \infty} E_{a_{0}}(r)=\lim _{r \rightarrow \infty} \frac{u_{a_{0}}^{\prime 2}(r)}{2}+F(L)=0+F(\beta)<0
$$

which is a contradiction. Hence we must have $L=0$. i.e. $\lim _{r \rightarrow \infty} u_{a_{0}}(r)=0$. Thus we have found a positive solution $u_{a_{0}}(r)$ of (1.7)-1.8) such that $\lim _{r \rightarrow \infty} u_{a_{0}}(r)=0$.

Next we let

$$
S_{1}=\left\{a>0 \mid u_{a}(r) \text { has one zero on }(R, \infty)\right\}
$$

[8, Lemma 4] states that if $u_{a_{k}}(r)$ is a bounded solution of (1.7) on $(0, \infty)$ with k zeros and $\lim _{r \rightarrow \infty} u_{a_{k}}(r)=0$ then if a is sufficiently close to a_{k} then u_{a} has at most $k+1$ zeros on $[0, \infty)$. A nearly identical lemma holds for solutions of 1.7) on (R, ∞). Applying this lemma with a_{0} we see that u_{a} on (R, ∞) has at most one zero if a is sufficiently close to a_{0}.

On the other hand, for $a>a_{0}$ we know that $u_{a}(r)$ has at least one zero on (R, ∞) by the definition of a_{0}. Thus if $a>a_{0}$ and a is sufficiently close to a_{0} then u_{a} has exactly one zero and so we see that S_{1} is nonempty. We also know S_{1} is bounded from above by Lemma 2.3 and so we let:

$$
a_{1}=\sup S_{1}
$$

Using a similar argument as earlier we can show that $u_{a_{1}}(r)$ has exactly one zero on (R, ∞) and $\lim _{r \rightarrow \infty} u_{a_{1}}(r)=0$. Continuing in this way we see that we can find an infinite number of solutions - one with exactly n zeros on (R, ∞) for each nonnegative integer n - and with $\lim _{r \rightarrow \infty} u(r)=0$.

References

[1] H. Berestycki, P.L. Lions; Non-linear scalar field equations I \& II, Arch. Rational Mech. Anal., Volume 82, 313-375, 1983.
[2] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
[3] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, Ginn and Company, 1962.
[4] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, Journal of Mathematical Analysis and Applications, Volume 394, Issue 1, 432-437, 2012.
[5] J. Iaia; Loitering at the hilltop on exterior domains, Electronic Journal of the Qualitative Theory of Differential Equations, No. 82, 1-11, 2015.
[6] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
[7] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, Differential and Integral Equations, Volume 24, Number 9/10, 861-875, 2011.
[8] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equations, Volume 83, Issue 2, 368-373, 1990.
[9] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
[10] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Janak Joshi
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

E-mail address: janakrajjoshi@my.unt.edu
Joseph Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

E-mail address: iaia@unt.edu

[^0]: 2010 Mathematics Subject Classification. 34B40, 35B05.
 Key words and phrases. Exterior domains; semilinear; superlinear; radial.
 (C)2016 Texas State University.

 Submitted December 31, 2015. Published May 3, 2016.

