EXISTENCE OF SOLUTIONS FOR SEMILINEAR PROBLEMS WITH PRESCRIBED NUMBER OF ZEROS ON EXTERIOR DOMAINS

JANAK JOSHI, JOSEPH IAIA

ABSTRACT. In this article we prove the existence of an infinite number of radial solutions of $\Delta(u) + f(u) = 0$ with prescribed number of zeros on the exterior of the ball of radius R > 0 centered at the origin in \mathbb{R}^N where f is odd with f < 0 on $(0, \beta)$, f > 0 on (β, ∞) where $\beta > 0$.

1. Introduction

In this article we study radial solutions of

$$\Delta(u) + f(u) = 0 \quad \text{in } \Omega, \tag{1.1}$$

$$u = 0 \quad \text{on } \partial\Omega,$$
 (1.2)

$$u \to 0 \quad \text{as } |x| \to \infty$$
 (1.3)

where $x \in \Omega = \mathbb{R}^N \backslash B_R(0)$ is the complement of the ball of radius R > 0 centered at the origin.

The function f is odd, locally Lipschitz and is defined by

$$f(u) = |u|^{p-1}u + g(u)$$
 with $p > 1$, $f'(0) < 0$ and $\lim_{u \to \infty} \frac{g(u)}{u^p} = 0$. (1.4)

We assume that there exists $\beta > 0$ such that $f(0) = f(\beta) = 0$ and $F(u) = \int_0^u f(s) \, ds$ where

$$f < 0 \text{ on } (0, \beta), f > 0 \text{ on } (\beta, \infty)$$

$$\tag{1.5}$$

As f is odd, it follows that $F(u) = \int_0^u f(s) ds$ is even. Also F has a unique positive zero, γ , with $\beta < \gamma < \infty$ and F is bounded below by some $-F_0 < 0$ so that

$$F < 0 \text{ on } (0, \gamma), F > 0 \text{ on } (\gamma, \infty), \text{ and } F \ge -F_0 \text{ on } (0, \infty).$$
 (1.6)

Since we are interested in radial solutions of (1.1)–(1.3) we assume that u(x)=u(|x|)=u(r), where $r=|x|=\sqrt{x_1^2+x_2^2+\cdots+x_N^2}$ so that u solves

$$u''(r) + \frac{N-1}{r}u'(r) + f(u(r)) = 0$$
 on (R, ∞) where $R > 0$, (1.7)

$$u(R) = 0, \quad u'(R) = a > 0.$$
 (1.8)

²⁰¹⁰ Mathematics Subject Classification. 34B40, 35B05.

Key words and phrases. Exterior domains; semilinear; superlinear; radial.

^{©2016} Texas State University.

Submitted December 31, 2015. Published May 3, 2016.

We will occasionally denote the solution of the above by $u_a(r)$, to emphasize the dependence on the initial parameter a.

Theorem 1.1. For each nonnegative integer n, there exists a solution u(r) of (1.7)-(1.8) on $[R,\infty)$ such that $\lim_{r\to\infty} u(r)=0$ and u(r) has exactly n zeros on (R,∞) .

The radial solutions of (1.1), (1.3) have been well-studied when $\Omega = \mathbb{R}^N$. These include [1, 2, 6, 8, 10]. Recently there has been an interest in studying these problems on $\mathbb{R}^N \setminus B_R(0)$. These include [4, 5, 7, 9]. Here we use a scaling argument as in [8] to prove existence of solutions.

2. Preliminaries

For R > 0 existence and uniqueness of solutions of (1.7)-(1.8) on $[R, R + \epsilon]$ for some $\epsilon > 0$ and continuous dependence of solutions with respect to a follows from the standard existence-uniqueness theorem for ordinary differential equations [3]. For existence on $[R, \infty)$ we consider

$$E_a(r) = \frac{1}{2}u_a^{\prime 2} + F(u_a). \tag{2.1}$$

Using (1.7) we see that

$$E_a'(r) = -\frac{N-1}{r}u_a'^2 \le 0 \tag{2.2}$$

so E_a is non-increasing on $[R, \infty)$. Therefore

$$\frac{1}{2}u_a'^2 + F(u_a) = E_a(r) \le E_a(R) = \frac{1}{2}a^2 \quad \text{for } r \ge R.$$
 (2.3)

Therefore by (1.6),

$$\frac{1}{2}u_a^{\prime 2} \le \frac{1}{2}a^2 + F_0.$$

So for a fixed a we see that u'_a is uniformly bounded and hence existence on all of $[R,\infty)$ follows.

Lemma 2.1. Let $u_a(r)$ be the solution of (1.7)-(1.8). If a is sufficiently large then there exists r > R such that $u_a(r) > \beta$. In particular, there exists $r_a > R$ such that $u_a(r_a) = \beta.$

Proof. Since $u'_a(R) = a > 0$ we see that $u_a(r)$ is increasing on $[R, R + \delta)$ for some $\delta > 0$. If $u_a(r)$ has a first critical point $M_a > R$ with $u'_a(r) > 0$ on $[R, M_a)$ then we must have $u'_a(M_a) = 0, u''_a(M_a) \le 0$. In fact $u''_a(M_a) < 0$ (by uniqueness of solutions of initial value problems). Therefore from (1.7) it follows that $f(u_a(M_a)) > 0$ and using (5) we see that $u_a(M_a) > \beta$.

On the other hand, if $u_a(r)$ has no critical point then $u'_a(r) > 0$ for each $r \geq R$. Suppose now by the way of contradiction that $u_a(r) \leq \beta$ for each $r \geq R$. Since $u_a(r)$ is increasing and bounded above then $\lim_{r\to\infty}u_a(r)$ exists. Thus there exists $L > 0, L \le \beta$ such that

$$\lim_{r \to \infty} u_a(r) = L. \tag{2.4}$$

 $\lim_{r\to\infty}u_a(r)=L. \tag{2.4}$ Since $E_a(r)$ is non-increasing and bounded below, it follows that $\lim_{r\to\infty}E_a(r)$ exists. This implies $\lim_{r\to\infty} u_a'(r)$ exists and in fact $\lim_{r\to\infty} u_a'(r) = 0$ since otherwise u_a would become unbounded contradicting (2.4). Hence by (1.7), $\lim_{r\to\infty} u_a''(r)$ exists and as with $u'_a(r)$ we see that $\lim_{r\to\infty} u''_a(r) = 0$. Taking limits in (1.7) we see that f(L) = 0. Since L > 0 it follows that $L = \beta$.

Suppose now that this is true for all values of a > 0. We then let $y_a(r) = \frac{u_a(r)}{a}$ and we see that:

$$y_a'' + \frac{N-1}{r}y_a' + \frac{f(ay_a)}{a} = 0. {(2.5)}$$

$$y_a(R) = 0, \quad y_a'(R) = 1.$$
 (2.6)

Since

$$\left(\frac{y_a'^2}{2} + \frac{F(ay_a)}{a^2}\right)' = y_a'y_a'' + \frac{f(ay_a)}{a}y_a' = -\frac{(N-1)}{r}y_a'^2 \le 0,$$

it follows that

$$\frac{y_a'^2}{2} + \frac{F(ay_a)}{a^2} \le \frac{1}{2} \quad \forall r \ge R.$$

In addition, from (1.6) it follows that

$$\frac{y_a'^2}{2} - \frac{F_0}{a^2} \le \frac{1}{2}.$$

Hence

$$\frac{y_a'^2}{2} \le \frac{1}{2} + \frac{F_0}{a^2} \le 1$$

if a is sufficiently large. Therefore $|y_a'|$ is uniformly bounded if a is sufficiently large. Also $0 \le u_a \le \beta$ implies $0 \le y_a \le \frac{\beta}{a} \le 1$ if a is large so y_a is uniformly bounded. And since ay_a is bounded it follows that $\frac{f(ay_a)}{a} \to 0$ as $a \to \infty$. Thus it follows from (2.5) that $|y_a''|$ is uniformly bounded for sufficiently large a. Hence by the Arzela-Ascoli theorem $y_a \to y$ and $y_a' \to y'$ uniformly on the compact subsets of $[R,\infty)$ as $a \to \infty$ for some subsequence still denoted by y_a . Moreover from (2.6) we see y(R) = 0 and y'(R) = 1.

On the other hand, $0 \le y_a \le \frac{\beta}{a}$ so it follows that $y_a \to 0$ as $a \to \infty$. So $y \equiv 0$ and therefore $y' \equiv 0$ which is a contradiction to y'(R) = 1. Hence there exists $r_a > R$ such that $u_a(r_a) = \beta$ and $0 < u_a < \beta$ on (R, r_a) .

If $u_a'(r_a) = 0$ then $u_a \equiv \beta$ by uniqueness of solutions of initial value problems. But this contradicts the fact that $u_a'(R) = a > 0$. Thus $u_a'(r_a) > 0$. Hence $u_a(r)$ must get larger than β . Thus there exists $r_a > R$ such that $u_a(r_a) = \beta, u_a'(r_a) > 0$ and $u_a < \beta$ on $[R, r_a)$. This completes the proof.

Lemma 2.2. If a is sufficiently large then $u_a(r)$ has a maximum at $M_a > r_a$. In addition, $|u_a|$ has a global maximum at M_a and $u_a(M_a) \to \infty$ as $a \to \infty$.

Proof. Suppose by the way of contradiction that $u_a'(r) > 0$ for each r > R. Then $u_a(r) > \beta$ for $r > r_a$ as we saw in the proof of the Lemma 2.1. Also as in Lemma 2.1, $u_a'(r_a) > 0$ thus $\exists r_{a_1} > r_a$ such that $u(r_{a_1}) > \beta + \epsilon$ for some $\epsilon > 0$ and since $u_a' > 0$, for $r > r_{a_1}$ we have $f(u_a) \ge f(\beta + \epsilon) > 0$. Therefore,

$$u_a'' + \frac{N-1}{r}u_a' + f(\beta + \epsilon) \le u_a'' + \frac{N-1}{r}u_a' + f(u_a) = 0$$
 for $r > r_{a_1}$.

This implies

$$(r^{N-1}u'_a(r))' \le -f(\beta+\epsilon)r^{N-1}$$
 for $r > r_{a_1}$.

Hence for $r > r_{a_1}$ we have

$$r^{N-1}u_a'(r) < r_{a_1}^{N-1}u_a'(r_{a_1}) - f(\beta + \epsilon)\left(\frac{r^{N-1} - r_{a_1}^{N-1}}{N-1}\right) \to -\infty$$

as $r \to \infty$. This contradicts the assumption that $u_a' > 0$ for r > R. So $\exists M_a > r_a$ such that $u_a'(M_a) = 0$ and $u_a''(M_a) \le 0$. By uniqueness of solutions of initial value problems it follows that $u_a''(M_a) < 0$ so M_a is a local maximum. Thus $f(u_a(M_a)) > 0$ and therefore $u_a(M_a) > \beta$. To see this is a global maximum for $|u_a|$ suppose there exists $M_{a_2} > M_a$ with $|u_a(M_{a_2})| > u_a(M_a) > \beta$. Then since F is even and increasing for $u > \beta$ it follows that

$$F(u_a(M_{a_2})) = F(|u_a(M_{a_2})|) < F(u_a(M_a)).$$

On the other hand, E_a is nonincreasing so

$$F(u_a(M_{a_2})) = E_a(M_{a_2}) \le E_a(M_a) = F(u_a(M_a)),$$

a contradiction. Hence M_a is the global maximum for $|u_a|$.

We now show that $u_a(M_a) \to \infty$ as $a \to \infty$. Suppose not. Then $|u_a(r)| \le C$ where C is a constant independent of a. As in Lemma 2.1, let $y_a(r) = \frac{u_a(r)}{a}$. Then as in Lemma 2.1, $y_a \to y$ with $y \equiv 0$ and y'(R) = 1, a contradiction. Hence $u_a(M_a) \to \infty$ as $a \to \infty$. This proves the lemma.

Next we proceed to show that $u_a(r)$ has zeros on (R, ∞) and the number of zeros increases as $a \to \infty$. First we let $v_a(r) = u_a(M_a + r)$. It follows that v_a satisfies

$$v_a''(r) + \frac{N-1}{M_a + r} v_a'(r) + f(v_a(r)) = 0 \quad \text{on } [R, \infty),$$
(2.7)

$$v_a(0) = u_a(M_a) \equiv \lambda_a^{\frac{2}{p-1}} \quad \text{and} \quad v_a'(0) = 0.$$
 (2.8)

By Lemma 2.2, $\lim_{a\to\infty} u_a(M_a) = \infty$ and thus $\lambda_a \to \infty$ as $a\to\infty$.

Next we let $w_{\lambda_a}(r) = \lambda_a^{-\frac{2}{p-1}} v_a(\frac{r}{\lambda_a})$ as in [8]. Then using (1.4) and (2.7)–(2.8) we see that

$$w_{\lambda_a}''(r) + \frac{N-1}{\lambda_a M_a + r} w_{\lambda_a}'(r) + |w_{\lambda_a}|^{p-1} w_{\lambda_a} + \frac{g(\lambda_a^{\frac{2}{p-1}} w_{\lambda_a})}{\lambda_a^{\frac{2p}{p-1}}} = 0,$$
 (2.9)

$$w_{\lambda_a}(0) = 1, \quad w'_{\lambda_a}(0) = 0.$$
 (2.10)

Lemma 2.3. $w_{\lambda_a} \to w$ uniformly on compact subsets of $[0, \infty)$ as $a \to \infty$ and w satisfies $w'' + |w|^{p-1}w = 0$.

Proof. From (1.4) we know that $f(u) = |u|^{p-1}u + g(u)$ with p > 1 where $\frac{g(u)}{u^p} \to 0$ as $u \to \infty$. Letting $G(u) = \int_0^u g(s) \, ds$ then it follows that $\frac{G(u)}{u^{p+1}} \to 0$ as $u \to \infty$. Let $w_{\lambda_a}(r)$ be the solution of the system (2.9)–(2.10) and $E_{\lambda_a}(r)$ be the energy associated with $w_{\lambda_a}(r)$ defined by

$$E_{\lambda_a} = \frac{w_{\lambda_a}^{2}}{2} + \frac{|w_{\lambda_a}|^{p+1}}{p+1} + \frac{1}{\lambda_a^{\frac{2(p+1)}{p-1}}} G(\lambda_a^{\frac{2}{p-1}} w_{\lambda_a}). \tag{2.11}$$

Then $E'_{\lambda_a}(r) = \frac{-(N-1)}{\lambda_a M_a + r} w'^2_{\lambda_a} \le 0$ which implies $E_{\lambda_a}(r)$ is a non-increasing function of r. Therefore,

$$E_{\lambda_a}(r) \le E_{\lambda_a}(0) = \frac{1}{p+1} + \frac{1}{\lambda_a^{\frac{2(p+1)}{p-1}}} G(\lambda_a^{\frac{2}{p-1}}).$$

Since $\frac{G(u)}{u^{p+1}} \to 0$ as $u \to \infty$ it follows for a sufficiently large that

$$E_{\lambda_a}(r) \le E_{\lambda_a}(0) \le \frac{1}{p+1} + 1 < 2.$$

Also it follows that $|G(u)| \leq \frac{1}{2(p+1)}|u|^{p+1}$ if $|u| \geq T_1$ for some $T_1 > 0$. And since G is continuous on the compact set $|u| \leq T_1$, there exists a constant $C_G > 0$ such that $|G(u)| \leq C_G$ if $|u| \leq T_1$. Thus

$$|G(u)| \le C_G + \frac{1}{2(p+1)} |u|^{p+1}$$
 for all u .

Therefore if a is sufficiently large we see from this upper bound for G and (2.11) that

$$\frac{w_{\lambda_a}'^2}{2} + \frac{|w_{\lambda_a}|^{p+1}}{p+1} \leq 2 - \frac{1}{\lambda_a^{\frac{2(p+1)}{p-1}}} G(\lambda_a^{\frac{2}{p-1}} w_{\lambda_a}) \leq 2 + \frac{C_G}{\lambda_a^{\frac{2(p+1)}{p-1}}} + \frac{|w_{\lambda_a}|^{p+1}}{2(p+1)}.$$

Thus if a is sufficiently large we have

$$\frac{w_{\lambda_a}^{\prime 2}}{2} + \frac{|w_{\lambda_a}|^{p+1}}{2(p+1)} \le 2 + \frac{C_G}{\lambda_a^{\frac{2(p+1)}{p-1}}} \le 3. \tag{2.12}$$

Therefore w_{λ_a} and w'_{λ_a} are uniformly bounded for large a. So by the Arzela-Ascoli theorem $w_{\lambda_a} \to w$ uniformly on compact subsets of $[0, \infty)$ for some subsequence still labeled w_{λ_a} .

Now using the definition of f from (1.4) we have:

$$w_{\lambda_a}'' + \frac{N-1}{\lambda_a M_a + r} w_{\lambda_a}' + |w_{\lambda_a}|^{p-1} w_{\lambda_a} + \lambda_a^{\frac{-2p}{p-1}} g(\lambda_a^{\frac{2}{p-1}} w_{\lambda_a}) = 0,$$

$$w_{\lambda_a}(0) = 1, w_{\lambda_a}'(0) = 0.$$

Since $\lim_{u\to\infty} \frac{g(u)}{u^p} = 0$, it follows that for all $\epsilon > 0$ there exists a $T_2 > 0$ such that $|g(u)| \le \epsilon |u|^p$ if $|u| > T_2$ and the continuity of g on the compact set $|u| \le T_2$ implies $|g(u)| \le C_g$ for some $C_g > 0$ if $|u| \le T_2$. Thus,

$$|g(u)| \leq C_q + \epsilon |u|^p$$
 for all u

and hence

$$|g(\lambda_a^{\frac{2}{p-1}}w_{\lambda_a})| \le C_g + \epsilon \lambda_a^{\frac{2p}{p-1}}|w_{\lambda_a}|^p.$$

Recall from (2.12) that $|w_{\lambda_a}| \leq [6(p+1)]^{\frac{1}{p+1}} < 4$ for p > 1. So:

$$\frac{|g(\lambda_a^{\frac{2}{p-1}}w_{\lambda_a})|}{\lambda^{\frac{2p}{p-1}}}\leq \frac{C_g+\epsilon\lambda_a^{\frac{2p}{p-1}}4^p}{\lambda^{\frac{2p}{p-1}}}=\frac{C_g}{\lambda^{\frac{2p}{p-1}}}+\epsilon 4^p.$$

This implies

$$0 \leq \limsup_{a \to \infty} \frac{|g(\lambda_a^{\frac{2}{p-1}} w_{\lambda_a})|}{\lambda^{\frac{2p}{p-1}}} \leq \limsup_{a \to \infty} \frac{C_g}{\lambda^{\frac{2p}{p-1}}} + \epsilon 4^p = \epsilon 4^p.$$

This is true for each $\epsilon > 0$. Hence

$$\lim_{a \to \infty} \frac{|g(\lambda_a^{\frac{2}{p-1}} w_{\lambda_a})|}{\lambda_a^{\frac{2p}{p-1}}} = 0.$$
 (2.13)

In addition, recall that $M_a \geq R$ and so for $r \geq R$ we have

$$\frac{1}{\lambda_a M_a + r} \le \frac{1}{(\lambda_a + 1)R}$$

and since $|w'_{\lambda_a}|$ is uniformly bounded (by (2.12)) we see that $\frac{N-1}{\lambda_a M_a + r} w'_{\lambda_a} \to 0$ as $a \to \infty$. From this and (2.13) we see that the second and fourth terms on the left-hand side of (2) go to 0 as $a \to \infty$. In addition, w_{λ_a} is bounded by (2.12) and therefore it follows from (2) that $|w''_{\lambda_a}|$ is uniformly bounded.

Therefore by the Arzela-Ascoli theorem for some subsequence still labeled w_{λ_a} we have $w_{\lambda_a} \to w$ and $w'_{\lambda_a} \to w'$ uniformly on compact subsets of $[0, \infty)$ and from (2) we have $\lim_{a \to \infty} w''_{\lambda_a} + |w|^{p-1}w = 0$. Thus $\lim_{a \to \infty} w''_{\lambda_a}$ exists and in fact $\lim_{a \to \infty} w''_{\lambda_a} = w''$. Hence

$$w'' + |w|^{p-1}w = 0 (2.14)$$

$$w(0) = 1, \quad w'(0) = 0.$$
 (2.15)

Therefore $\frac{1}{2}w'^2 + \frac{1}{p+1}|w|^{p+1} = \frac{1}{p+1}$.

It is straightforward to show that solutions of (2.14)–(2.15) are periodic with period $\sqrt{2(p+1)} \int_0^1 \frac{dt}{\sqrt{1-t^{p+1}}}$ and they have an infinite number of zeros on $[0,\infty)$.

Since $w_{\lambda_a} \to w$ uniformly on compact subsets of $[0, \infty)$ as $a \to \infty$ it follows that w_{λ_a} has zeros on $(0, \infty)$ and the number of zeros of w_{λ_a} gets arbitrarily large by taking a sufficiently large. Recalling that

$$w_{\lambda_a}(r) = \lambda^{-\frac{2}{p-1}} u_a (M_a + \frac{r}{\lambda_a})$$

we see that $u_a(r)$ has zeros (R, ∞) for large a and the number of zeros of $u_a(r)$ increases as a increases.

Next we examine (1.7)-(1.8) when a > 0 is small.

Lemma 2.4. $r_a \to \infty$ as $a \to 0^+$ where r_a is defined in Lemma 2.1.

Proof. From (2.3) we have $\frac{1}{2}u_a'^2 + F(u_a) \le \frac{1}{2}a^2$ for $r \ge R$, and from Lemma 2.2 we have $u_a' > 0$ on $[R, r_a]$. So rewriting this inequality and integrating on (R, r_a) gives

$$\int_{R}^{r_a} \frac{u'_a}{\sqrt{a^2 - 2F(u_a)}} \le \int_{R}^{r_a} 1 \, dr = r_a - R.$$

Letting $s = u_a(r)$ we see that

$$\int_0^\beta \frac{ds}{\sqrt{a^2 - 2F(s)}} = \int_R^{r_a} \frac{u_a' dr}{\sqrt{a^2 - 2F(u_a)}} \le r_a - R. \tag{2.16}$$

From (1.4) we have f'(0) < 0, thus $f(u) \ge -\frac{3}{2}|f'(0)|u$ for small u. So $a^2 - 2F(u) \le \frac{3}{2}|f'(0)|u^2 + a^2$ for small u and so

$$\sqrt{a^2 - 2F(u)} \le \sqrt{a^2 + \frac{3}{2}|f'(0)|u^2} \le a + \sqrt{\frac{3}{2}|f'(0)|}u \text{ for small } u.$$

Therefore,

$$\frac{1}{\sqrt{a^2 - 2F(u)}} \ge \frac{1}{a + \sqrt{\frac{3}{2}|f'(0)|u}}$$
 for small u .

So for some ϵ with $0 < \epsilon < \beta$ we have

$$\int_0^\epsilon \frac{ds}{\sqrt{a^2 - 2F(s)}} \ge \int_0^\epsilon \frac{ds}{a + \sqrt{\frac{3}{2}|f'(0)|}s} = \sqrt{\frac{2}{3|f'(0)|}} \ln\left(1 + \sqrt{\frac{3}{2}|f'(0)|}\frac{\epsilon}{a}\right) \to \infty$$

as $a \to 0^+$. Therefore from (2.16) and the above computation we see that

$$r_a - R \ge \int_0^\beta \frac{ds}{\sqrt{a^2 - 2F(s)}} \ge \int_0^\epsilon \frac{ds}{\sqrt{a^2 - 2F(s)}} \to \infty \quad \text{as } a \to 0^+$$

thus $r_a \to \infty$ as $a \to 0^+$. Hence the lemma is proved.

Note that if $E(r_0) < 0$, then

$$u(r) > 0 \quad \text{for each } r > r_0. \tag{2.17}$$

Suppose not. Then there exists $z > r_0$ such that u(z) = 0 and so F(u(z)) = 0. By (2.2), E(r) is non-increasing so $E(z) \le E(r_0) < 0$. Therefore

$$0 \le \frac{u'(z)^2}{2} = \frac{u'(z)^2}{2} + F(u(z)) = E(z) < 0$$

which is impossible. Hence u(r) > 0 for all $r > r_0$.

Lemma 2.5. If a > 0 and a is sufficiently small then $u_a(r) > 0$ for each r > R.

Proof. Assume by the way of contradiction that $u_a(z_a) = 0$ for some $z_a > R$. Since $u_a(R) = 0$ and $u'_a(R) = a > 0$ we see that $u_a(r)$ has a positive local maximum, M_a , with $R < M_a < z_a$ and since the energy function $E_a(r)$ is non-increasing then

$$0 < E_a(z_a) \le E_a(M_a) = F(u_a(M_a)).$$

Thus by (1.6) $u_a(M_a) > \gamma$ and so in particular there exist p_a, q_a with $R < p_a < q_a < M_a$ such that $u_a(p_a) = \frac{\beta}{2}, u_a(q_a) = \beta$ and $0 < u_a(r) < \beta$ for $[R, q_a)$. Then by (1.5) we see that $f(u_a) < 0$ on $[R, q_a)$ so $u''_a + \frac{N-1}{r}u'_a > 0$ on $[R, q_a)$ by (1.7). Therefore $\int_{\mathbb{R}}^{R} (r^{N-1}u'_a)' dr > 0$ from which it follows that

$$r^{N-1}u'_a > R^{N-1}u'_a(R) > 0$$
 on $[R, q_a)$.

Thus $u_a(r)$ is increasing on $[R,q_a)$. In addition, $p_a \to \infty$ as $a \to 0^+$ for if the p_a were bounded then a subsequence would converge to say some finite p_0 as $a \to 0^+$. Since $E_a(r)$ is non-increasing this would imply $u_a(r)$ and $u_a'(r)$ would be uniformly bounded on $[R,p_0+1]$ and so by the Arzela-Ascoli theorem for a subsequence $u_a(r) \to u_0(r) \equiv 0$ as $a \to 0^+$. On the other hand, $\frac{\beta}{2} = u_a(p_a) \to u_0(p_0) = 0$ as $a \to 0^+$ which is a contradiction. Thus we see that $p_a \to \infty$ as $a \to 0^+$.

Next we return to (2.3) and after rewriting we have

$$\frac{u_a'}{\sqrt{a^2 - 2F(u_a)}} \le 1 \quad \text{for each } r \ge R.$$

Integrating on $[p_a, q_a]$ and setting $u_a(r) = t$ we obtain

$$\int_{\frac{\beta}{2}}^{\beta} \frac{dt}{\sqrt{a^2 - 2F(t)}} = \int_{p_a}^{q_a} \frac{u_a'}{\sqrt{a^2 - 2F(u_a)}} dr \le \int_{p_a}^{q_a} 1 dr = q_a - p_a.$$
 (2.18)

Now on $\left[\frac{\beta}{2},\beta\right]$ we have $0 < a^2 - 2F(t) \le 1 + 2|F(\beta)|$ if $0 < a \le 1$. It follows that

$$\int_{\frac{\beta}{2}}^{\beta} \frac{dt}{\sqrt{a^2 - 2F(u_a)}} \ge \frac{\beta}{2\sqrt{1 + 2|F(\beta)|}} \equiv c > 0$$

for some constant c>0 and sufficiently small a. Combining this with (2.18) we see that

$$q_a - p_a \ge c$$
 if a is sufficiently small. (2.19)

Now by the definition of $E_a(r)$ it is straightforward to show that

$$(r^{2(N-1)}E_a(r))' = (r^{2(N-1)})'F(u_a).$$

Integrating on $[p_a, q_a]$ gives

$$q_a^{2(N-1)}E_a(q_a) = p_a^{2(N-1)}E_a(p_a) + \int_{p_a}^{q_a} [r^{2(N-1)}]'F(u_a) dr.$$

Since $F(u_a) \leq F(\frac{\beta}{2}) < 0$ on $[p_a, q_a]$ we have

$$p_a^{2(N-1)}E_a(p_a) + \int_{p_a}^{q_a} (r^{2(N-1)})'F(u_a) dr$$

$$\leq p_a^{2(N-1)}E_a(p_a) - |F(\frac{\beta}{2})|[q_a^{2(N-1)} - p_a^{2(N-1)}].$$

But

$$p_a^{2(N-1)}E_a(p_a) = R^{2(N-1)}E_a(R) + \int_R^{p_a} [r^{2(N-1)}]'F(u_a) dr$$

and

$$\int_{R}^{p_a} [r^{2(N-1)}]' F(u_a) \, dr \le 0$$

as $F(u_a) \leq 0$ on $[R, p_a]$. Thus

$$p_a^{2(N-1)}E_a(p_a) \le R^{2(N-1)}E_a(R) = \frac{1}{2}a^2 R^{2(N-1)}.$$

Therefore,

$$q_a^{2(N-1)} E_a(q_a) \leq \frac{1}{2} a^2 \, R^{2(N-1)} - |F(\frac{\beta}{2})| \left[q_a^{2(N-1)} - p_a^{2(N-1)} \right].$$

So

$$q_a^{2(N-1)}E_a(q_a) \le \frac{a^2 R^{2(N-1)}}{2} - |F(\frac{\beta}{2})|(q_a^{2(N-1)} - p_a^{2(N-1)})$$
 (2.20)

Now by (2.19) we have

$$q_a^{2(N-1)} - p_a^{2(N-1)} \ge (q_a - p_a)p_a^{2N-3} \ge c p_a^{2N-3}$$

and from earlier in the proof of this lemma we saw $\lim_{a\to 0^+} p_a^{2N-3} = \infty$. Thus $q_a^{2(N-1)} - p_a^{2(N-1)} \to \infty$ as $a\to 0^+$.

It follows then from (2.20) that $q_a^{2(N-1)}E_a(q_a)$ is negative if a is sufficiently small. Thus by (2.17) it follows that $u_a(r) > 0$ for $r \ge q_a$. Also, since we have $u'_a > 0$ on $[R, q_a]$ and $u_a(R) = 0$ we see that $u_a(r) > 0$ on (R, ∞) if a is sufficiently small. This completes the proof.

3. Proof of Theorem 1.1

Let

$$S_0 = \{a > 0 | u_a(r) > 0 \,\forall r > R\}.$$

By Lemma 2.5 we know that for a > 0 and a sufficiently small that $u_a(r) > 0$ so S_0 is nonempty. Also from Lemma 2.3 we know that if a is sufficiently large then $u_a(r)$ has zeros. Hence S_0 is bounded above and so the supremum of S_0 exists. Let $a_0 = \sup(S_0)$.

Lemma 3.1. $u_{a_0}(r) > 0$ on (R, ∞) .

Proof. Suppose by the way of contradiction that there exists z_0 such that $u_{a_0}(z_0) = 0$ and $u_a(r) > 0$ on $[R, z_0)$. Then $u'_{a_0}(z_0) \le 0$ and by uniqueness in fact $u'_{a_0}(z_0) < 0$. Thus $u_{a_0}(r) < 0$ for $z_0 < r < z_0 + \epsilon$. If $a < a_0$ and a is close enough to a_0 then the continuity of solutions of boundary value problems with respect to the initial conditions implies that $u_a(r)$ also gets negative which contradicts the definition of a_0 . So $u_{a_0}(r) > 0$ on (R, ∞) . This completes the lemma.

Lemma 3.2. $u_{a_0}(r)$ has a local maximum, $M_{a_0} > R$.

Proof. Suppose not. Then $u'_{a_0}(r) > 0$ for all $r \ge R$. Since $E_{a_0}(r) \le E_{a_0}(R)$ for all $r \ge R$, we have

$$\frac{u_{a_0}^{\prime 2}(r)}{2} + F(u_{a_0}(r)) \le \frac{a_0^2}{2}.$$

This implies $F(u_{a_0}(r)) \leq \frac{a_0^2}{2}$ and hence $u_{a_0}(r)$ is bounded. Since we are also assuming $u'_{a_0}(r) > 0$ it follows that $\lim_{r \to \infty} u_{a_0}(r)$ exists. Let us denote $\lim_{r \to \infty} u_{a_0}(r) = L$. Since $E_{a_0}(r)$ is a non-increasing function which is bounded below, it follows that $\lim_{r \to \infty} E_{a_0}(r) = \lim_{r \to \infty} \left[\frac{u'^2_{a_0}}{2} + F(u_{a_0})\right]$ exists.

Since we also know that $\lim_{r\to\infty}u_{a_0}(r)$ exists it follows that $\lim_{r\to\infty}u_{a_0}'(r)$ exists and in fact $\lim_{r\to\infty}u_{a_0}'(r)=0$ (since otherwise $u_{a_0}(r)$ would be unbounded). Therefore from (1.7) it follows that $\lim_{r\to\infty}u_{a_0}''(r)=-f(L)$ and in fact f(L)=0. (Otherwise, u_{a_0}' would be unbounded but we know $u_{a_0}'\to0$). So $L=-\beta,0$, or β . Since $u_{a_0}(r)>0$ and $u_{a_0}'(r)>0$ thus $L=\beta$.

Now by the definition of a_0 we know $u_a(r)$ has a zero if $a > a_0$, say $u_a(z_a) = 0$. Next we show that

$$\lim_{a \to a_0^+} z_a = \infty. \tag{3.1}$$

Suppose not. Then $|z_a| \leq K$ for some constant K and so there is a subsequence of z_a still denoted z_a such that $z_a \to z_0$ as $a \to a_0^+$. But $u_a(r) \to u_{a_0}(r)$ uniformly on the compact subset $[R,z_0+1]$ as $a \to a_0^+$ so $0=\lim_{a\to a_0^+}u_a(z_a)=u_{a_0}(z_0)$ which contradicts that $u_{a_0}(r)>0$ from Lemma 3.1. Thus $\lim_{a\to a_0^+}z_a=\infty$. In addition, $E_a(z_a)=\frac{u_a'^2(z_a)}{2}\geq 0$. Also:

$$\lim_{r \to \infty} E_{a_0}(r) = \lim_{r \to \infty} \left[\frac{u'_{a_0}^2(r)}{2} + F(u_{a_0}(r)) \right] = F(\beta) < 0.$$

So there exists $R_0 > R$ such that $E_{a_0}(R_0) < 0$.

Since $\lim_{a\to a_0} u_a(r) = u_{a_0}(r)$ uniformly on the compact set $[R, R_0 + 1]$, it follows that $\lim_{a\to a_0} E_a(R_0) = E_{a_0}(R_0) < 0$. Since $E_a(R_0) < 0 < E_a(z_a)$ and E_a is non-increasing it follows that $z_a < R_0$ if a is sufficiently close to a_0 .

However, by (3.1), we have $z_a \to \infty$ as $a \to a_0^+$ which is a contradiction since $R_0 < \infty$.

Hence $u_{a_0}(r)$ has a local maximum at $r=M_{a_0}$ for some $M_{a_0}>R$. This completes the proof.

Lemma 3.3. $u'_{a_0}(r) < 0 \text{ if } r > M_{a_0}$.

Proof. Suppose $u'_{a_0}(m_{a_0}) = 0$ for some $m_{a_0} > M_{a_0}$. Then $u''_{a_0}(m_{a_0}) > 0$ and so $f(u(m_{a_0})) < 0$. Since we also know that $u_{a_0}(r) > 0$ (by Lemma 3.1) it follows that $0 < u_{a_0}(m_{a_0}) < \beta$. Therefore, $E_{a_0}(m_{a_0}) = F(u_{a_0}(m_{a_0})) < 0$ and so by the continuity of the solution with respect to initial conditions we have $E_a(m_{a_0}) < 0$ if a is sufficiently close to a_0 .

Now by the definition of a_0 if $a > a_0$ then $u_a(r)$ has a zero, z_a , with $E_a(z_a) \ge 0$ and by (31) we have seen that $\lim_{a\to a_0} z_a = \infty$. Since E_a is non-increasing we therefore have $z_a < m_{a_0}$. But $z_a \to \infty$ as $a \to a_0^+$ and $m_{a_0} < \infty$ so we obtain a contradiction. This completes the proof.

So $u'_{a_0}(r) < 0$ for all $r \ge M_{a_0}$. Also, $u_{a_0}(r) > 0$ so $\lim_{r \to \infty} u_{a_0}(r) = L$ with $L \ge 0$. Since $E_{a_0}(r)$ is non-increasing, we see as we did earlier that f(L) = 0. Thus L = 0 or β . We now show $E_{a_0}(r) \ge 0$ for all $r \ge R$. So suppose there is an $r_0 > R$ such that $E_{a_0}(r_0) < 0$. Then $E_a(r_0) < 0$ for a close to a_0 and in particular if $a > a_0$. But then we know that z_a exists and since $E_a(z_a) \ge 0$ it follows that $z_a < r_0$ since E_a is non-increasing. But this contradicts that $z_a \to \infty$ from (3.1). Thus $E_{a_0}(r) \ge 0$ for all $r \ge R$.

Let us suppose now that $L = \beta$. Since $E_a(r)$ is non-increasing and bounded below:

$$\lim_{r \to \infty} E_{a_0}(r, a_0) \quad \text{exists.}$$

This implies

$$\lim_{r \to \infty} u_{a_0}^{\prime 2}(r) \quad \text{ exists}$$

and as we have seen earlier this implies $\lim_{r\to\infty} u'_{a_0}(r) = 0$. Therefore,

$$0 \le \lim_{r \to \infty} E_{a_0}(r) = \lim_{r \to \infty} \frac{u'_{a_0}(r)}{2} + F(L) = 0 + F(\beta) < 0.$$

which is a contradiction. Hence we must have L=0. i.e. $\lim_{r\to\infty}u_{a_0}(r)=0$. Thus we have found a positive solution $u_{a_0}(r)$ of (1.7)-(1.8) such that $\lim_{r\to\infty}u_{a_0}(r)=0$. Next we let

$$S_1 = \{a > 0 | u_a(r) \text{ has one zero on } (R, \infty)\}.$$

[8, Lemma 4] states that if $u_{a_k}(r)$ is a bounded solution of (1.7) on $(0, \infty)$ with k zeros and $\lim_{r\to\infty}u_{a_k}(r)=0$ then if a is sufficiently close to a_k then u_a has at most k+1 zeros on $[0,\infty)$. A nearly identical lemma holds for solutions of (1.7) on (R,∞) . Applying this lemma with a_0 we see that u_a on (R,∞) has at most one zero if a is sufficiently close to a_0 .

On the other hand, for $a > a_0$ we know that $u_a(r)$ has at least one zero on (R, ∞) by the definition of a_0 . Thus if $a > a_0$ and a is sufficiently close to a_0 then u_a has exactly one zero and so we see that S_1 is nonempty. We also know S_1 is bounded from above by Lemma 2.3 and so we let:

$$a_1 = \sup S_1$$
.

Using a similar argument as earlier we can show that $u_{a_1}(r)$ has exactly one zero on (R, ∞) and $\lim_{r\to\infty} u_{a_1}(r) = 0$. Continuing in this way we see that we can find an infinite number of solutions - one with exactly n zeros on (R, ∞) for each nonnegative integer n - and with $\lim_{r\to\infty} u(r) = 0$.

References

- H. Berestycki, P.L. Lions; Non-linear scalar field equations I & II, Arch. Rational Mech. Anal., Volume 82, 313-375, 1983.
- [2] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
- [3] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, Ginn and Company, 1962.
- [4] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, *Journal of Mathematical Analysis and Applications*, Volume 394, Issue 1, 432-437, 2012.

- [5] J. Iaia; Loitering at the hilltop on exterior domains, *Electronic Journal of the Qualitative Theory of Differential Equations*, No. 82, 1-11, 2015.
- [6] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
- [7] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, *Differential and Integral Equations*, Volume 24, Number 9/10, 861-875, 2011.
- [8] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros, *Journal of Differential Equations*, Volume 83, Issue 2, 368-373, 1990.
- [9] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
- [10] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Janak Joshi

Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

E-mail address: janakrajjoshi@my.unt.edu

Joseph Iaia

Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

 $E\text{-}mail\ address{:}\ \mathtt{iaia@unt.edu}$