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EXISTENCE OF SOLUTIONS FOR SEMILINEAR PROBLEMS
WITH PRESCRIBED NUMBER OF ZEROS ON EXTERIOR

DOMAINS

JANAK JOSHI, JOSEPH IAIA

Abstract. In this article we prove the existence of an infinite number of radial

solutions of ∆(u) + f(u) = 0 with prescribed number of zeros on the exterior

of the ball of radius R > 0 centered at the origin in RN where f is odd with
f < 0 on (0, β), f > 0 on (β,∞) where β > 0.

1. Introduction

In this article we study radial solutions of

∆(u) + f(u) = 0 in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

u→ 0 as |x| → ∞ (1.3)

where x ∈ Ω = RN\BR(0) is the complement of the ball of radius R > 0 centered
at the origin.

The function f is odd, locally Lipschitz and is defined by

f(u) = |u|p−1u+ g(u) with p > 1, f ′(0) < 0 and lim
u→∞

g(u)
up

= 0. (1.4)

We assume that there exists β > 0 such that f(0) = f(β) = 0 and F (u) =
∫ u
0
f(s) ds

where
f < 0 on (0, β), f > 0 on (β,∞) (1.5)

As f is odd, it follows that F (u) =
∫ u
0
f(s) ds is even. Also F has a unique positive

zero, γ, with β < γ <∞ and F is bounded below by some −F0 < 0 so that

F < 0 on (0, γ), F > 0 on (γ,∞), and F ≥ −F0 on (0,∞). (1.6)

Since we are interested in radial solutions of (1.1)–(1.3) we assume that u(x) =
u(|x|) = u(r), where r = |x| =

√
x2

1 + x2
2 + · · ·+ x2

N so that u solves

u′′(r) +
N − 1
r

u′(r) + f(u(r)) = 0 on (R,∞) where R > 0, (1.7)

u(R) = 0, u′(R) = a > 0. (1.8)
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We will occasionally denote the solution of the above by ua(r), to emphasize the
dependence on the initial parameter a.

Theorem 1.1. For each nonnegative integer n, there exists a solution u(r) of
(1.7)–(1.8) on [R,∞) such that limr→∞ u(r) = 0 and u(r) has exactly n zeros on
(R,∞).

The radial solutions of (1.1), (1.3) have been well-studied when Ω = RN . These
include [1, 2, 6, 8, 10]. Recently there has been an interest in studying these
problems on RN\BR(0). These include [4, 5, 7, 9]. Here we use a scaling argument
as in [8] to prove existence of solutions.

2. Preliminaries

For R > 0 existence and uniqueness of solutions of (1.7)-(1.8) on [R,R + ε) for
some ε > 0 and continuous dependence of solutions with respect to a follows from
the standard existence-uniqueness theorem for ordinary differential equations [3].
For existence on [R,∞) we consider

Ea(r) =
1
2
u′2a + F (ua). (2.1)

Using (1.7) we see that

E′a(r) = −N − 1
r

u′2a ≤ 0 (2.2)

so Ea is non-increasing on [R,∞). Therefore
1
2
u′2a + F (ua) = Ea(r) ≤ Ea(R) =

1
2
a2 for r ≥ R. (2.3)

Therefore by (1.6),
1
2
u′2a ≤

1
2
a2 + F0.

So for a fixed a we see that u′a is uniformly bounded and hence existence on all of
[R,∞) follows.

Lemma 2.1. Let ua(r) be the solution of (1.7)-(1.8). If a is sufficiently large then
there exists r > R such that ua(r) > β. In particular, there exists ra > R such that
ua(ra) = β.

Proof. Since u′a(R) = a > 0 we see that ua(r) is increasing on [R,R + δ) for some
δ > 0. If ua(r) has a first critical point Ma > R with u′a(r) > 0 on [R,Ma) then we
must have u′a(Ma) = 0, u′′a(Ma) ≤ 0. In fact u′′a(Ma) < 0 (by uniqueness of solutions
of initial value problems). Therefore from (1.7) it follows that f(ua(Ma)) > 0 and
using (5) we see that ua(Ma) > β.

On the other hand, if ua(r) has no critical point then u′a(r) > 0 for each r ≥ R.
Suppose now by the way of contradiction that ua(r) ≤ β for each r ≥ R. Since
ua(r) is increasing and bounded above then limr→∞ ua(r) exists. Thus there exists
L > 0, L ≤ β such that

lim
r→∞

ua(r) = L. (2.4)

Since Ea(r) is non-increasing and bounded below, it follows that limr→∞Ea(r) ex-
ists. This implies limr→∞ u′a(r) exists and in fact limr→∞ u′a(r) = 0 since otherwise
ua would become unbounded contradicting (2.4). Hence by (1.7), limr→∞ u′′a(r) ex-
ists and as with u′a(r) we see that limr→∞ u′′a(r) = 0. Taking limits in (1.7) we see
that f(L) = 0. Since L > 0 it follows that L = β.
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Suppose now that this is true for all values of a > 0. We then let ya(r) = ua(r)
a

and we see that:

y′′a +
N − 1
r

y′a +
f(aya)
a

= 0. (2.5)

ya(R) = 0, y′a(R) = 1. (2.6)

Since (y′2a
2

+
F (aya)
a2

)′
= y′ay

′′
a +

f(aya)
a

y′a = − (N − 1)
r

y′2a ≤ 0,

it follows that
y′2a
2

+
F (aya)
a2

≤ 1
2
∀r ≥ R.

In addition, from (1.6) it follows that

y′2a
2
− F0

a2
≤ 1

2
.

Hence
y′2a
2
≤ 1

2
+
F0

a2
≤ 1

if a is sufficiently large. Therefore |y′a| is uniformly bounded if a is sufficiently large.
Also 0 ≤ ua ≤ β implies 0 ≤ ya ≤ β

a ≤ 1 if a is large so ya is uniformly bounded.
And since aya is bounded it follows that f(aya)

a → 0 as a → ∞. Thus it follows
from (2.5) that |y′′a | is uniformly bounded for sufficiently large a. Hence by the
Arzela-Ascoli theorem ya → y and y′a → y′ uniformly on the compact subsets of
[R,∞) as a → ∞ for some subsequence still denoted by ya. Moreover from (2.6)
we see y(R) = 0 and y′(R) = 1.

On the other hand, 0 ≤ ya ≤ β
a so it follows that ya → 0 as a → ∞. So y ≡ 0

and therefore y′ ≡ 0 which is a contradiction to y′(R) = 1. Hence there exists
ra > R such that ua(ra) = β and 0 < ua < β on (R, ra).

If u′a(ra) = 0 then ua ≡ β by uniqueness of solutions of initial value problems.
But this contradicts the fact that u′a(R) = a > 0. Thus u′a(ra) > 0. Hence ua(r)
must get larger than β. Thus there exists ra > R such that ua(ra) = β, u′a(ra) > 0
and ua < β on [R, ra). This completes the proof. �

Lemma 2.2. If a is sufficiently large then ua(r) has a maximum at Ma > ra. In
addition, |ua| has a global maximum at Ma and ua(Ma)→∞ as a→∞.

Proof. Suppose by the way of contradiction that u′a(r) > 0 for each r > R. Then
ua(r) > β for r > ra as we saw in the proof of the Lemma 2.1. Also as in Lemma
2.1, u′a(ra) > 0 thus ∃ ra1 > ra such that u(ra1) > β + ε for some ε > 0 and since
u′a > 0, for r > ra1 we have f(ua) ≥ f(β + ε) > 0. Therefore,

u′′a +
N − 1
r

u′a + f(β + ε) ≤ u′′a +
N − 1
r

u′a + f(ua) = 0 for r > ra1 .

This implies (
rN−1u′a(r)

)′ ≤ −f(β + ε)rN−1 for r > ra1 .

Hence for r > ra1 we have

rN−1u′a(r) < rN−1
a1

u′a(ra1)− f(β + ε)
(rN−1 − rN−1

a1

N − 1

)
→ −∞
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as r → ∞. This contradicts the assumption that u′a > 0 for r > R. So ∃Ma > ra
such that u′a(Ma) = 0 and u′′a(Ma) ≤ 0. By uniqueness of solutions of initial
value problems it follows that u′′a(Ma) < 0 so Ma is a local maximum. Thus
f(ua(Ma)) > 0 and therefore ua(Ma) > β. To see this is a global maximum for
|ua| suppose there exists Ma2 > Ma with |ua(Ma2)| > ua(Ma) > β. Then since F
is even and increasing for u > β it follows that

F (ua(Ma2)) = F (|ua(Ma2)|) < F (ua(Ma)).

On the other hand, Ea is nonincreasing so

F (ua(Ma2)) = Ea(Ma2) ≤ Ea(Ma) = F (ua(Ma)),

a contradiction. Hence Ma is the global maximum for |ua|.
We now show that ua(Ma) → ∞ as a → ∞. Suppose not. Then |ua(r)| ≤ C

where C is a constant independent of a. As in Lemma 2.1, let ya(r) = ua(r)
a . Then

as in Lemma 2.1, ya → y with y ≡ 0 and y′(R) = 1, a contradiction. Hence
ua(Ma)→∞ as a→∞. This proves the lemma. �

Next we proceed to show that ua(r) has zeros on (R,∞) and the number of zeros
increases as a→∞. First we let va(r) = ua(Ma + r). It follows that va satisfies

v′′a(r) +
N − 1
Ma + r

v′a(r) + f(va(r)) = 0 on [R,∞), (2.7)

va(0) = ua(Ma) ≡ λ
2
p−1
a and v′a(0) = 0. (2.8)

By Lemma 2.2, lima→∞ ua(Ma) =∞ and thus λa →∞ as a→∞.

Next we let wλa(r) = λ
− 2
p−1

a va( r
λa

) as in [8]. Then using (1.4) and (2.7)–(2.8)
we see that

w′′λa(r) +
N − 1

λaMa + r
w′λa(r) + |wλa |p−1wλa +

g(λ
2
p−1
a wλa)

λ
2p
p−1
a

= 0, (2.9)

wλa(0) = 1, w′λa(0) = 0. (2.10)

Lemma 2.3. wλa → w uniformly on compact subsets of [0,∞) as a → ∞ and w
satisfies w′′ + |w|p−1w = 0.

Proof. From (1.4) we know that f(u) = |u|p−1u+ g(u) with p > 1 where g(u)
up → 0

as u → ∞. Letting G(u) =
∫ u
0
g(s) ds then it follows that G(u)

up+1 → 0 as u → ∞.
Let wλa(r) be the solution of the system (2.9)–(2.10) and Eλa(r) be the energy
associated with wλa(r) defined by

Eλa =
w′2λa

2
+
|wλa |p+1

p+ 1
+

1

λ
2(p+1)
p−1

a

G(λ
2
p−1
a wλa). (2.11)

Then E′λa(r) = −(N−1)
λaMa+r

w′2λa ≤ 0 which implies Eλa(r) is a non-increasing function
of r. Therefore,

Eλa(r) ≤ Eλa(0) =
1

p+ 1
+

1

λ
2(p+1)
p−1

a

G(λ
2
p−1
a ).

Since G(u)
up+1 → 0 as u→∞ it follows for a sufficiently large that

Eλa(r) ≤ Eλa(0) ≤ 1
p+ 1

+ 1 < 2.
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Also it follows that |G(u)| ≤ 1
2(p+1) |u|

p+1 if |u| ≥ T1 for some T1 > 0. And since
G is continuous on the compact set |u| ≤ T1, there exists a constant CG > 0 such
that |G(u)| ≤ CG if |u| ≤ T1. Thus

|G(u)| ≤ CG +
1

2(p+ 1)
|u|p+1 for all u.

Therefore if a is sufficiently large we see from this upper bound for G and (2.11)
that

w′2λa
2

+
|wλa |p+1

p+ 1
≤ 2− 1

λ
2(p+1)
p−1

a

G(λ
2
p−1
a wλa) ≤ 2 +

CG

λ
2(p+1)
p−1

a

+
|wλa |p+1

2(p+ 1)
.

Thus if a is sufficiently large we have

w′2λa
2

+
|wλa |p+1

2(p+ 1)
≤ 2 +

CG

λ
2(p+1)
p−1

a

≤ 3. (2.12)

Therefore wλa and w′λa are uniformly bounded for large a. So by the Arzela-Ascoli
theorem wλa → w uniformly on compact subsets of [0,∞) for some subsequence
still labeled wλa .

Now using the definition of f from (1.4) we have:

w′′λa +
N − 1

λaMa + r
w′λa + |wλa |p−1wλa + λ

−2p
p−1
a g(λ

2
p−1
a wλa) = 0,

wλa(0) = 1, w′λa(0) = 0.

Since limu→∞
g(u)
up = 0, it follows that for all ε > 0 there exists a T2 > 0 such that

|g(u)| ≤ ε|u|p if |u| > T2 and the continuity of g on the compact set |u| ≤ T2 implies
|g(u)| ≤ Cg for some Cg > 0 if |u| ≤ T2. Thus,

|g(u)| ≤ Cg + ε|u|p for all u

and hence

|g(λ
2
p−1
a wλa)| ≤ Cg + ελ

2p
p−1
a |wλa |p.

Recall from (2.12) that |wλa | ≤ [6(p+ 1)]
1
p+1 < 4 for p > 1. So:

|g(λ
2
p−1
a wλa)|

λ
2p
p−1
a

≤ Cg + ελ
2p
p−1
a 4p

λ
2p
p−1
a

=
Cg

λ
2p
p−1
a

+ ε4p.

This implies

0 ≤ lim sup
a→∞

|g(λ
2
p−1
a wλa)|

λ
2p
p−1
a

≤ lim sup
a→∞

Cg

λ
2p
p−1
a

+ ε4p = ε4p.

This is true for each ε > 0. Hence

lim
a→∞

|g(λ
2
p−1
a wλa)|

λ
2p
p−1
a

= 0. (2.13)

In addition, recall that Ma ≥ R and so for r ≥ R we have
1

λaMa + r
≤ 1

(λa + 1)R
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and since |w′λa | is uniformly bounded (by (2.12)) we see that N−1
λaMa+r

w′λa → 0 as
a → ∞. From this and (2.13) we see that the second and fourth terms on the
left-hand side of (2) go to 0 as a→∞. In addition, wλa is bounded by (2.12) and
therefore it follows from (2) that |w′′λa | is uniformly bounded.

Therefore by the Arzela-Ascoli theorem for some subsequence still labeled wλa
we have wλa → w and w′λa → w′ uniformly on compact subsets of [0,∞) and
from (2) we have lima→∞ w′′λa + |w|p−1w = 0. Thus lima→∞ w′′λa exists and in fact
lima→∞ w′′λa = w′′. Hence

w′′ + |w|p−1w = 0 (2.14)

w(0) = 1, w′(0) = 0. (2.15)

Therefore 1
2w
′2 + 1

p+1 |w|
p+1 = 1

p+1 .
It is straightforward to show that solutions of (2.14)–(2.15) are periodic with

period
√

2(p+ 1)
∫ 1

0
dt√

1−tp+1 and they have an infinite number of zeros on [0,∞).
Since wλa → w uniformly on compact subsets of [0,∞) as a→∞ it follows that

wλa has zeros on (0,∞) and the number of zeros of wλa gets arbitrarily large by
taking a sufficiently large. Recalling that

wλa(r) = λ−
2
p−1ua(Ma +

r

λa
)

we see that ua(r) has zeros (R,∞) for large a and the number of zeros of ua(r)
increases as a increases. �

Next we examine (1.7)-(1.8) when a > 0 is small.

Lemma 2.4. ra →∞ as a→ 0+ where ra is defined in Lemma 2.1.

Proof. From (2.3) we have 1
2u
′2
a +F (ua) ≤ 1

2a
2 for r ≥ R, and from Lemma 2.2 we

have u′a > 0 on [R, ra]. So rewriting this inequality and integrating on (R, ra) gives∫ ra

R

u′a√
a2 − 2F (ua)

≤
∫ ra

R

1 dr = ra −R.

Letting s = ua(r) we see that∫ β

0

ds√
a2 − 2F (s)

=
∫ ra

R

u′a dr√
a2 − 2F (ua)

≤ ra −R. (2.16)

From (1.4) we have f ′(0) < 0, thus f(u) ≥ − 3
2 |f
′(0)|u for small u. So a2−2F (u) ≤

3
2 |f
′(0)|u2 + a2 for small u and so√

a2 − 2F (u) ≤
√
a2 +

3
2
|f ′(0)|u2 ≤ a+

√
3
2
|f ′(0)|u for small u.

Therefore,
1√

a2 − 2F (u)
≥ 1

a+
√

3
2 |f ′(0)|u

for small u.

So for some ε with 0 < ε < β we have∫ ε

0

ds√
a2 − 2F (s)

≥
∫ ε

0

ds

a+
√

3
2 |f ′(0)|s

=

√
2

3|f ′(0)|
ln
(

1 +

√
3
2
|f ′(0)| ε

a

)
→∞
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as a→ 0+. Therefore from (2.16) and the above computation we see that

ra −R ≥
∫ β

0

ds√
a2 − 2F (s)

≥
∫ ε

0

ds√
a2 − 2F (s)

→∞ as a→ 0+

thus ra →∞ as a→ 0+. Hence the lemma is proved. �

Note that if E(r0) < 0, then

u(r) > 0 for each r > r0. (2.17)

Suppose not. Then there exists z > r0 such that u(z) = 0 and so F (u(z)) = 0. By
(2.2), E(r) is non-increasing so E(z) ≤ E(r0) < 0. Therefore

0 ≤ u′(z)2

2
=
u′(z)2

2
+ F (u(z)) = E(z) < 0

which is impossible. Hence u(r) > 0 for all r > r0.

Lemma 2.5. If a > 0 and a is sufficiently small then ua(r) > 0 for each r > R.

Proof. Assume by the way of contradiction that ua(za) = 0 for some za > R. Since
ua(R) = 0 and u′a(R) = a > 0 we see that ua(r) has a positive local maximum,
Ma, with R < Ma < za and since the energy function Ea(r) is non-increasing then

0 < Ea(za) ≤ Ea(Ma) = F (ua(Ma)).

Thus by (1.6) ua(Ma) > γ and so in particular there exist pa, qa with R < pa <

qa < Ma such that ua(pa) = β
2 , ua(qa) = β and 0 < ua(r) < β for [R, qa). Then

by (1.5) we see that f(ua) < 0 on [R, qa) so u′′a + N−1
r u′a > 0 on [R, qa) by (1.7).

Therefore
∫ r
R

(rN−1u′a)′ dr > 0 from which it follows that

rN−1u′a > RN−1u′a(R) > 0 on [R, qa).

Thus ua(r) is increasing on [R, qa). In addition, pa → ∞ as a → 0+ for if the pa
were bounded then a subsequence would converge to say some finite p0 as a→ 0+.
Since Ea(r) is non-increasing this would imply ua(r) and u′a(r) would be uniformly
bounded on [R, p0 + 1] and so by the Arzela-Ascoli theorem for a subsequence
ua(r) → u0(r) ≡ 0 as a → 0+. On the other hand, β

2 = ua(pa) → u0(p0) = 0 as
a→ 0+ which is a contradiction. Thus we see that pa →∞ as a→ 0+.

Next we return to (2.3) and after rewriting we have

u′a√
a2 − 2F (ua)

≤ 1 for each r ≥ R.

Integrating on [pa, qa] and setting ua(r) = t we obtain∫ β

β
2

dt√
a2 − 2F (t)

=
∫ qa

pa

u′a√
a2 − 2F (ua)

dr ≤
∫ qa

pa

1 dr = qa − pa. (2.18)

Now on [β2 , β] we have 0 < a2 − 2F (t) ≤ 1 + 2|F (β)| if 0 < a ≤ 1. It follows that∫ β

β
2

dt√
a2 − 2F (ua)

≥ β

2
√

1 + 2|F (β)|
≡ c > 0

for some constant c > 0 and sufficiently small a. Combining this with (2.18) we see
that

qa − pa ≥ c if a is sufficiently small. (2.19)
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Now by the definition of Ea(r) it is straightforward to show that

(r2(N−1)Ea(r))′ = (r2(N−1))′F (ua).

Integrating on [pa, qa] gives

q2(N−1)
a Ea(qa) = p2(N−1)

a Ea(pa) +
∫ qa

pa

[r2(N−1)]′F (ua) dr.

Since F (ua) ≤ F (β2 ) < 0 on [pa, qa] we have

p2(N−1)
a Ea(pa) +

∫ qa

pa

(r2(N−1))′F (ua) dr

≤ p2(N−1)
a Ea(pa)− |F (

β

2
)|[q2(N−1)

a − p2(N−1)
a ].

But

p2(N−1)
a Ea(pa) = R2(N−1)Ea(R) +

∫ pa

R

[r2(N−1)]′F (ua) dr

and ∫ pa

R

[r2(N−1)]′F (ua) dr ≤ 0

as F (ua) ≤ 0 on [R, pa]. Thus

p2(N−1)
a Ea(pa) ≤ R2(N−1)Ea(R) =

1
2
a2R2(N−1).

Therefore,

q2(N−1)
a Ea(qa) ≤ 1

2
a2R2(N−1) − |F (

β

2
)|
[
q2(N−1)
a − p2(N−1)

a

]
.

So

q2(N−1)
a Ea(qa) ≤ a2R2(N−1)

2
− |F (

β

2
)|(q2(N−1)

a − p2(N−1)
a ) (2.20)

Now by (2.19) we have

q2(N−1)
a − p2(N−1)

a ≥ (qa − pa)p2N−3
a ≥ c p2N−3

a ,

and from earlier in the proof of this lemma we saw lima→0+ p2N−3
a = ∞. Thus

q
2(N−1)
a − p2(N−1)

a →∞ as a→ 0+.
It follows then from (2.20) that q2(N−1)

a Ea(qa) is negative if a is sufficiently small.
Thus by (2.17) it follows that ua(r) > 0 for r ≥ qa. Also, since we have u′a > 0
on [R, qa] and ua(R) = 0 we see that ua(r) > 0 on (R,∞) if a is sufficiently small.
This completes the proof. �

3. Proof of Theorem 1.1

Let
S0 = {a > 0|ua(r) > 0 ∀r > R}.

By Lemma 2.5 we know that for a > 0 and a sufficiently small that ua(r) > 0 so
S0 is nonempty. Also from Lemma 2.3 we know that if a is sufficiently large then
ua(r) has zeros. Hence S0 is bounded above and so the supremum of S0 exists. Let
a0 = sup(S0).

Lemma 3.1. ua0(r) > 0 on (R,∞).
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Proof. Suppose by the way of contradiction that there exists z0 such that ua0(z0) =
0 and ua(r) > 0 on [R, z0). Then u′a0

(z0) ≤ 0 and by uniqueness in fact u′a0
(z0) < 0.

Thus ua0(r) < 0 for z0 < r < z0 + ε. If a < a0 and a is close enough to a0 then
the continuity of solutions of boundary value problems with respect to the initial
conditions implies that ua(r) also gets negative which contradicts the definition of
a0. So ua0(r) > 0 on (R,∞). This completes the lemma. �

Lemma 3.2. ua0(r) has a local maximum, Ma0 > R.

Proof. Suppose not. Then u′a0
(r) > 0 for all r ≥ R. Since Ea0(r) ≤ Ea0(R) for all

r ≥ R, we have
u′2a0

(r)
2

+ F (ua0(r)) ≤ a2
0

2
.

This implies F (ua0(r)) ≤ a2
0
2 and hence ua0(r) is bounded. Since we are also assum-

ing u′a0
(r) > 0 it follows that limr→∞ ua0(r) exists. Let us denote limr→∞ ua0(r) =

L. Since Ea0(r) is a non-increasing function which is bounded below, it follows that

limr→∞Ea0(r) = limr→∞[
u′2a0
2 + F (ua0)] exists.

Since we also know that limr→∞ ua0(r) exists it follows that limr→∞ u′a0
(r) ex-

ists and in fact limr→∞ u′a0
(r) = 0 (since otherwise ua0(r) would be unbounded).

Therefore from (1.7) it follows that limr→∞ u′′a0
(r) = −f(L) and in fact f(L) = 0.

(Otherwise, u′a0
would be unbounded but we know u′a0

→ 0). So L = −β, 0, or β.
Since ua0(r) > 0 and u′a0

(r) > 0 thus L = β.
Now by the definition of a0 we know ua(r) has a zero if a > a0, say ua(za) = 0.

Next we show that
lim
a→a+

0

za =∞. (3.1)

Suppose not. Then |za| ≤ K for some constant K and so there is a subsequence of
za still denoted za such that za → z0 as a→ a+

0 . But ua(r)→ ua0(r) uniformly on
the compact subset [R, z0 + 1] as a → a+

0 so 0 = lima→a+
0
ua(za) = ua0(z0) which

contradicts that ua0(r) > 0 from Lemma 3.1. Thus lima→a+
0
za = ∞. In addition,

Ea(za) = u′2a (za)
2 ≥ 0. Also:

lim
r→∞

Ea0(r) = lim
r→∞

[
u′2a0

(r)
2

+ F (ua0(r))] = F (β) < 0.

So there exists R0 > R such that Ea0(R0) < 0.
Since lima→a0 ua(r) = ua0(r) uniformly on the compact set [R,R0 +1], it follows

that lima→a0 Ea(R0) = Ea0(R0) < 0. Since Ea(R0) < 0 < Ea(za) and Ea is
non-increasing it follows that za < R0 if a is sufficiently close to a0.

However, by (3.1), we have za → ∞ as a → a+
0 which is a contradiction since

R0 <∞.
Hence ua0(r) has a local maximum at r = Ma0 for some Ma0 > R. This

completes the proof. �

Lemma 3.3. u′a0
(r) < 0 if r > Ma0 .

Proof. Suppose u′a0
(ma0) = 0 for some ma0 > Ma0 . Then u′′a0

(ma0) > 0 and so
f(u(ma0)) < 0. Since we also know that ua0(r) > 0 (by Lemma 3.1) it follows
that 0 < ua0(ma0) < β. Therefore, Ea0(ma0) = F (ua0(ma0)) < 0 and so by the
continuity of the solution with respect to initial conditions we have Ea(ma0) < 0 if
a is sufficiently close to a0.



10 J. JOSHI, J. IAIA EJDE-2016/112

Now by the definition of a0 if a > a0 then ua(r) has a zero, za, with Ea(za) ≥ 0
and by (31) we have seen that lima→a0 za = ∞. Since Ea is non-increasing we
therefore have za < ma0 . But za → ∞ as a → a+

0 and ma0 < ∞ so we obtain a
contradiction. This completes the proof. �

So u′a0
(r) < 0 for all r ≥ Ma0 . Also, ua0(r) > 0 so limr→∞ ua0(r) = L with

L ≥ 0. Since Ea0(r) is non-increasing, we see as we did earlier that f(L) = 0.
Thus L = 0 or β. We now show Ea0(r) ≥ 0 for all r ≥ R. So suppose there is an
r0 > R such that Ea0(r0) < 0. Then Ea(r0) < 0 for a close to a0 and in particular
if a > a0. But then we know that za exists and since Ea(za) ≥ 0 it follows that
za < r0 since Ea is non-increasing. But this contradicts that za → ∞ from (3.1).
Thus Ea0(r) ≥ 0 for all r ≥ R.

Let us suppose now that L = β. Since Ea(r) is non-increasing and bounded
below:

lim
r→∞

Ea0(r, a0) exists.

This implies
lim
r→∞

u′2a0
(r) exists

and as we have seen earlier this implies limr→∞ u′a0
(r) = 0. Therefore,

0 ≤ lim
r→∞

Ea0(r) = lim
r→∞

u′2a0
(r)

2
+ F (L) = 0 + F (β) < 0.

which is a contradiction. Hence we must have L = 0. i.e. limr→∞ ua0(r) = 0. Thus
we have found a positive solution ua0(r) of (1.7)-(1.8) such that limr→∞ ua0(r) = 0.

Next we let
S1 = {a > 0|ua(r) has one zero on (R,∞)}.

[8, Lemma 4] states that if uak(r) is a bounded solution of (1.7) on (0,∞) with
k zeros and limr→∞ uak(r) = 0 then if a is sufficiently close to ak then ua has at
most k + 1 zeros on [0,∞). A nearly identical lemma holds for solutions of (1.7)
on (R,∞). Applying this lemma with a0 we see that ua on (R,∞) has at most one
zero if a is sufficiently close to a0.

On the other hand, for a > a0 we know that ua(r) has at least one zero on
(R,∞) by the definition of a0. Thus if a > a0 and a is sufficiently close to a0 then
ua has exactly one zero and so we see that S1 is nonempty. We also know S1 is
bounded from above by Lemma 2.3 and so we let:

a1 = supS1.

Using a similar argument as earlier we can show that ua1(r) has exactly one zero
on (R,∞) and limr→∞ ua1(r) = 0. Continuing in this way we see that we can
find an infinite number of solutions - one with exactly n zeros on (R,∞) for each
nonnegative integer n - and with limr→∞ u(r) = 0.
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