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SUPERLINEAR SINGULAR FRACTIONAL BOUNDARY-VALUE
PROBLEMS

IMED BACHAR, HABIB MÂAGLI

Abstract. In this article, we study the superlinear fractional boundary-value

problem

Dαu(x) = u(x)g(x, u(x)), 0 < x < 1,

u(0) = 0, lim
x→0+

Dα−3u(x) = 0, lim
x→0+

Dα−2u(x) = ξ, u′′(1) = ζ,

where 3 < α ≤ 4, Dα is the Riemann-Liouville fractional derivative and ξ, ζ ≥
0 are such that ξ + ζ > 0. The function g(x, u) ∈ C((0, 1) × [0,∞), [0,∞))
that may be singular at x = 0 and x = 1 is required to satisfy convenient

hypotheses to be stated later.

By means of a perturbation argument, we establish the existence, unique-
ness and global asymptotic behavior of a positive continuous solution to the

above problem.An example is given to illustrate our main results.

1. Introduction

Fractional differential equations have been of great interest recently. Many
phenomena in viscoelasticity, porous structures, fluid flows, electrical networks
can be modeled by these fractional boundary-value problems (see, for instance,
[6, 7, 11, 14, 17] and references therein) for discussions of various applications.

Fractional boundary-value problems of the form

Dαu(x) + f(x, u(x)) = 0, 0 < x < 1, 3 < α ≤ 4, (1.1)

subject to various boundary-value conditions have been considered by many au-
thors, see for example, [1, 2, 3, 4, 5, 8, 10, 12, 13, 15, 16, 19, 20, 21] and the
references therein.

Here Dα is the Riemann-Liouville fractional derivative of order α (3 < α ≤ 4)
defined by [7, 14, 17],

Dαu(x) =

{
( d
dx )4I4−αu(x), if 3 < α < 4

( d
dx )4u(x), if α = 4,

where for β > 0,

Iβu(x) =
1

Γ(β)

∫ x

0

(x− y)β−1u(y) dy.

2010 Mathematics Subject Classification. 34A08, 34B15, 34B18, 34B27.
Key words and phrases. Fractional differential equation; positive solution; Green’s function;

perturbation arguments.
c©2016 Texas State University.

Submitted February 8, 2016. Published April 26, 2016.

1



2 I. BACHAR, H. MÂAGLI EJDE-2016/108

Liang and Zhang [8] established the existence of positive solutions to problem (1.1)
subject to

u(0) = u′(0) = u′′(0) = u′′(1) = 0, (1.2)
where f(x, u) ∈ C([0, 1]× [0,∞), [0,∞)) is nondecreasing with respect to u,

f
(
t,

1
Γ(α)

( tα−1

α− 2
− tα

α

))
6= 0

for t ∈ (0, 1) and there exists a positive constant γ < 1 such that f is γ-concave
with respect to u, that is, for all λ ∈ [0, 1],

λγf(x, u) ≤ f(x, λu).

Their approach is based on lower and upper solution method.
Recently Zhai et al [20], by means of fixed point theorem for a sum operator

proved the existence and uniqueness of a positive solution to problem (1.1)-(1.2)
with f(x, u) = ϕ(x, u) + ψ(x, u), where ϕ,ψ ∈ C([0, 1] × [0,∞), [0,∞)) increasing
with respect to the second variable. The function ϕ is γ-concave with respect to
u for some γ ∈ (0, 1), ϕ ≥ δ0ψ for some positive constant δ0, ψ(x, 0) 6= 0 and
ψ(x, λu) ≥ λψ(x, u) for λ ∈ (0, 1).

In this article, we consider the superlinear fractional problem
Dαu(x)− u(x)g(x, u(x)) = 0, 0 < x < 1,

u(0) = 0, lim
x→0+

Dα−3u(x) = 0, lim
x→0+

Dα−2u(x) = ξ, u′′(1) = ζ,
(1.3)

where 3 < α ≤ 4 and ξ, ζ ≥ 0 with ξ + ζ > 0.
The function g(x, u) ∈ C((0, 1)× [0,∞), [0,∞)), which may be singular at x = 0

and x = 1 is required to satisfy some convenient hypotheses to be stated later. We
emphasize that the condition ξ+ ζ > 0 on the boundary data is essential to obtain
positive solutions.

To simplify our statements, we use the following notation:
(i) B+((0, 1)) denotes the set of nonnegative measurable functions on (0, 1).
(ii) C(X) (resp. C+(X)) denotes the set of continuous (resp. nonnegative con-

tinuous) functions on a metric space X.
(iii) We denote by G(x, y) the Green’s function of the operator u→ −Dαu, with

boundary conditions

u(0) = lim
x→0+

Dα−3u(x) = lim
x→0+

Dα−2u(x) = u′′(1) = 0.

(iv) For α ∈ (3, 4], we let

Jα = {p ∈ B+((0, 1)) :
∫ 1

0

tα−1(1− t)α−3p(t)dt <∞}. (1.4)

(v) For p ∈ B+((0, 1)), we denote

τp := sup
x,y∈(0,1)

∫ 1

0

G(x, t)G(t, y)
G(x, y)

p(t)dt. (1.5)

and we will prove that if p ∈ Jα, then τp <∞.
(vi) For 3 < α ≤ 4 and ξ, ζ ≥ 0 with ξ+ ζ > 0, we define the function h on [0, 1]

by

h(x) =
ξ

Γ(α)
xα−2(α− 1− (α− 3)x) +

ζ

(α− 1)(α− 2)
xα−1

= h1(x) + h2(x).
(1.6)
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It is easy to show that h is the unique solution of the problem
Dαu(x) = 0, 0 < x < 1,

u(0) = 0, lim
x→0+

Dα−3u(x) = 0, lim
x→0+

Dα−2u(x) = ξ, u′′(1) = ζ.
(1.7)

Note also that, there exists a constant M > 0, such that
1
M
φ(x) ≤ h(x) ≤Mφ(x), for all x ∈ [0, 1] (1.8)

where

φ(x) =

{
xα−1, if ξ = 0,
xα−2, if ξ > 0.

To state our main results, we require a combination of the following conditions.
(H1) g : (0, 1)× [0,∞)→ [0,∞), continuous,
(H2) There exists a function p ∈ C((0, 1))∩J α with τp ≤ 1

2 such that, for all
x ∈ (0, 1), the map y → y(p(x)− g(x, yh(x))) is nondecreasing on [0, 1].

(H3) For all x ∈ (0, 1), the function y → yg(x, y) is nondecreasing on [0,∞).
Using a perturbation method, we establish the following result.

Theorem 1.1. Under assumptions (H1)–(H2), problem (1.3) admits a solution
u ∈ C([0, 1]) such that, for all x ∈ [0, 1],

c0h(x) ≤ u(x) ≤ h(x), (1.9)

where c0 ∈ [0, 1]. Furthermore, if assumption (H3) is also fulfilled, then this solution
is unique.

Corollary 1.2. Let ψ ∈ C1([0,∞)), ψ ≥ 0 such that the map y → ϕ(y) = yψ(y)
is nondecreasing on [0,∞). Let q ∈ C+((0, 1)) such that the function x → q̃(x) :=
q(x) max0≤t≤h(x) ϕ

′(t) ∈ Jα. Then for λ ∈ [0, 1
2τeq ), the problem

Dαu(x) = λq(x)u(x)ψ(u(x)), x ∈ (0, 1),

u(0) = 0, lim
x→0+

Dα−3u(x) = 0, lim
x→0+

Dα−2u(x) = ξ, u′′(1) = ζ,

admits a unique positive solution u ∈ C([0, 1]) such that

(1− λτeq)h(x) ≤ u(x) ≤ h(x), for all x ∈ [0, 1].

Our paper is organized as follows. In section 2, we give the explicit expression
of the Green’s function G(x, y) and we establish some sharp estimates on it. In
section 3, first for a convenient nonnegative given function p, we construct the
Green’s function H(x, y) of the operator u→ −Dαu+pu, with boundary conditions
u(0) = limx→0+ Dα−3u(x) = limx→0+ Dα−2u(x) = u′′(1) = 0 and we derive some
of its properties. In particular, we prove the following statements:

(i) There exists a constant c ∈ (0, 1] such that for (x, y) ∈ [0, 1]× [0, 1],

cG(x, y) ≤ H(x, y) ≤ G(x, y).

(ii) The equation holds

Uψ = Upψ + Up(pUψ) = Upψ + U(pUpψ), for all ψ ∈ B+((0, 1)).

where the kernels U and Up are defined on B+((0, 1)) by

Uψ(x) :=
∫ 1

0

G(x, y)ψ(y)dy, Upψ(x) :=
∫ 1

0

H(x, y)ψ(y)dy, x ∈ [0, 1]. (1.10)
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By exploiting these properties, we prove our main results.

2. On the Green function

We recall the following known properties.

Lemma 2.1 ([7, 14, 17]). Let α ∈ (3, 4) and u ∈ C((0, 1)) ∩ L1((0, 1)). Then we
have

(i) For 0 < γ < α, DγIαu = Iα−γu and DαIαu = u.
(ii) Dαu(x) = 0 if and only if u(x) = c1x

α−1 + c2x
α−2 + c3x

α−3 + c4x
α−4,

where ci ∈ R, for i ∈ {1, 2, 3, 4}.
(iii) Assume that Dαu ∈ C((0, 1)) ∩ L1((0, 1)), then

IαDαu(x) = u(x) + c1x
α−1 + c2x

α−2 + c3x
α−3 + c4x

α−4,

where ci ∈ R, for i ∈ {1, 2, 3, 4}.

Next we give the explicit expression of the Green’s function G(x, y).

Lemma 2.2. Let α ∈ (3, 4] and ψ ∈ C+([0, 1]). Then the problem

−Dαu(x) = ψ(x), 0 < x < 1,

u(0) = 0, lim
x→0+

Dα−3u(x) = 0, lim
x→0+

Dα−2u(x) = 0, u′′(1) = 0, (2.1)

has a unique nonnegative solution

u(x) =
∫ 1

0

G(x, y)ψ(y)dy, (2.2)

where for x, y ∈ [0, 1],

G(x, y) =
1

Γ(α)

{
xα−1(1− y)α−3 − (x− y)α−1, 0 ≤ y ≤ x ≤ 1;
xα−1(1− y)α−3, 0 ≤ x ≤ y ≤ 1.

(2.3)

Proof. Since ψ ∈ C([0, 1]), by Lemma 2.1, we have

u(x) = c1x
α−1 + c2x

α−2 + c3x
α−3 + c4x

α−4 − Iαψ(x).

Using the fact that u(0) = 0, limx→0+ Dα−3u(x) = 0 and limx→0+ Dα−2u(x) = 0,
u′′(1) = 0, we obtain c2 = c3 = c4 = 0 and c1 = 1

Γ(α)

∫ 1

0
(1 − y)α−3ψ(y)dy. Then,

the unique solution of (2.1) is

u(x) =
1

Γ(α)

∫ 1

0

xα−1(1− y)α−3ψ(y)dy − 1
Γ(α)

∫ x

0

(x− y)α−1ψ(y)dy

=
∫ 1

0

G(x, y)ψ(y)dy.

This completes the proof. �

Proposition 2.3. The Green function G(x, y) in Lemma 2.2 has the following
properties:

(i) For y ∈ [0, 1], the function x→ G(x, y) belongs to C2([0, 1]).
(ii) For x, y ∈ [0, 1],

1
Γ(α)

H0(x, y) ≤ G(x, y) ≤ 2(α− 1)
Γ(α)

H0(x, y),

where H0(x, y) = xα−2(1− y)α−3 min(x, y).
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(iii) For x, y ∈ [0, 1],

1
Γ(α)

xα−1y(1− y)α−3 ≤ G(x, y) ≤ 2(α− 1)
Γ(α)

xα−2y(1− y)α−3.

(iv) For x ∈ (0, 1] and y ∈ [0, 1),

(α− 1)
Γ(α)

H(x, y) ≤ ∂

∂x
G(x, y) ≤ (α− 1)(α− 2)

Γ(α)
H(x, y),

where H(x, y) = xα−3(1− y)α−3 min(x, y).
(v) For x ∈ (0, 1] and y ∈ [0, 1),

(α− 1)(α− 2)(α− 3)
Γ(α)

H̃(x, y) ≤ ∂2

∂x2
G(x, y) ≤ (α− 1)(α− 2)

Γ(α)
H̃(x, y),

where H̃(x, y) = xα−4(1− y)α−4 min(x, y)(1−max(x, y)).

Proof. (i) From Lemma 2.2, for x, y ∈ [0, 1], we have

G(x, y) =
1

Γ(α)

{
xα−1(1− y)α−3 − (x− y)α−1, 0 ≤ y ≤ x ≤ 1;
xα−1(1− y)α−3, 0 ≤ x ≤ y ≤ 1,

=
1

Γ(α)

[
xα−1(1− y)α−3 − (max(x− y, 0))α−1

]
.

Since α > 3, if follows that the function x → (max(x − y, 0))α−1 belongs to
C2([0, 1]). This implies the result.

(ii) Observe that for a, b > 0 and c, y ∈ [0, 1], we have

min(1,
b

a
)(1− cya) ≤ 1− cyb ≤ max(1,

b

a
)(1− cya). (2.4)

Now, since for x, y ∈ [0, 1], we have

G(x, y) =
1

Γ(α)
xα−1(1− y)α−3

[
1− (1− y)2(

max(x− y, 0)
x(1− y)

)α−1
]
,

and max(x−y,0)
x(1−y) ∈ [0, 1], for x ∈ (0, 1] and y ∈ [0, 1), then the required result follows

from (2.4) with b = α− 1, a = 1 and c = (1− y)2.
(iii) The inequalities follows from (i) and the fact that

xy ≤ min(x, y) ≤ y, for x, y ∈ [0, 1].

(iv) Since for x, y ∈ [0, 1],

∂

∂x
G(x, y) =

α− 1
Γ(α)

{
xα−2(1− y)α−3 − (x− y)α−2, 0 ≤ y ≤ x ≤ 1;
xα−2(1− y)α−3, 0 ≤ x ≤ y ≤ 1,

=
α− 1
Γ(α)

xα−2(1− y)α−3
[
1− (1− y)

(max(x− y, 0)
x(1− y)

)α−2]
,

the required result follows from (2.4) with b = α− 2, a = 1 and c = (1− y).
(v) Since for x ∈ (0, 1] and y ∈ [0, 1),

∂2

∂x2
G(x, y) =

(α− 1)(α− 2)
Γ(α)

{
xα−3(1− y)α−3 − (x− y)α−3, 0 ≤ y ≤ x ≤ 1;
xα−3(1− y)α−3, 0 ≤ x ≤ y ≤ 1,

=
(α− 1)(α− 2)

Γ(α)
xα−3(1− y)α−3[1− (

max(x− y, 0)
x(1− y)

)α−3],
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the required result follows again from (2.4) with b = α− 3, a = 1 and c = 1. This
completes the proof. �

From Proposition 2.3 (iii), we deduce the following result.

Corollary 2.4. Let ψ ∈ B+((0, 1)), then

Uψ ∈ C([0, 1])⇐⇒
∫ 1

0

y(1− y)α−3ψ(y)dy <∞.

Proposition 2.5. Let 3 < α < 4 and ψ ∈ C((0, 1)). Assume that the function
y → y(1 − y)α−3ψ(y) ∈ C((0, 1)) ∩ L1((0, 1), then Uψ is the unique solution in
C([0, 1]) of

−Dαu(x) = ψ(x), 0 < x < 1,

u(0) = 0, lim
x→0+

Dα−3u(x) = 0, lim
x→0+

Dα−2u(x) = 0, u′′(1) = 0. (2.5)

Proof. From Corollary 2.4, we deduce that the function Uψ ∈ C([0, 1]). This
implies that I4−α(U |ψ|) is finite on [0, 1]. Hence, we obtain

I4−α(Uψ)(x) =
1

Γ(4− α)

∫ x

0

(x− y)3−αUψ(y)dy

=
1

Γ(4− α)

∫ 1

0

(∫ x

0

(x− y)3−αG(y, z)dy
)
ψ(z)dz

=
∫ 1

0

K(x, z)ψ(z)dz,

where
K(x, z) :=

1
Γ(4− α)

∫ x

0

(x− y)3−αG(y, z)dy.

Next we will express explicitly K(x, z). Using (2.3), we obtain

K(x, z)

=
(1− z)α−3

Γ(4− α)Γ(α)

∫ x

0

(x− y)3−αyα−1dy

− 1
Γ(4− α)Γ(α)

∫ x

0

(x− y)3−α(max(y − z, 0))α−1dy

=
1
6
x3(1− z)α−3 − 1

Γ(4− α)Γ(α)

∫ x

0

(x− y)3−α(max(y − z, 0))α−1dy

If z ≤ x, then we have∫ x

0

(x− y)3−α((y − z)+)α−1dy =
∫ x

z

(x− y)3−α(y − z)α−1dy

=
Γ(α)Γ(4− α)

6
(x− z)3.

(2.6)

On the other hand, if x ≤ z and y ∈ (0, x), we have∫ x

0

(x− y)3−α(max(y − z, 0))α−1dy = 0. (2.7)

From (2.6) and (2.7), we obtain

K(x, z) =
1
6
x3(1− z)α−3 − 1

6
(max(x− z, 0))3.
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Hence for x ∈ (0, 1), we have

6I4−α(Uψ)(x) = 6
∫ 1

0

K(x, z)ψ(z)dz

= x3

∫ x

0

[(1− z)α−3 − 1]ψ(z)dz + 3x2

∫ x

0

zψ(z)dz

− 3x
∫ x

0

z2ψ(z)dz +
∫ x

0

z3ψ(z)dz + x3

∫ 1

x

(1− z)α−3ψ(z)dz

:= J1(x) + J2(x) + J3(x) + J4(x) + J5(x).

We claim that

Dα(Uψ)(x) :=
d4

dx4
(I4−α(Uψ))(x) = −ψ(x), for x ∈ (0, 1).

Indeed, since the function z 7→ zψ(z) is continuous and integrable in a neighbor-
hood of 0 and the function z 7→ (1 − z)α−3ψ(z) is continuous and integrable in a
neighborhood of 1, we deduce that J2(x), J3(x), J4(x) and J5(x) are differentiable.

On the other hand, since (1 − z)α−3 − 1 = O(z) near 0, it follows that J1(x) is
differentiable. So, we have

d

dx
(6I4−α(Uψ))(x) = 3x2

∫ x

0

[(1− z)α−3 − 1]ψ(z)dz + 6x
∫ x

0

zψ(z)dz

− 3x
∫ x

0

z2ψ(z)dz + 3x2

∫ 1

x

(1− z)α−3ψ(z)dz,

= K1(x) +K2(x) +K3(x) +K4(x).

Similarly, we obtain

d4

dx4
(I4−α(Uψ))(x) = −ψ(x), for x ∈ (0, 1).

It remains to verify the boundary conditions. Since Uψ ∈ C([0, 1]), we deduce
that Uψ(0) = 0. On the other hand, clearly we have

lim
x→0+

K1(x) = lim
x→0+

K2(x) = lim
x→0+

K3(x) = 0

and by [9, Lemma 2.2], we have limx→0+ K4(x) = 0. Now, since Dα−3(Uψ)(x) =
d
dx (I4−α(Uψ))(x), we deduce that

lim
x→0+

Dα−3(Uψ)(x) = 0.

Similarly, we show that limx→0+ Dα−2(Uψ)(x) = 0, by using the fact that

Dα−2(Uψ)(x) =
d2

dx2
(I4−α(Uψ))(x).

Let η > 0. By Proposition 2.3 (v), there exists a constant c > 0, such that for
x ∈ (η, 1] and y ∈ (0, 1), we have∣∣ ∂2

∂x2
G(x, y)

∣∣ ≤ cηα−4y(1− y)α−4(1−max(x, y)) ≤ cηα−4y(1− y)α−3.

So by the Lebesgue theorem, we deduce that (Uψ)′′(1) = 0.
Finally, the uniqueness follows immediately from Lemma 2.1. The proof is com-

plete. �

Same properties in Proposition 2.5 remain true for α = 4.
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Proposition 2.6. For each x, t, y ∈ (0, 1), we have

G(x, t)G(t, y)
G(x, y)

≤ 4(α− 1)2

Γ(α)
tα−1(1− t)α−3. (2.8)

Proof. Using Proposition 2.3 (ii), for each x, t, y ∈ (0, 1), we have

G(x, t)G(t, y)
G(x, y)

≤ 4(α− 1)2

Γ(α)
tα−2(1− t)α−3 min(x, t) min(t, y)

min(x, y)
.

So the result follows from the fact that
min(x, t) min(t, y)

min(x, y)
≤ t.

This completes the proof. �

Proposition 2.7. Let p ∈ Jα. We have: (i)

τp ≤
4(α− 1)2

Γ(α)

∫ 1

0

tα−1(1− t)α−3p(t)dt <∞, (2.9)

where τp is given by (1.5).
(ii)

U(ph)(x) ≤ τph(x), for x ∈ [0, 1]. (2.10)

Proof. Let p ∈ Jα. (i) Using (1.5) and (2.8), we obtain (2.9). (ii) Since h = h1 +h2,
we need to prove (2.10) for h1 and h2.

To this end, observe that for each x, y ∈ (0, 1], we have limz→1
G(y,z)
G(x,z) = h2(y)

h2(x) .
Therefore, by applying Fatou lemma and (1.5), we obtain

1
h2(x)

U(ph2)(x) =
∫ 1

0

G(x, y)
h2(y)
h2(x)

p(y)dy

≤ lim inf
z→1

∫ 1

0

G(x, y)
G(y, z)
G(x, z)

p(y)dy ≤ τp.

Similarly, we prove U(ph1)(x) ≤ τph1(x), by observing that limz→0
G(y,z)
G(x,z) = h1(y)

h1(x) .
This completes the proof. �

3. Proofs of main results

3.1. On the Green’s function of the perturbed operator. In this subsection,
our goal is to determine the positive solution to the linear fractional problem

−Dαu(x) + p(x)u(x) = ψ(x), 0 < x < 1,

u(0) = lim
x→0+

Dα−3u(x) = lim
x→0+

Dα−2u(x) = u′′(1) = 0. (3.1)

To this end, we need to construct the Green’s function to the homogeneous problem
associated with (3.1).

Let p ∈ Jα. For (x, y) ∈ [0, 1]× [0, 1], put G0(x, y) = G(x, y) and

Gn(x, y) =
∫ 1

0

G(x, t)Gn−1(t, y)p(t)dt, n ≥ 1. (3.2)

Let H : [0, 1]× [0, 1]→ R, be defined by

H(x, y) =
∞∑
n=0

(−1)nGn(x, y), (3.3)
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provided that the series converges.

Lemma 3.1. Let p ∈ Jα with τp < 1, then for all (x, y) ∈ [0, 1]× [0, 1], we have
(i) Gn(x, y) ≤ τnp G(x, y) for each n ∈ N. So, H(x, y) is well defined in [0, 1]×

[0, 1].
(ii) For each n ∈ N,

Lnx
α−1y(1− y)α−3 ≤ Gn(x, y) ≤ Rnxα−2y(1− y)α−3, (3.4)

where

Ln =
1

(Γ(α))n+1

(∫ 1

0

tα(1− t)α−3p(t)dt
)n
,

Rn = (
2α− 2
Γ(α)

)n+1
(∫ 1

0

tα−1(1− t)α−3p(t)dt
)n
.

(iii) Gn+1(x, y) =
∫ 1

0
Gn(x, t)G(t, y)p(t)dt for each n ∈ N.

(iv)
∫ 1

0
H(x, t)G(t, y)p(t)dt =

∫ 1

0
G(x, t)H(t, y)p(t)dt.

Proof. (i) Obviously the inequality is valid for n = 0. Assume that Gn(x, y) ≤
τnp G(x, y), then by using (3.2) and (1.5), we obtain

Gn+1(x, y) ≤ τnp
∫ 1

0

G(x, t)G(t, y)p(t)dt ≤ τn+1
p G(x, y).

So, H(x, y) is well defined in [0, 1]× [0, 1].
(ii) The inequality in (3.4), follows by induction and Proposition 2.3 (iii).

(iii) We will proceed by induction. Obviously the equality is valid for n = 0. Assume
that

Gn(x, y) =
∫ 1

0

Gn−1(x, t)G(t, y)p(t)dt. (3.5)

Then by using (3.2) and the Fubini-Tonelli theorem, we obtain

Gn+1(x, y) =
∫ 1

0

G(x, t)
(∫ 1

0

Gn−1(t, z)G(z, y)p(z)dz
)
p(t)dt

=
∫ 1

0

(∫ 1

0

G(x, t)Gn−1(t, z)p(t)dt
)
G(z, y)p(z)dz

=
∫ 1

0

Gn(x, z)G(z, y)p(z)dz.

(iv) Let n ∈ N and x, t, y ∈ [0, 1]. From Lemma 3.1 (i) we deduce that

0 ≤ Gn(x, t)G(t, y)p(t) ≤ τnp G(x, t)G(t, y)p(t).

So, the series
∑
n≥0

∫ 1

0
Gn(x, t)G(t, y)p(t)dt is convergent. By the dominated con-

vergence theorem and Lemma 3.1 (iii), we deduce that∫ 1

0

H(x, t)G(t, y)p(t)dt =
∞∑
n=0

∫ 1

0

(−1)nGn(x, t)G(t, y)p(t)dt

=
∞∑
n=0

∫ 1

0

(−1)nG(x, t)Gn(t, y)p(t)dt

=
∫ 1

0

G(x, t)H(t, y)p(t)dt.
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�

Proposition 3.2. For p ∈ Jα with τp < 1, the function (x, y) → H(x, y) belongs
to C([0, 1]× [0, 1]).

Proof. The function (x, y) → Gn(x, y) ∈ C([0, 1] × [0, 1]), for all n ∈ N. Clearly
G0 = G ∈ C([0, 1]× [0, 1]),

Assume that the function (x, y)→ Gn−1(x, y) ∈ C([0, 1]× [0, 1]). Using Lemma
3.1 (i) and Proposition 2.3 (iii), we obtain

G(x, t)Gn−1(t, y)p(t) ≤ τn−1
p G(x, t)G(t, y)p(t)

≤ 4(
α− 1
Γ(α)

)2tα−1(1− t)α−3p(t).

Therefore by (3.2) and the dominated convergence theorem, we deduce that the
function (x, y)→ Gn(x, y) ∈ C([0, 1]× [0, 1]).

On the other hand, from Lemma 3.1 (i) and Proposition 2.3 (iii), we have

Gn(x, y) ≤ τnp G(x, y) ≤ 2(α− 1)
Γ(α)

τnp .

So, the series
∑
n≥0(−1)nGn(x, y) is uniformly convergent on [0, 1] × [0, 1] and

therefore the function (x, y)→ H(x, y) belongs to C([0, 1]× [0, 1]). �

Lemma 3.3. Let p ∈ Jα such that τp ≤ 1/2. On [0, 1]× [0, 1], one has

(1− τp)G(x, y) ≤ H(x, y) ≤ G(x, y). (3.6)

Proof. By using Lemma 3.1 (i), we obtain

|H(x, y)| ≤
∞∑
n=0

(τp)nG(x, y) =
1

1− τp
G(x, y). (3.7)

On the other hand, we have

H(x, y) = G(x, y)−
∞∑
n=0

(−1)nGn+1(x, y). (3.8)

Since the series
∑
n≥0

∫ 1

0
G(x, z)Gn(z, y)p(z)dz is convergent, we deduce by (3.8)

and (3.2) that

H(x, y) = G(x, y)−
∞∑
n=0

(−1)n
∫ 1

0

G(x, z)Gn(z, y)p(z)dz

= G(x, y)−
∫ 1

0

G(x, z)
( ∞∑
n=0

(−1)nGn(z, y)
)
p(z)dz;

that is,
H(x, y) = G(x, y)− U(pH(., y))(x). (3.9)

Using (3.7) and Lemma 3.1 (i), we obtain

U(pH(., y))(x) ≤ 1
1− τp

U(pG(., y))(x) =
1

1− τp
G1(x, y) ≤ τp

1− τp
G(x, y).

So, by (3.9), we obtain

H(x, y) ≥ G(x, y)− τp
1− τp

G(x, y) =
1− 2τp
1− τp

G(x, y) ≥ 0.
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So, H(x, y) ≤ G(x, y) and by (3.9) and Lemma 3.1 (i), we obtain

H(x, y) ≥ G(x, y)− U(pG(., y))(x) ≥ (1− τp)G(x, y).

�

Corollary 3.4. Let p ∈ Jα with τp ≤ 1
2 and ψ ∈ B+((0, 1)). Then

Upψ ∈ C([0, 1])⇐⇒
∫ 1

0

y(1− y)α−3ψ(y)dy <∞.

Proof. The assertion follows from Proposition 3.2, (3.6) and Proposition 2.3 (iii).
�

Lemma 3.5. Let p ∈ Jα with τp ≤ 1
2 and ψ ∈ B+((0, 1)). Then we have

Uψ = Upψ + Up(pUψ) = Upψ + U(pUpψ). (3.10)

In particular, if U(pψ) <∞, then

(I − Up(p.))(I + U(p.))ψ = (I + U(p.))(I − Up(p.))ψ = ψ. (3.11)

Here U(p.)(ψ) := U(pψ).

Proof. From (3.9), we have

G(x, y) = H(x, y) + U(pH(·, y))(x), for (x, y) ∈ [0, 1]× [0, 1].

So by the Fubini-Tonelli theorem we deduce that

Uψ(x) =
∫ 1

0

(H(x, y) + U(pH(., y))(x))ψ(y)dy

= Upψ(x) + U(pUpψ)(x).

Now, using Lemma 3.1 (iv) and again the Fubini theorem, we obtain∫ 1

0

∫ 1

0

H(x, t)G(t, y)p(t)ψ(y) dt dy =
∫ 1

0

∫ 1

0

G(x, t)H(t, y)p(t)ψ(y) dt dy;

that is,
Up(pUψ)(x) = U(pUpψ)(x).

Therefore
Uψ = Upψ + U(pUpψ) = Upψ + Up(pUψ)(x).

�

Proposition 3.6. Let ψ ∈ B+((0, 1)) such that y 7→ y(1 − y)α−3ψ(y) belongs to
C((0, 1))∩L1((0, 1)) and p ∈ C((0, 1))∩J α with τp ≤ 1

2 . Then u = Upψ is the
unique nonnegative solution in C([0, 1]) to problem (3.1) satisfying

(1− τp)Uψ ≤ u ≤ Uψ. (3.12)

Proof. By Corollary 3.4, we conclude that the function x→ p(x)Upψ(x) ∈ C((0, 1)).
On the other hand, from (3.10) and Proposition 2.3 (iii), we have that there

exists m ≥ 0 such that

Upψ(x) ≤ Uψ(x) ≤ 2(α− 1)
Γ(α)

∫ 1

0

xα−2y(1− y)α−3ψ(y)dy ≡ mxα−2. (3.13)

Therefore∫ 1

0

y(1− y)α−3p(y)Upψ(y)dy ≤ m
∫ 1

0

yα−1(1− y)α−3p(y)dy <∞.
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By applying Proposition 2.5, the function u = Upψ = Uψ − U(pUpψ) satisfies the
equation

Dαu(x) = −ψ(x) + p(x)u(x), x ∈ (0, 1),

u(0) = lim
x→0+

Dα−3u(x) = lim
x→0+

Dα−2u(x) = u′′(1) = 0.

Integrating the inequalities (3.6), we obtain (3.12).
Next, we prove the uniqueness. Let w ∈ C+([0, 1]) be another solution to

problem (3.1) satisfying w ≤ Uψ. Since by (3.12) and (3.13) the function y →
y(1 − y)α−3p(y)w(y) ∈ C((0, 1))∩L1((0, 1)), by Proposition 2.5 the function w̃ :=
w + U(pw) satisfies

Dαw̃(x) + ψ(x) = 0, x ∈ (0, 1),

w̃(0) = lim
x→0+

Dα−3w̃(x) = lim
x→0+

Dα−2w̃(x) = w̃′′(1) = 0.

From Proposition 2.5 we deduce that

w̃ := w + U(pw) = Uψ.

Therefore,
(I + U(p.))((w − u)+) = (I + U(p.))((w − u)−),

where (w − u)+ = max(w − u, 0) and (w − u)− = max(u− w, 0).
Since |w(y)− u(y)| ≤ 2Uψ(y) ≤ 2myα−2, we deduce by Proposition 2.3 (ii) that

U(p|w − u|)(x) ≤ 4m(α− 1)
Γ(α)

∫ 1

0

yα−2(1− y)α−3 min(x, y)p(y)dy

≤ 4m(α− 1)
Γ(α)

∫ 1

0

yα−1(1− y)α−3p(y)dy <∞.

So by (3.11), we obtain that u = w. �

3.2. Proofs of main results.

Proof of Theorem 1.1. Let 3 < α ≤ 4 and ξ, ζ ≥ 0 with ξ + ζ > 0. We recall that

h(x) :=
ξ

Γ(α)
xα−2(α− 1− (α− 3)x) +

ζ

(α− 1)(α− 2)
xα−1, for x ∈ [0, 1].

Let p ∈ C((0, 1))∩J α with τp ≤ 1
2 such that assumption (H2) is satisfied. Let

F := {u ∈ B+((0, 1)) : (1− τp)h ≤ u ≤ h}.
Consider the operator A defined on F by

Au = h− Up(ph) + Up((p− g(., u))u).

By (3.10) and (2.10) we have

Up(ph) ≤ U(ph) ≤ τph ≤ h, (3.14)

and by (H2), we obtain

0 ≤ g(., u) ≤ p for all u ∈ F. (3.15)

Next, we prove that A(F ) ⊂ F . Form (3.15) and (3.14), we obtain

Au ≤ h− Up(ph) + Up(pu) ≤ h,
Au ≥ h− Up(ph) ≥ (1− τp)h.
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Since the map y 7→ y(p(x) − g(x, yh(x))) is nondecreasing on [0, 1], for x ∈ (0, 1),
the operator A becomes nondecreasing on F .

Define the sequence {uk} by u0 = (1 − τp)h and uk+1 = Auk for k ∈ N. Since
F is invariant under A, we have u1 = Au0 ≥ u0 and by the monotonicity of A, we
obtain

(1− τp)h = u0 ≤ u1 ≤ · · · ≤ uk ≤ uk+1 ≤ h.
Therefore, the sequence {uk} converges to a function u ∈ F satisfying

u = (I − Up(p.))h+ Up((p− g(., u))u).

Namely
(I − Up(p.))u = (I − Up(p.))h− Up(ug(., u)). (3.16)

Now, since U(pu) ≤ U(ph) ≤ h <∞, by applying the operator (I+U(p.)) on (3.16)
and using (3.10) and (3.11), we conclude that u satisfies

u = h− U(ug(., u)). (3.17)

We claim that u is a solution of (1.3). From (3.15) and (1.8), we have

u(y)g(y, u(y)) ≤ p(y)h(y) ≤Mp(y)φ(y) ≤Myα−2p(y). (3.18)

This implies that
∫ 1

0
y(1 − y)α−3u(y)g(y, u(y))dy < ∞. Hence from Corollary 2.4,

we deduce that the function x 7→ U(ug(., u))(x) ∈ C([0, 1]) and from (3.17), we
conclude that u ∈ C([0, 1]).

Using (H1) and (3.18), we obtain that the function y 7→ y(1−y)α−3u(y)g(y, u(y))
belongs to C((0, 1))∩L1((0, 1))), which implies by Proposition 2.5 that u is a solu-
tion of (1.3).

Now assume further that condition (H3) is satisfied. Let v ∈ C([0, 1]) be another
nonnegative solution to problem (1.3) satisfying (1.9). As above, we have

0 ≤ v(y)g(y, v(y)) ≤ p(y)h(y) ≤Myα−2p(y).

So the function y → y(1 − y)α−3v(y)g(y, v(y)) ∈ C((0, 1))∩L1((0, 1))). Put ṽ :=
v + U(vg(., v)). By Proposition 2.5 we have

Dαṽ(x) = 0, 0 < x < 1,

u(0) = 0, lim
x→0+

Dα−3u(x) = 0, lim
x→0+

Dα−2u(x) = ξ, u′′(1) = ζ.

Hence
ṽ := v + U(vg(., v)) = h.

That is,
v = h− U(vg(., v)). (3.19)

For z ∈ (0, 1), we let

%(z) =

{
v(z)g(z,v(z))−u(z)g(z,u(z))

v(z)−u(z) , if v(z) 6= u(z),

0, if v(z) = u(z).

Note that, from (H3), we have % ∈ B+((0, 1)). Using (3.17) and (3.19) we deduce

(I + U(%.))((v − u)+) = (I + U(%.))((v − u)−),

where (v − u)+ = max(v − u, 0) and (v − u)− = max(u − v, 0). Since % ≤ p, we
deduce by (2.10), that

U(%|v − u|) ≤ 2U(ph) ≤ 2τph <∞.
Hence u = v by (3.11). This ends the proof. �



14 I. BACHAR, H. MÂAGLI EJDE-2016/108

Proof of Corollary 1.2. The conclusion follows from Theorem 1.1 with g(x, y) =
λq(x)ψ(y) and p(x) := λq̃(x). �

Example 3.7. Let 3 < α ≤ 4 and ξ, ζ ≥ 0 with ξ + ζ > 0. Let r ≥ 0, ν ≥ 0 and
q ∈ C+((0, 1)) such that∫ 1

0

t(α−1)+(α−2)(r+ν)(1− t)α−3q(t)dt <∞.

Let ϕ(s) = sr+1 log(1 + sν) and q̃(y) := q(y) max0≤t≤h(y) ϕ
′(t). Since q̃ ∈ Jα, then

for λ ∈ [0, 1
2τeq ), the problem

Dαu(x) = λq(x)ur+1(x) log(1 + uν(x)), 0 < x < 1,

u(0) = 0, lim
x→0+

Dα−3u(x) = 0, lim
x→0+

Dα−2u(x) = ξ, u′′(1) = ζ,

admits a unique positive solution u ∈ C([0, 1]) satisfying

(1− λτeq)h(x) ≤ u(x) ≤ h(x), for all 0 ≤ x ≤ 1.

Acknowledgments. The authors would like to extend their sincere appreciation
to the Deanship of Scientific Research at King Saud University for its funding this
Research group No RG-1435-043.

References
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