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EXISTENCE AND CONCENTRATION OF GROUND STATE
SOLUTIONS FOR A KIRCHHOFF TYPE PROBLEM

HAINING FAN

Abstract. This article concerns the Kirchhoff type problem

−
“
ε2a + εb

Z
R3
|∇u|2dx

”
∆u + V (x)u = K(x)|u|p−1u, x ∈ R3,

u ∈ H1(R3),

where a, b are positive constants, 2 < p < 5, ε > 0 is a small parameter,

and V (x), K(x) ∈ C1(R3). Under certain assumptions on the non-constant
potentials V (x) and K(x), we prove the existence and concentration properties

of a positive ground state solution as ε → 0. Our main tool is a Nehari-

Pohozaev manifold.

1. Introduction

In this article we study the Kirchhoff type problem

−
(
ε2a+ εb

∫
R3
|∇u|2dx

)
∆u+ V (x)u = K(x)|u|p−1u, x ∈ R3,

u ∈ H1(R3),
(1.1)

where a, b are positive constants, 2 < p < 5, ε > 0 is a small parameter, V (x),K(x) ∈
C1(R3). Such problems are often referred as being nonlocal because of the pres-
ence of the term

( ∫
R3 |∇u|2dx

)
∆u which implies that (1.1) is no longer a point-wise

equation. Problem (1.1) is related to the stationary analogue of the equation

utt −
(
a+ b

∫
R3
|∇u|2dx

)
∆u = f(x, u), (1.2)

presented by Kirchhoff in [9] as an extension of classical D’Alembert’s wave equa-
tions for free vibration of elastic strings. Kirchhoff’s model takes into account the
changes in length of the string produced by transverse vibrations. In (1.2), u de-
notes the displacement, f(x, u) the external force and b the initial tension while a is
related to the intrinsic properties of the string (such as Young’s modulus). We have
to point out that nonlocal problems also appear in other fields such as biological
systems, where u describes a process which depends on the average of itself (for
example, population density, see [1, 5]).
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In recent years, there have been many works concerned with the existence
of solutions to the problems similar to (1.1) via variational methods, see e.g.
[2, 6, 7, 10, 13, 15, 22]. Also, there are some recent works considered the con-
centration property of solutions as ε → 0, see for instance [8, 14, 18, 19, 20] and
the references therein. Indeed, a typical way to deal with (1.1) is to use the moun-
tain pass theorem. For this purpose, the most of the above results focused on the
nonlinear model |u|p−1u with 3 < p < 5 (6 is the critical Sobolev exponent) or
similar conditions. Under such conditions, one easily sees that the energy func-
tional associated with (1.1) possess a mountain-pass geometry around 0 ∈ H1(R3)
and a bounded (PS) sequence. Moreover, some further conditions are assumed to
guarantee the compactness of the (PS) sequence.

A natural question now is whether problem (1.1) has nontrivial solutions for
1 < p ≤ 3. Recently, Li and Ye [11] studied (1.1) under the assumptions that
2 < p < 5, ε = 1, K(x) ≡ 1 and V (x) satisfies

(A1’) V ∈ C(R3,R) is weakly differentiable and satisfies ∇V (x) · x ∈ L∞(R3) ∪
L3/2(R3) and V (x)−∇V (x) · x ≥ 0 a.e. x ∈ R3.

(A2’) for every x ∈ R3, V (x) ≤ lim|x|→∞ V (x) := V∞ < +∞ with a strict
inequality in a subset of positive Lebesgue measure.

(A3’) there exists a c > 0 such that

c = inf
u∈H1(R3)\{0}

∫
R3(|∇u|2 + V (x)u2)dx∫

R3 u2dx
> 0.

By using a monotonicity trick and constructing a new version of global compactness
Lemma, they proved that (1.1) has a positive ground state solution. More recently,
Ye [23] studied (1.1) under different conditions. On one hand, if 1 < p < 5, ε = 1,
V (x) and K(x) are constants, it was showed that (1.1) has a positive ground state
solution. On the other hand, if 1 < p < 5, ε = 1, K(x) ≡ 1 and V (x) satisfies

(A1”) V ∈ C2(R3,R) and lim|x|→∞ V (x) := V∞ > 0.
(A2”) ∇V (x) · x ≤ 0 for all x ∈ R3 and the inequality is strict in a subset of

positive Lebesgue measure.
(A3”) V (x) + ∇V (x)·x

4 ≥ V∞ for all x ∈ R3.
(A4”) ∇V (x) ·x+ xH(x)x

4 ≤ 0 for all x ∈ R3, where H denotes the Hessian matrix
of V .

(A5”) there exists a constant T > 1 which is defined in [23] such that

sup
x∈R3

V (x) ≤ V∞ + T.

Ye [23] proved that (1.1) has a high energy solution. However, to the best of our
knowledge, for the case 2 < p ≤ 3 and V (x),K(x) are not constants, there is no
work concerning the existence and concentration property of positive ground state
solutions of (1.1) as ε → 0. In this paper, our purpose is to give an affirmative
answer to this case. Since we consider the case 2 < p < 5, the usual variational
techniques, such as the Nehari manifold, do not work. Following [11, 16, 17, 20, 23],
the main tool of our work is a Nehari-Pohozaev manifold. Moreover, as we consider
the case that K(x) and V (x) are not constants, the Nehari-Pohozaev manifold for
(1.1) becomes more complicated than in [11, 23], and thus the method used in
[11, 23] can not be directly used in our work.

To state our main result, we assume
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(A1) V (x) ∈ C1(R3,R) and 0 < Vmin := infx∈R3 V (x) ≤ V (x) ≤ V∞ :=
lim|x|→∞ V (x), V (x) 6≡ V∞ for all x ∈ R3.

(A2) ∇V (x) · x ∈ L∞(R3).
(A3) The map s 7→ s

5
4+pV (s

1
4+px) is concave for any x ∈ R3.

(A4) There exists an RV > 0 such that ∇V (x) ≡ 0 for all |x| ≥ RV .
(A5) K(x) ∈ C1(R3,R) and 0 < K∞ := lim|x|→∞K(x) ≤ K(x), and K(x) 6≡

K∞ for all x ∈ R3.
(A6) ∇K(x) · x ∈ L∞(R3).
(A7) The map s 7→ s

5
4+pK(s

1
4+px) is concave for any x ∈ R3.

(A8) There exists an RK > 0 such that ∇K(x) ≡ 0 for all |x| ≥ RK .

Remark 1.1. There are many examples of V and K that satisfy the hypotheses
above. For example, define η ∈ C∞(R3) by

η(x) :=

{
C exp( 1

|x|2−1 ), if |x| < 1,

0, if |x| > 1,

where C > 0 is a constant. Then V (x) = C − η(x) satisfies (V1) − (V4) and
K(x) = C

2 + η(x) satisfies (K1)− (K4).

Clearly, the above assumptions imply that there exists an x ∈ Ω1 such that
K(x) ≥ K(x) for all |x| ≥ R and some R > 0. Here, we denote

Ω1 := {x ∈ R3;V (x) = Vmin},Ω2 := {x ∈ R3;K(x) = Kmax := max
x∈R3

K(x)},

H := {x ∈ Ω1;K(x) = K(x)} ∪ {x 6∈ Ω1;K(x) > K(x)}.

Remark 1.2. Obviously, H 6= ∅ because x ∈ H. It is clear that H = Ω1∩Ω2 when
Ω1∩Ω2 6= ∅. For example, let V (x) = C−η(x) and K(x) = C

2 +η(x) as in Remark
1.1, then Ω1 = {0},Ω2 = {0} and H = {0}. If we set V (x) = C − η(x − x0) and
K(x) = C

2 + η(x) and x0 6= 0, we can easily see that Ω1 = {x0},Ω2 = {0} and
Ω1 ∩ Ω2 = ∅. We obtain that H = {x; |x| ≤ |x0|}.

The main result of this article reads as follows.

Theorem 1.3. (I) Assume (A1)–(A3), (A5)–(A7 hold. Then (1.1) possesses
a positive ground state solution uε for all ε > 0.

(II) Suppose (A1), (A3), (A4), (A5), (A7), (A8) are satisfied. Then
(1) uε possesses one maximum point xε such that, up to a subsequence,

xε → x0 as ε → 0, limε→0 dist(xε,H) = 0, ωε(x) := uε(εx + xε)
converges in H1(R3) to a positive ground state solution of

−
(
a+ b

∫
R3
|∇u|2dx

)
∆u+ V (x0)u = K(x0)|u|p−1u, x ∈ R3.

In particular, if Ω1 ∩ Ω2 6= ∅, then limε→0 dist(xε,Ω1 ∩ Ω2) = 0 and
ωε converges in H1(R3) to a positive ground state solution of

−
(
a+ b

∫
R3
|∇u|2dx

)
∆u+ Vminu = Kmax|u|p−1u, x ∈ R3.

(2) There exist C1, C2 > 0 such that

uε(x) ≤ C1e
−C2| x−xεε |.
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Remark 1.4. Note that (A1) and (A4) imply (A2). Also (A5) and (A8) imply
(A6).

This article is organized as follows. In Section 2, we establish some preliminary
results. Section 3 is to prove the existence of ground states. Section 4 is devoted to
the proof of Theorem 1.3. Throughout this paper we denote by → (resp. ⇀) the
strong (resp. weak) convergence. The letters C,C1, C2, . . . will be repeatedly used
to denote various positive constants whose exact values are irrelevant.

2. Preliminaries

Throughout this article by | · |r we denote the Lr-norm. On the space H1(R3)
we consider the norm

‖u‖ =
(∫

R3
(|∇u|2 + u2)dx

)1/2

.

Without loss of generality, we may assume that ε = 1, then (1.1) becomes

−
(
a+ b

∫
R3
|∇u|2dx

)
∆u+ V (x)u = K(x)|u|p−1u, x ∈ R3,

u ∈ H1(R3),
(2.1)

At this step, we see that (2.1) is variational and its weak solutions are the critical
points of the functional given by

J(u) =
a

2

∫
R3
|∇u|2dx+

1
2

∫
R3
V (x)u2dx+

b

4

(∫
R3
|∇u|2dx

)2

− 1
p+ 1

∫
R3
K(x)|u|p+1dx.

For 2 < p ≤ 3, the path γ(t) := J(tu) may not intersect with the Nehari manifold
N := {u ∈ H1(R3)\{0}; J ′(u)u = 0} for a unique t. Thus, following the idea
from [11, 16, 17, 20, 23], we will define a Nehari-Pohozaev manifold to replace the
Nehari manifold. First of all, let us introduce the Pohozaev identity in the following
Lemma.

Lemma 2.1. Assume that (A1), (A2), (A5), (A6) are satisfied. Let u ∈ H1(R3)
be a weak solution to (2.1) and p ∈ (1, 5), then we have the Pohozaev identity

P (u) : =
a

2

∫
R3
|∇u|2dx+

3
2

∫
R3
V (x)u2dx+

1
2

∫
R3
∇V (x) · xu2dx

+
b

2

(∫
R3
|∇u|2dx

)2

− 3
p+ 1

∫
R3
K(x)|u|p+1dx

− 1
p+ 1

∫
R3
∇K(x) · x|u|p+1dx = 0.

The proof of the above lemma is standard (see e.g. [3, 4]), so we omit it here.
Let us introduce the map

T : R+ → H1(R3), t 7→ ut(x) = tu(t−1x).

It is clear that t 7→ ut is indeed a continuous curve in H1(R3) by using Brezis-Lieb
Lemma (see [21]). Then we define

fu(t) : = J(ut)
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=
at3

2

∫
R3
|∇u|2dx+

t5

2

∫
R3
V (x)u2dx+

bt6

4

(∫
R3
|∇u|2dx

)2

− t4+p

p+ 1

∫
R3
K(tx)|u|p+1dx.

Obviously, fu(t) attains its maximum since 2 < p < 5. (A2) and (A6) imply that
fu(t) is continuously differentiable and

f ′u(t) : =
3at2

2

∫
R3
|∇u|2dx+

5t4

2

∫
R3
V (tx)u2dx+

t4

2

∫
R3
∇V (tx)txu2dx

+
3bt5

2

(∫
R3
|∇u|2dx

)2

− 4 + p

p+ 1
t3+p

∫
R3
K(tx)|u|p+1dx

− t3+p

p+ 1

∫
R3
∇K(tx)tx|u|p+1dx.

Denote G(u) := f ′u(1), i.e.

G(u) =
3a
2

∫
R3
|∇u|2dx+

5
2

∫
R3
V (x)u2dx+

1
2

∫
R3
∇V (x)xu2dx

+
3b
2

(∫
R3
|∇u|2dx

)2

− 4 + p

p+ 1

∫
R3
K(x)|u|p+1dx

− 1
p+ 1

∫
R3
∇K(x)x|u|p+1dx.

So we define the Nehari-Pohozaev manifold

M = {u ∈ H1(R3)\{0};G(u) = 0}.
It is clear that

G(u) = P (u) + J ′(u)u.
Then, all solutions of (2.1) belong to M . Moreover, we have the following results.

Lemma 2.2. Assume that (A1)–(A3), (A5)–(A7) hold. Let u ∈ H1(R3)\{0}, then
there is a unique t = tu > 0 such that f ′u(t) = 0, fu(·) is increasing for (0, tu) and
decreasing for (tu,∞). That is, there is a unique tu such that utu ∈M .

Proof. By making the change of variable s = t4+p, we obtain

fu(s) =
a

2
s

3
4+p

∫
R3
|∇u|2dx+

s
5

4+p

2

∫
R3
V (s

1
4+px)u2dx

+
bs

6
4+p

4

(∫
R3
|∇u|2dx

)2

− s

p+ 1

∫
R3
K(s

1
4+px)|u|p+1dx.

By (A3) and (A7), fu(s) is a concave function. We already know that attains its
maximum. Let tu be the unique point at which this maximum is achieved. Then
tu is the unique critical point of fu and fu(tu) is positive and fu(·) is increasing
for 0 < t < tu and decreasing for t > tu. In particular, for any u ∈ H1(R3)\{0},
tu ∈ R is the unique value such that utu belongs to M , and J(ut) reaches global
maximum for t = tu. This completes the proof. �

Set
m := inf

u∈M
J(u), m∗ := inf

u∈H1(R3)\{0}
max
t>0

J(ut).

By Lemma 2.2, we have m = m∗ ≥ 0.
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Lemma 2.3. There holds m > 0.

Proof. Let us define

J(u) =
a

2

∫
R3
|∇u|2dx+

1
2

∫
R3
Vminu

2dx+
b

4

(∫
R3
|∇u|2dx

)2

− 1
p+ 1

∫
R3
Kmax|u|p+1dx.

Obviously, J(u) ≤ J(u), and this implies that

m := inf
u∈H1(R3)\{0}

max
t>0

J(ut) ≤ inf
u∈H1(R3)\{0}

max
t>0

J(ut) = m.

It suffices to show that m > 0. Define

M := {u ∈ H1(R3)\{0}; g′u(1) = 0},

where gu(t) = J(ut). For any u ∈M ,

C‖u‖2H1 ≤
3a
2

∫
R3
|∇u|2dx+

5
2

∫
R3
Vminu

2dx ≤ 4 + p

p+ 1

∫
R3
Kmax|u|p+1dx ≤ C‖u‖p+1

H1 .

Thus we obtain C ≤ ‖u‖p−1
H1 . Consequently,

J(u) = J(u)− 1
p+ 4

g′u(1)

=
(p+ 1)a
2(p+ 4)

∫
R3
|∇u|2dx+

p− 1
2(p+ 4)

∫
R3
Vminu

2dx+
(p− 2)b
4(p+ 4)

(∫
R3
|∇u|2dx

)2

≥ C‖u‖2H1 ≥ C > 0.

�

Lemma 2.4. There exists C > 0 such that for any u ∈M ,

J(u) ≥ C‖u‖2H1 .

Proof. Fix t ∈ (0, 1). Then there exist δ, γ > 0 such that

V (tx) ≥ Vmin ≥ δV∞ ≥ δV (x),

K(tx) ≤ Kmax ≤ γK∞ ≤ γK(x)

for all x ∈ R3. For u ∈M , we compute

J(ut)− tλ+4J(u)

=
( t3

2
− tλ+4

2

)
a

∫
R3
|∇u|2dx+

( t6
4
− tλ+4

4

)
b
(∫

R3
|∇u|2dx

)2

+
∫

R3

( t5
2
V (tx)− tλ+4

2
V (x)

)
u2dx+

∫
R3

( tλ+4

p+ 1
K(x)− tp+4

p+ 1

)
|u|p+1dx,

where 2 < λ < p. By choosing a smaller t, if necessary, there exists ε0 > 0 such
that

t5

2
V (tx)− tλ+4

2
V (x) ≥

(
δ
t5

2
− tλ+4

2

)
V (x) ≥ ε0,

tλ+4

p+ 1
K(x)− tp+4

p+ 1
K(tx) ≥

(
tλ+4 − γtp+4

)K(x)
p+ 1

≥ 0.
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From these two inequalities and Lemma 2.2, taking a smaller ε0 > 0 if necessary,
we obtain

(1− tλ+4)J(u) ≥ J(ut)− tλ+4J(u) ≥ ε0‖u‖2H1 .

Taking C = ε0/(1− tλ+4), we complete the proof. �

3. Existence result

In this section, we combine the Nehari-Pohozaev manifold with the concentration
compactness principle to prove the existence of a ground state solution for (2.1).
Initially, we give the following concentration-compactness principle.

Lemma 3.1 ([4, Lemma 1.1]). Let {ρn} be a sequence of nonnegative L1 functions
on RN satisfying limn→∞

∫
RN ρndx = c0 > 0. There exists a subsequence, still

denoted by {ρn} satisfying one of the following three possibilities:
(i) (Vanishing) for all R > 0,

lim
n→∞

sup
y∈RN

∫
BR(yn)

ρndx = 0;

(ii) (compactness) there exists {yn} ⊂ RN such that, for any ε > 0, there exists
an R > 0 satisfying

lim
n→∞

inf
∫
BR(yn)

ρndx ≥ c0 − ε;

(iii) (Dichotomy) there exists an α ∈ (0, c0) and {yn} ⊂ RN such that, for any
ε > 0, there exists an R > 0, for all r ≥ R and r′ ≥ R,

lim
n→∞

sup
(∣∣α− ∫

Bryn

ρn dx
∣∣+
∣∣(c0 − α)−

∫
RN\Br′ (yn)

ρn dx
∣∣) < ε;

Lemma 3.2 ([21, Lemma 1.21]). Let r > 0 and 2 ≤ q < 2∗. If {un} is bounded in
H1(RN ) and

sup
y∈RN

∫
Br(y)

|un|qdx→ 0, as n→ +∞,

then un → 0 in Ls(RN ) for 2 < s < 2∗.

Lemma 3.3. Let {un} ⊂ M be a minimizing sequence for m. Then there exists
{yn} ⊂ R3 such that for any ε > 0, there exists an R > 0 satisfying∫

R3\BR(yn)

(|∇un|2 + |un|2)dx ≤ ε.

Proof. First, we claim that
∫

R3 |un|p+1dx 9 0, as n→∞. Indeed, since m > 0, it
is easy to obtain that ‖un‖H1 9 0 by the Sobolev embedding theorem. By Lemma
2.2, for any t > 1,

m←J(un) ≥ J((un)t) (3.1)

=
at3

2

∫
R3
|∇un|2dx+

t5

2

∫
R3
V (x)u2

ndx+
bt6

4

(∫
R3
|∇un|2dx

)2

(3.2)

− t4+p

p+ 1

∫
R3
K(tx)|un|p+1dx (3.3)

≥ t3

2

∫
R3

(a|∇un|2 + Vminu
2
n)dx− tp+4

p+ 1
Kmax

∫
R3
|un|p+1dx (3.4)
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≥ t3

2
σ − tp+4

p+ 1
Kmax

∫
R3
|un|p+1dx, (3.5)

where σ is a fixed constant. It suffices to take t > 1 so that t3σ
2 > 2m to get a lower

bound for
∫

R3 |un|p+1dx.
Let us assume that

lim
n→∞

∫
R3
|un|p+1dx→ A ∈ (0,+∞). (3.6)

By Lemma 3.2, we obtain that there exist δ > 0 and {xn} ⊂ R3 such that∫
B(xn)

|un|p+1dx > δ > 0.

Take R > max{1, ε−1}, φR(t) a smooth function such that
• φR(t) = 1 for 0 ≤ t ≤ R.
• φR(t) = 0 for t ≥ 2R.
• φ′R(t) ≤ 2/R.

Write

un(x) = φR(|x− xn|)un(x) + (1− φR(|x− xn|))un(x) := vn + ωn.

Then
lim
n→∞

∫
BR(xn)

|vn|p+1dx ≥ δ. (3.7)

To complete the proof, we only need to prove that there exist constants C > 0
independent of ε and n0 = n0(ε) such that ‖ωn‖H1 ≤ Cε for all n ≥ n0.

Define zn = un(·+xn), and then zn ⇀ z weakly in H1(R3). By taking a larger R,
if necessary, we can assume that

∫
A0(R,2R)

|z|p+1dx < ε, where A0(R, 2R) denotes
the annulus centered in 0 with radii R and 2R. Then, for n large enough, we have∣∣∣ ∫

R3
K(tx)(|un|p+1 − |vn|p+1 − |ωn|p+1)dx

∣∣∣ ≤ Cε. (3.8)

Since |∇zn|2 is uniformly bounded in L1(R3), up to a subsequence, |∇zn|2 converges
(in the sense of measure) to a certain positive measure µ with µ(R3) < +∞. By
enlarging R necessary, we can assume that µ(A0(R, 2R)) < ε. Then, for n large
enough, ∫

R3
|∇un|2φR(|x− xn|)(1− φR(|x− xn|))dx < ε.

Taking this into account, direct calculations show that for n large enough,∣∣∣ ∫
R3
|∇un|2dx−

∫
R3
|∇vn|2dx−

∫
R3
|∇ωn|2dx

∣∣∣ =
∣∣∣2 ∫

R3
∇vn∇ωndx

∣∣∣ ≤ Cε, (3.9)

and thus(∫
R3
|∇un|2dx

)2

=
(∫

R3
|∇vn|2dx+

∫
R3
|∇ωn|2dx+ Cε

)2

=
(∫

R3
|∇vn|2dx

)2

+
(∫

R3
|∇ωn|2dx

)2

+ 2
∫

R3
|∇vn|2dx

∫
R3
|∇ωn|2dx+ Cε

≥
(∫

R3
|∇vn|2dx

)2

+
(∫

R3
|∇ωn|2dx

)2

+ Cε.
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Arguing as before, for R large enough, we obtain∣∣∣ ∫
R3
V (tx)u2

ndx−
∫

R3
V (tx)v2

ndx−
∫

R3
V (tx)ω2

ndx
∣∣∣ ≤ Cε. (3.10)

Putting together (3.8)-(3.10) we obtain that for n sufficient large and t > 0,

J((un)t) ≥ J((vn)t) + J((ωn)t)− Cε. (3.11)

Now let us denote with tvn and tωn the positive values which maximize fvn(t) and
fωn(t) respectively, namely,

J((vn)tvn ) = max
t>0

J((vn)t) and J((ωn)tωn ) = max
t>0

J((ωn)t).

Let us assume that tvn ≤ tωn(the other case will be treated later). Then

J((ωn)t) ≥ 0 for t ≤ tvn .

We claim that there exist 0 < t̃ < 1 < t independent of ε such that tvn ∈ (t̃, t).
Indeed, take t = (2(p + 1)(KmaxA)−1B)

1
p−2 , where A comes from (3.6) and B is

large enough such that t > 1 and moreover,

B ≥ a
∫

R3
|∇un|2dx+

∫
R3
V∞|un|2dx+ b

(∫
R3
|∇un|2dx

)2

.

Then

J((un)t) ≤
t
6

2

(
a

∫
R3
|∇un|2dx+

∫
R3
V∞|un|2dx+ b

(∫
R3
|∇un|2dx

)2

− t
p−2

p+ 1

∫
R3
Kmax|un|p+1dx

)
≤ −B t

6

2
< 0.

Taking a smaller ε in (3.11), we obtain

J((vn)t) + J((ωn)t) < 0.

Then J((vn)t) < 0 or J((ωn)t) < 0. In any case, Lemma 2.2 implies that tvn < t
(recall that we are assuming tvn ≤ tωn).

For the lower bound, take t̃ =
(
m
B

) 1
3 . Let us point out that t̃ < 1. For any t ≤ t̃,

J((un)t) ≤
t̃3

2

(
a

∫
R3
|∇un|2dx+

∫
R3
V∞|un|2dx+ b

(∫
R3
|∇un|2dx

)2)
≤ m

2
.

Since

m← J(un) ≥ J((un)tvn ) ≥ J((vn)tvn ) + J((ωn)tvn )− cε ≥ m− Cε (3.12)

and the right hand side can be made greater than m
2 by choosing a small ε, we

conclude that tvn > t̃ and the claim is proved.
Using (3.12) we deduce, for n large, J((ωn)t) ≤ 2Cε for all t ∈ (0, tvn). Moreover,

for any t ∈ (0, t̃), we have

2Cε ≥ J((ωn)t)

≥ t6

4

(
a

∫
R3
|∇ωn|2dx+

∫
R3
Vminω

2
ndx+ b

(∫
R3
|∇un|2dx

)2)
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− tp+4

p+ 1

∫
R3
Kmax|ωn|p+1dx

≥ t6

4
qn −Dtp+4,

where

qn = a

∫
R3
|∇ωn|2dx+

∫
R3
Vminω

2
ndx+ b

(∫
R3
|∇un|2dx

)2

and D > A. Observe that
t6

4
qn −Dtp+4 =

(p+ 2)D
2

( qn
2(p+ 4)D

)p+4

for t =
( qn

2(p+ 4)D

) 1
p−2

.

By taking a large D we can assume that
(

qn
2(p+4)D

) 1
p−2 ≤ t̃. With this choice of t,

we obtain

2Cε ≥ J((ωn)t) ≥
(p+ 2)D

2

( qn
2(p+ 4)D

)p+4

≥ Cqp+4
n .

Thus we have
‖ωn‖H1 ≤ Cε for some C > 0. (3.13)

In the case tvn > tωn , we can assume analogously to conclude that ‖vn‖H1 ≤ Cε
for some C > 0. But, choosing small ε, this contradicts (3.7), so (3.13) holds. This
completes the proof. �

Lemma 3.4. The value m is achieved at some u ∈M .

Proof. Recall that zn ⇀ z in H1(R3), we have zn → z in Lqloc(R3) for 1 < q < 6.
Thus, by (3.7), we obtain

δ < lim inf
n→∞

∫
R3
|vn|p+1dx ≤ lim

n→∞

∫
B2R

|zn|p+1dx =
∫
B2R

|z|p+1dx.

Recall also that un = vn + ωn with ‖ωn‖H1 ≤ Cε, we have∫
R3
|u2
n − v2

n|dx ≤
∫

R3
|ωn|(|un|+ |vn|)dx

≤
(∫

R3
ω2
ndx

)1/2(∫
R3

(|un|+ |vn|)2dx
)1/2

≤ Cε.

On the other hand,∫
R3
v2
ndx ≤

∫
B2R

z2
ndx→

∫
B2R

z2dx ≤
∫

R3
z2dx.

Then we obtain

lim inf
n→∞

∫
R3
z2
ndx = lim inf

n→∞

∫
R3
u2
ndx ≤

∫
R3
z2dx+ Cε.

Since ε is arbitrary, we obtain that zn → z in L2(R3) and, by interpolation, zn → z
in Lq(R3) for all q ∈ [2, 6). We discuss two cases:
Case 1: {xn} is bounded. Assume, passing to a subsequence, that xn → x0. In this
case un ⇀ u weakly in H1(R3) and un → u strongly in Lq(R3) for any q ∈ [2, 6),
where u = z(· − x0). Recall the expression of J((un)t), we have

m = lim
n→∞

J(un) ≥ lim inf
n→∞

J((un)t) ≥ J(ut), for any t > 0.
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Therefore, maxt≥0 J(ut) = m and un → u in H1(R3). In particular, u ∈ M is a
minimizer of J |M .
Case 2: {xn} is unbounded. In this case, by Lebesgue convergence Theorem and
(A1), we have

lim
n→∞

∫
R3
V (tx)(un(x))2

tdx = lim
n→∞

∫
R3
V (t(x+ xn))(zn(x))2

tdx

= V∞

∫
R3
z2
t dx ≥

∫
R3
V (tx)z2

t dx

= lim
n→∞

∫
R3
V (tx))(zn(x))2

tdx

for any t > 0 fixed. Moreover,

lim
n→∞

∫
R3
K(tx)|un(x))t|p+1dx = lim

n→∞

∫
R3
K(t(x+ xn))|(zn(x))t|p+1dx

= K∞

∫
R3
|zt|p+1dx

≤ lim
n→∞

∫
R3
K(tx))|(zn(x))t|p+1dx

for any t > 0 fixed. Therefore,

m = lim
n→∞

J(un) ≥ lim inf
n→∞

J((zn)t) ≥ J(zt), for any t > 0.

So, taking tz so that fz(t) = J(zt) reaches its maximum, we obtain that ztz ∈ M
and is a minimizer for J |M . �

Theorem 3.5. The minimizer u of J |M is a positive ground state solution of (2.1).

Proof. Let u ∈M be a minimizer of the functional J |M . We will prove that u is a
positive ground state solution of (P ) in the following. Recall that, by Lemma 2.2,

J(u) = inf
u∈H1(R3)\{0}

max
t>0

J(ut) = m.

We argue by contradiction. Suppose that u is not a weak solution of (2.1). Then
we can choose φ ∈ C∞0 (R3) such that

〈J ′(u), φ〉 = a

∫
R3
∇u∇φdx+

∫
R3
V (x)uφdx+ b

∫
R3
|∇u|2dx

∫
R3
∇u∇φdx

−
∫

R3
K(x)|u|p−1uφdx < −1.

We fix ε > 0 sufficiently small such that

〈J ′(ut + σφ), φ〉 ≤ −1
2
, ∀|t− 1|, |σ| ≤ ε.

and introduce a cutoff function 0 ≤ η ≤ 1 such that η(t) = 1 for |t − 1| ≤ ε
2 and

η(t) = 0 for |t− 1| ≥ ε. Set

γ(t) =

{
ut, if |t− 1| ≥ ε,
ut + εη(t)φ, if |t− 1| < ε.

Note that γ(t) is a continuous curve in H1(R3) and, eventually choosing a smaller
ε, we obtain that ‖γ(t)‖H1 > 0 for |t− 1| < ε.
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We claim supt≥0 J(γ(t)) < m. Indeed, if |t − 1| ≥ ε, then J(γ(t)) = J(ut) <
J(u) = m. If |t − 1| < ε, by using the mean value theorem to the C1 map [0, ε] 3
σ 7→ J(ut + εη(t)φ) ∈ R, we find, for a suitable σ ∈ (0, ε),

J(ut + εη(t)φ) = J(ut) + 〈J(ut + σεη(t)φ), η(t)φ〉 ≤ J(ut)−
1
2
η(t) < m.

Observe that G(γ(1− ε)) > 0 and G(γ(1 + ε)) < 0, there exists t0 ∈ (1− ε, 1 + ε)
such that G(γ(t0)) = 0, i.e., γ(t0) = ut0 +εη(t0)φ ∈M and J(γ(t0)) < m, this gives
the desired contradiction. We have proved that the minimizer of J |M is a solution.
Since any solution of (2.1) belongs to M , the minimizer is a ground state.

Moreover, consider u ∈ M is a minimizer for J |M . Then |u| ∈ M is also a
minimizer, and hence a solution. By the maximum principle, |u| > 0. �

4. Concentration behavior

In this section, we study the concentration behavior of the ground state solutions
uε as ε → 0. From now on, we assume (A1), (A3), (A4), (A5), (A7), (A8) are
satisfied. Introducing the re-scaled transformation x 7→ εx we can rewrite (1.1) as

−
(
a+ b

∫
R3
|∇u|2dx

)
∆u+ V (εx)u = K(εx)|u|p−1u, x ∈ R3,

u ∈ H1(R3),
(4.1)

Let

Jε(u) =
a

2

∫
R3
|∇u|2dx+

1
2

∫
R3
V (εx)u2dx+

b

4

(∫
R3
|∇u|2dx

)2

− 1
p+ 1

∫
R3
K(εx)|u|p+1dx

be the associated energy functional, Pε(u),

Mε := {u ∈ H1(R3);Gε(u) = Pε(u) + 〈J ′ε(u), u〉 = 0}
and mε = infu∈Mε

Jε(u) be the corresponding Pohozaev identity, the Nehari-
Pohozaev manifold and the least energy, respectively. We need the following con-
stant coefficients problem

−
(
a+ b

∫
R3
|∇u|2dx

)
∆u+ λu = µ|u|p−1u, x ∈ R3,

u ∈ H1(R3),
(4.2)

where λ, µ > 0. In the same way, we use the notations Jλµ, Pλµ,Mλµ, Gλµ and mλµ.
In a similar way to Section 3, there exists some u ∈Mλµ such that Jλµ(u) = mλµ.

Lemma 4.1. Suppose λ1 ≥ λ2 and µ2 ≥ µ1. Then mλ1µ1 ≥ mλ2µ2 is achieved at
some u ∈M .

Proof. Let u ∈ Mλ1µ1 be such that mλ1µ1 = Jλ1µ1(u) = maxt>0 Jλ1µ1(ut). Then
there exists a unique tλ2µ2 such that utλ2µ2

∈Mλ2µ2 , and hence

mλ1µ1 = Jλ1µ1(u)

≥ Jλ1µ1(utλ2µ2
)

= Jλ2µ2(utλ2µ2
) +

(λ1 − λ2)(tλ2µ2)5

2

∫
R3
|utλ2µ2

|2dx
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+
(µ1 − µ2)(tλ2µ2)p+4

p+ 1

∫
R3
|utλ2µ2

|p+1dx

≥ mλ1µ1 .

�

Without loss of generality, up to translation, we assume that

K(x) = max
x∈Ω1

K(x) and x = 0 ∈ Ω1.

Thus
V (0) = Vmin and k := K(0) ≥ K(x) for all |x| ≥ R.

Lemma 4.2. There exists C > 0 independent of ε such that mε ≥ C. On the other
hand, lim supε→0mε ≤ mVmink.

Proof. Since mε ≥ mVminKmax > 0, we only need to prove the second part. Take
u ∈MVmink satisfying JVmink(u) = mVmink. By Lemma 2.2, we know that there is a
unique tε > 0 such that utε ∈Mε and

mε ≤ max
t>0

Jε(ut)

=
at3ε
2

∫
R3
|∇u|2dx+

t5ε
2

∫
R3
V (tεεx)u2dx

+
bt6ε
4

(∫
R3
|∇u|2dx

)2

− t4+p
ε

p+ 1

∫
R3
K(tεεx)|u|p+1dx.

(4.3)

This combining with mε > 0, we have {tε} is bounded with respect to ε. For each
ε > 0, there exists an R > 0 such that∣∣ ∫

|x|>R
(V (tεεx)− Vmin)u2dx

∣∣ < ε. (4.4)

Since 0 ∈ Ω1, we obtain

lim
ε→0

∣∣ ∫
|x|≤R

(V (tεεx)− Vmin)u2dx
∣∣ = 0. (4.5)

Similarly, there holds

lim
ε→0

∫
R3

(K(tεεx)− k)|u|p+1dx = 0. (4.6)

From (4.3)-(4.6), we can draw the conclusion that

mε ≤ Jε(utε) = JVmink(utε) + o(1) ≤ JVmink(u) + o(1) = mVmink + o(1).

Thus
lim sup
ε→0

mε ≤ mVmink.

�

Let vε be the ground state solution of (4.1).

Lemma 4.3. There exists ε∗ > 0 such that, for all ε ∈ (0, ε∗), there exist yε ∈ R3

and R,C > 0 such that ∫
BR(yε)

v2
εdx > C.
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Proof. Suppose by contradiction that there is a sequence εn → 0 as n → ∞ such
that for all R > 0,

lim
ε→0

sup
y∈R3

∫
BR(yε)

v2
εdx = 0.

From Lemma 3.2, we can deduce that vεn → 0 in Lq(R3) for q ∈ (2, 6). Since

mεn = Jεn(vεn)− 1
2
〈J ′εn(vεn), vεn〉

= − b
4

(∫
R3
|∇vεn |2dx

)2

+
(1

2
− 1
p+ 1

∫
R3
K(εnx)|vεn |p+1dx

)
.

Letting n→∞, we have

0 < lim inf
ε→0

mεn = − lim inf
ε→0

b

4

(∫
R3
|∇vεn |2dx

)2

≤ 0.

Which is absurd. �

We denote
ωε(x) := vε(x+ yε) = uε(εx+ εyε).

So ωε is a positive ground state solution to

−
(
a+ b

∫
R3
|∇u|2dx

)
∆u+ V (εx+ εyε)u = K(εx+ εyε)|u|p−1u, x ∈ R3,

u ∈ H1(R3),
(4.7)

Denote the corresponding energy functional by Φε. Set φ(ωε) = Φ′ε((ωε)t)|t=1.
Thus

φ(ωε) =
3a
2

∫
R3
|∇ωε|2dx+

5
2

∫
R3
V (εx+ εyε)ω2

εdx+
1
2

∫
R3
∇V (εx+ εyε)εxω2

εdx

+
3b
2

(∫
R3
|∇ωε|2dx

)2

− 4 + p

p+ 1

∫
R3
K(εx+ εyε)|ωε|p+1dx

− 1
p+ 1

∫
R3
∇K(εx+ εyε)εx|ωε|p+1dx = 0.

Lemma 4.4. The sequence {εyε} is bounded.

Proof. It is easy to know that {ωε} is bounded in H1(R3). We may assume that

ωε ⇀ ω0 ≥ 0 in H1(R3).

It follows from Lemma 4.3 that ω0 6≡ 0.
Suppose to the contrary that, after passing to a subsequence,

|εyε| → ∞.
Clearly, we have V (εyε)→ V∞ and K(εyε)→ K∞ as ε→ 0. Thus ω0 is a solution
of

− (a+ bA)∆u+ V∞u = K∞|u|p−1u, x ∈ R3, (4.8)
where A = limε→0

∫
R3 |∇ωε|2dx. Similarly as Lemma 2.1, we have the Pohozaev

identity

PA,∞(ω0) :=
a+ bA

2

∫
R3
|∇ω0|2dx−

3K∞
p+ 1

∫
R3
|ω0|p+1dx+

3V∞
2

∫
R3
|ω0|2dx = 0.

Let us define

gω0(t) : = I∞((ω0)t)
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=
a+ bA

2
t3
∫

R3
|∇ω0|2dx+

t5

2

∫
R3
V∞ω

2
0dx−

t4+p

p+ 1

∫
R3
∇K∞|ω0|p+1dx

= 0,

where I∞ is the energy functional associated to (4.8). Obviously, gω0(t) attains its
unique maximum since 2 < p < 5. Moreover,

g′ω0
(1) = PA,∞(ω0) + 〈I ′∞(ω0), ω0〉 = 0.

Recall the definition of MV∞K∞ and
∫

R3 |∇ω0|2dx ≤ A, it is easy to obtain that
there exists a unique t0 ≤ 1 such that (ω0)t0 ∈MV∞K∞ . It follows from (A4), (A8)
and the Lebesgue’s dominated theorem that

lim sup
ε→0

mε

= lim sup
ε→0

Φε(ωε)−
1

p+ 4
φ(ωε)

= lim sup
ε→0

p+ 1
2(p+ 4)

a

∫
R3
|∇ωε|2dx+

p− 1
2(p+ 4)

∫
R3
V (εx+ εyε)ω2

εdx

+
p− 2

4(p+ 4)
b
(∫

R3
|∇ωε|2dx

)2

− 1
2(p+ 4)

∫
R3
∇V (εx+ εyε)εxω2

εdx

+
1

(p+ 1)(p+ 4)

∫
R3
∇K(εx+ εyε)εx|ωε|p+1dx

≥ lim inf
ε→0

p+ 1
2(p+ 4)

a

∫
R3
|∇ωε|2dx+

p− 1
2(p+ 4)

∫
R3
V (εx+ εyε)ω2

εdx

+
p− 2

4(p+ 4)
b
(∫

R3
|∇ωε|2dx

)2

≥ lim inf
ε→0

t30
p+ 1

2(p+ 4)
a

∫
R3
|∇ωε|2dx+ t50

p− 1
2(p+ 4)

∫
R3
V∞ω

2
εdx

+ t60
p− 2

4(p+ 4)
b
(∫

R3
|∇ωε|2dx

)2

≥ t30
p+ 1

2(p+ 4)
a

∫
R3
|∇ω0|2dx+ t50

p− 1
2(p+ 4)

∫
R3
V∞ω

2
0dx

+ t60
p− 2

4(p+ 4)
b

(∫
R3
|∇ω0|2dx

)2

= JV∞K∞ ((ω0)t0)− 1
p+ 4

GV∞K∞ ((ω0)t0)

= JV∞K∞ ((ω0)t0) ≥ mV∞K∞ .

(4.9)

Therefore,
mVmink < mV∞K∞ ≤ lim sup

ε→0
mε ≤ mVmink .

This is a contradiction. Thus {εyε} is bounded. �

For the rest of this article, we assume that

εyε → x0 ∈ R3.

Lemma 4.5. We have
lim
ε→0

dist(εyε,H) = 0.



16 H. FAN EJDE-2016/05

Proof. It suffices to show that x0 ∈ H. Suppose to the contrary that x0 6∈ H.
Denote

A := {x ∈ Ω1;K(x) = max
x∈Ω1

K(x)}, B := {x 6∈ Ω1;K(x) > K(x)}.

We see that x0 ∈ (Ω1\A)∪ (Ωc1\B). As mentioned early, we may assume x = 0 and
K(0) = maxx∈Ω1 K(x) = k. When x0 ∈ Ω1\A, then V (x0) = Vmin and K(x0) < k,
so we obtain that mVmink < mV (x0)K(x0). Similarly, for x0 ∈ Ωc1\B, we can have
the same results. Using the same proof of (4.9) implies that

lim sup
ε→0

mε ≤ mVmink < mV (x0)K(x0) ≤ lim sup
ε→0

mε,

which is impossible. �

Lemma 4.6. We have ωε → ω0 in H1(R3).

Proof. Using a proof similar the one of Lemma 4.2, we can obtain lim supε→0mε ≤
mV (x0)K(x0). Moreover, the same as the proof of Lemma 4.4 shows that there exists
0 < t0 ≤ 1 such that (ω0)t0 ∈MV (x0)K(x0). Therefore, we have

mV (x0)K(x0) ≤ JV (x0)K(x0)((ω0)t0)

= JV (x0)K(x0)((ω0)t0)− 1
p+ 4

GV (x0)K(x0)((ω0)t0)

≥ t30
p+ 1

2(p+ 4)
a

∫
R3
|∇ω0|2dx+ t50

p− 1
2(p+ 4)

∫
R3
V (x0)ω2

0dx

+ t60
p− 2

4(p+ 4)
b
(∫

R3
|∇ω0|2dx

)2

≤ p+ 1
2(p+ 4)

a

∫
R3
|∇ω0|2dx+

p− 1
2(p+ 4)

∫
R3
V (x0)ω2

0dx

+
p− 2

4(p+ 4)
b
(∫

R3
|∇ω0|2dx

)2

≤ lim inf
ε→0

p+ 1
2(p+ 4)

a

∫
R3
|∇ωε|2dx+

p− 1
2(p+ 4)

∫
R3
V (x0)ω2

εdx

+
p− 2

4(p+ 4)
b
(∫

R3
|∇ωε|2dx

)2

≤ lim inf
ε→0

Φε(ωε)−
1

p+ 4
φ(ωε)

≤ lim sup
ε→0

mε ≤ mV (x0)K(x0).

Consequently, the above inequalities must be equalities, and hence

lim
ε→0

p+ 1
2(p+ 4)

a

∫
R3
|∇ωε|2dx+

p− 1
2(p+ 4)

∫
R3
V (x0)ω2

εdx

=
p+ 1

2(p+ 4)
a

∫
R3
|∇ω0|2dx+

p− 1
2(p+ 4)

∫
R3
V (x0)ω2

0dx.

The proof is complete. �

Using almost the same argument as that of [14, Lemma 4.5] we can show the
following result.
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Lemma 4.7. There exist constants C1, C2 > 0 such that

ωε(x) ≤ C1e
−C2|x|.

for all x ∈ R3.

Proof of Theorem 1.3. Let δε be the global maximum of ωε. By Lemma 4.7, we
see that δε ∈ BR(0) for some R > 0. Thus the global maximum of vε, given by
zε = yε + δε, satisfies εzε = εyε + εδε. Note that uε(x) = (x/ε), then we see
that uε(x) is positive ground state solution to (1.1) with ε > 0 and has a global
maximum point xε = εzε. Since {δε} is bounded, it follows from (4.7) and Lemma
4.5 that εzε → x0 and limε→0 dist(εzε,H) = 0. In particular, if Ω1 ∩ Ω2 6= ∅, then
limε→0 dist(εzε,Ω1 ∩Ω2) = 0. Moreover, since ωε is a (PS)mV (x0)K(x0) sequence for
JmV (x0)K(x0) and ωε → ω0 in H1(R3), we deduce that ω0 is a positive ground state
solution of

−
(
a+ b

∫
R3
|∇u|2dx

)
∆u+ V (x0)u = K(x0)|u|p−1u, x ∈ R3,

u ∈ H1(R3),

In particular, if Ω1 ∩ Ω2 6= ∅, we have V (x0) = Vmin, K(x0) = Kmax and ω0 is a
positive ground state solution of

−
(
a+ b

∫
R3
|∇u|2dx

)
∆u+ Vminu = Kmax|u|p−1u, x ∈ R3,

u ∈ H1(R3),

In view of the definition of vε, from Lemma 4.7 we obtain

uε(x) = vε(
x

ε
) = ωε(ε−1x− yε) = ωε(ε−1x− ε−1xε + δε) ≤ C1e

−C2| x−xεε |.

The proof is complete. �
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