
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 02, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

EXISTENCE AND EXPONENTIAL STABILITY OF
ANTI-PERIODIC SOLUTIONS IN CELLULAR NEURAL

NETWORKS WITH TIME-VARYING DELAYS AND
IMPULSIVE EFFECTS

CHANGJIN XU

Abstract. In this article we study a cellular neural network with impulsive

effects. By using differential inequality techniques, we obtain verifiable crite-
ria on the existence and exponential stability of anti-periodic solutions. An

example is included to illustrate the feasibility and of our main results.

1. Introduction

Because of the wide range of applications in neurobiology, image processing, evo-
lutionary theory, pattern recognition and optimization and so on, cellular neural
networks have attracted much attention in recent years [9]. It is well known that im-
pulsive differential equations are mathematical apparatus for simulation of process
and phenomena observed in control theory, physics, chemistry, population dynam-
ics, biotechnologies, industrial robotics, economics, etc. [3, 18, 35]. Therefore many
results on the existence and stability of an equilibrium point of cellular neural net-
works with impulses have been reported (see [14, 16, 17, 29, 39, 41, 42, 44, 52]). In
applied sciences, the existence of anti-periodic solutions plays a key role in charac-
terizing the behavior of nonlinear differential equations [11, 21, 22, 36]. For example,
high-order Hopfield neural networks can be analog voltage transmission, and voltage
transmission process can be described as an anti-periodic process [30], anti-periodic
trigonometric polynomials play an important role in interpolation problems [10],
and anti-periodic wavelets were investigated in [7], in neural networks, the global
stable anti-periodic solution can reveal the characteristic and stability of signal [37].
Recently, there are some papers that deal with the problem of existence and stabil-
ity of anti-periodic solutions (see [1, 2, 8, 12, 13, 15, 19, 23, 24, 25, 26, 28, 30, 31, 32,
33, 34, 38, 40, 50, 51]). In addition, we know that many evolutionary processes ex-
hibit impulsive effects which are usually subject to short time perturbations whose
durations may be neglected in comparison with durations of the processes [38].
This motivates us to consider the existence and stability of anti-periodic solutions
for cellular neural networks with impulses. To the best of our knowledge, very few
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authors have focused on the problems of anti-periodic solutions for such impulsive
cellular neural networks. In this paper, we consider the anti-periodic solution of
the following cellular neural network with delays and impulses

ẋi(t) = −ci(t)xi(t) +
n∑
j=1

aij(t)fj(xj(t)) +
n∑
j=1

bij(t)fj(xj(t− τij(t))) + ui(t),

t 6= tk, (1.1)

xi(t+k ) = (1 + δik)xi(tk), k = 1, 2, . . . ,

where i = 1, 2, . . . , n,xi(t) represent the state vector of the ith unit at time t,
ci, aij , bij , fjgj , ui, τij are continuous functions on R, ci > 0, aij are the connection
weights between ith unit and jth unit at time t, bij is the connection weights
between ith unit and jth unit at time t− τij , fj and gj are the activation function,
ui are external input to the ith unit, τij are the time varying delay and satisfy
0 ≤ τij ≤ τ , τ is a positive constant, tk are the impulsive moments and satisfy
0 < t1 < t2 < · · · < tk < . . . , limk→∞ tk = ∞, δik characterize the impulsive at
jumps at time tk for ith unit.

The main purpose of this article is to give the sufficient conditions of existence
and exponential stability of anti-periodic solution of system (1.1). Some new suffi-
cient conditions for the existence, unique and exponential stability of anti-periodic
solutions of system (1.1) are established. Our results not only can be applied di-
rectly to many concrete examples of cellular neural networks, but also extend, to a
certain extent, the results in some previously known ones. In addition, an example
is presented to illustrate the effectiveness of our main results.

For convenience, we introduce the following notation

a+
ij = sup

t∈R
|aij(t)|, b+ij = sup

t∈R
|bij(t)|, u+

i = sup
t∈R
|ui(t)|,

c−i = min
t∈R
|ci(t)|, τ = sup

t∈R
max

1≤i,j≤n
{τij(t)}.

We assume the following hypothesis:

(H1) For i, j = 1, 2, . . . , n, aij , bij , ui, fj , gj : R → R, ci, τij : R → [0,+∞) are
continuous functions, and there exist a constant T > 0 such that

ci(t+ T ) = ci(t), τij(t+ T ) = τij(t), ui(t+ T ) = −ui(t),
aij(t+ T )fj(u) = −aij(t)fj(−u), bij(t+ T )gj(u) = −bij(t)gj(−u),

for all t, u ∈ R.
(H2) For each j ∈ {1, 2, . . . , n}, the activation function fj : R→ R is continuous

and there exists an nonnegative constant Lfj such that

fj(0) = 0, |fj(u)− fj(v)| ≤ Lfj |u− v|

for all u, v ∈ R.
(H3)

∏
0≤tk<t(1 + δik) (i = 1, 2, . . . , n, k = 1, 2, . . . ) are periodic functions of

period T and δik > −1.
(H4) For i = 1, 2, . . . , n, k = 1, 2, . . . , there exist positive constants m and M

such that m ≤
∏

0≤tk<t(1 + δik) ≤M .
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(H5) There exist constants η > 0, λ > 0, i = 1, 2, . . . , n, such that for all t > 0,

λ− c−i +
M

m

[ n∑
j=1

(a+
ij + b+ij)L

f
j

]
eλτ < −η < 0.

Let x = (x1, x2, . . . , xn)T ∈ Rn, in which “T” denotes the transposition.
We define |x| = (|x1|, |x2|, . . . , |xn|)T and ‖x‖ = max1≤i≤n |xi|. Obviously,
the solution x(t) = (x1(t), x2(t), . . . , xn(t))T of (1.1) has components xi(t)
piece-wise continuous on (−τ,+∞), x(t) is differentiable on the open inter-
vals (tk−1, tk) and x(t+k ) exists.

Definition 1.1. Let u(t) : R→ R be piece-wise continuous function having count-
able number of discontinuous {tk}|+∞k=1 of the first kind. It is said to be T -anti-
periodic on R if

u(t+ T ) = −u(t), t 6= tk,

u((tk + T )+) = −u(t+k ), k = 1, 2, . . . .

Definition 1.2. Let x∗(t) =
(
x∗1(t), x∗2(t), . . . , x∗n(t)

)T be an anti-periodic solution
of (1.1) with initial value ϕ∗ = (ϕ∗1(t), ϕ∗2(t), . . . , ϕ∗n(t))T . If there exist constants
λ > 0 and M > 1 such that for every solution x(t) = (x1(t), x2(t), . . . , xn(t))T of
(1.1) with an initial value ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T ,

|xi(t)− x∗i (t)| ≤M‖ϕ− ϕ∗‖e−λt, for all t > 0, i = 1, 2, . . . , n,

where
‖ϕ− ϕ∗‖ = sup

−τ≤s≤0
max

1≤i≤n
|ϕi(s)− ϕ∗i (s)|.

Then x∗(t) is said to be globally exponentially stable.

The rest of this article is organized as follows. In the next section, we give
some preliminary results. In Section 3, we derive the existence of T -anti-periodic
solution, which is globally exponential stable. In Section 4, we present an example
to illustrate the effectiveness of our main results.

2. Preliminaries

In this section, we firstly establish a fundamental theorem that enable us to re-
duce the existence of solution of system (1.1) to the corresponding problem for a de-
layed differential equation without impulses. Consider the following non-impulsive
delayed differential system

ẏi(t) = −ci(t)yi(t) +
∏

0≤tk<t

(1 + δik)−1
[ n∑
j=1

aij(t)fj
( ∏

0≤tk<t

(1 + δjk)yj(t)
)

+
n∑
j=1

bij(t)fj
( ∏

0≤tk<t−τij(t)

(1 + δjk)yj(t− τij(t))
)]

+
∏

0≤tk<t

(1 + δik)−1ui(t), t > 0

(2.1)

with initial condition yi(s) = ϕi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n.
In this section, we present three important lemmas which are used to prove our

main results in Section 3.
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Lemma 2.1. Assume that (H3) holds. (i) If y = (y1, y2, . . . , yn) is a solution of
(2.1), then

x =
( ∏

0≤tk<t

(1 + δik)y1,
∏

0≤tk<t

(1 + δik)y2, . . . ,
∏

0≤tk<t

(1 + δik)yn
)

is a solution of (2.1).
(ii) If x = (x1, x2, . . . , xn) is a solution of (1.1), then

y =
( ∏

0≤tk<t

(1 + δik)−1x1,
∏

0≤tk<t

(1 + δik)−1x2, . . . ,
∏

0≤tk<t

(1 + δik)−1xn

)
is a solution of (2.1).

The proof of the above lemma is similar to that in Li et al [20]. We omit it here.

Lemma 2.2. Let (H1)–(H4) hold. Suppose that y(t) = (y1(t), y2(t), . . . , yn(t))T is
a solution of (2.1) with initial conditions

yi(s) = ϕi(s), |ϕi(s)| < γ, s ∈ [−τ, 0], i = 1, 2, . . . , n. (2.2)

Then
|yi(t)| < γ, ∀t ≥ 0, i = 1, 2, . . . , n, (2.3)

where

γ >
u+
i

mc−i −M
[∑n

j=1(a+
ij − b

+
ij)L

f
j

] , (2.4)

c−i >
M

m

[ n∑
j=1

(a+
ij − b

+
ij)L

f
j

]
.

Proof. For any given initial condition, hypotheses (H2) and (H4) guarantee the
existence and unique of y(t), the solution to (2.1) in [−τ,+∞). By way of contra-
diction, we assume that (2.3) does not hold. Then there must exist i ∈ {1, 2, . . . , n}
and θ0 > 0 such that

|yi(θ0)| = γ, |yj(θ0)| < γ for all t ∈ (−τ, θ0), j = 1, 2, . . . , n. (2.5)

By computing the upper left derivative of |yi(t)|, together with the assumptions
(2.3), (2.4), (2.5), (H2) and (H4), we have

0 ≤ D+(|yi(θ0)|)

≤ −ci(θ0)|yi(θ0)|+
∣∣∣ ∏
0≤tk<θ0

(1 + δik)−1
[ n∑
j=1

aij(θ0)fj
( ∏

0≤tk<θ0

(1 + δjk)yj(θ0)
)

+
n∑
j=1

bij(θ0)fj
( ∏

0≤tk<θ0−τij(θ0)

(1 + δjk)yj(θ0 − τij(θ0))
)]

+
∏

0≤tk<θ0

(1 + δik)−1ui(θ0)
∣∣∣

≤ −c−i |yi(θ0)|+
∏

0≤tk<θ0

(1 + δik)−1
[ n∑
j=1

|aij(θ0)|
∣∣∣fj( ∏

0≤tk<θ0

(1 + δjk)yj(θ0)
)∣∣∣

+
n∑
j=1

|bij(θ0)|
∣∣∣fj( ∏

0≤tk<θ0−τij(θ0)

(1 + δjk)yj(θ0 − τij(θ0))
)∣∣∣]
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+
∏

0≤tk<θ0

(1 + δik)−1|ui(θ0)|

≤ −c−i |yi(θ0)|+
∏

0≤tk<θ0

(1 + δik)−1
[ n∑
j=1

a+
ijL

f
j

∏
0≤tk<θ0

(1 + δjk)|yj(θ0)|

+
n∑
j=1

b+ijL
f
j

∏
0≤tk<θ0−τij(θ0)

(1 + δjk)|yj(θ0 − τij(θ0))|
]

+
∏

0≤tk<θ0

(1 + δik)−1u+
i

≤ −c−i γ +
∏

0≤tk<θ0

(1 + δik)−1
[ n∑
j=1

a+
ijL

f
j

∏
0≤tk<θ0

(1 + δjk)γ

+
n∑
j=1

b+ijL
f
j

∏
0≤tk<θ0−τij(θ0)

(1 + δjk)γ
]

+
∏

0≤tk<θ0

(1 + δik)−1u+
i

≤ −
[
c−i −

M

m

( n∑
j=1

(a+
ij − b

+
ij)L

f
j

)]
γ +

1
m
u+
i < 0, (2.6)

which is a contradiction and implies that (2.3) holds. This completes the proof. �

Lemma 2.3. Suppose that (H1)–(H5) hold. Let y∗(t) = (y∗1(t), y∗2(t), . . . , y∗n(t))T

be the solution of (2.1) with initial value ϕ∗ = (ϕ∗1(t), ϕ∗2(t), . . . , ϕ∗n(t))T , and let
y(t) = (y1(t), y2(t), . . . , yn(t))T be the solution of (2.1) with initial value ϕ =
(ϕ1(t), ϕ2(t), . . . , ϕn(t))T . Then there exist constants λ > 0 and M > 1 such that

|yi(t)− y∗i (t)| ≤M‖ϕ− ϕ∗‖e−λt, for all t > 0, i = 1, 2, . . . , n.

Proof. Let u(t) = {ui(t)} = {yi(t)− y∗i (t)} = y(t)− y∗(t). Then

u′i(t)

= −ci(t)ui(t) +
( ∏

0≤tk<t

(1 + δik)−1
){ n∑

j=1

aij(t)
[
fj

( ∏
0≤tk<t

(1 + δjk)yj(t)
)

− fj
( ∏

0≤tk<t

(1 + δjk)y∗j (t)
)]

+
n∑
j=1

bij(t)
[
fj

( ∏
0≤tk<t−τij(t)

(1 + δjk)yj(t− τij(t))
)

− fj
( ∏

0≤tk<t−τij(t)

(1 + δjk)y∗j (t− τij(t))
)]}

, (2.7)

where i = 1, 2, . . . , n. Next, we define a Lyapunov functional

Vi(t) = |ui(t)|eλt, i = 1, 2, . . . , n. (2.8)

It follows from (2.7) and (2.8) that

D+(Vi(t)) (2.9)

≤ D+(|ui(t)|)eλt + λ|ui(t)|eλt

≤ (λ− c−i )|ui(t)|eλt +
( ∏

0≤tk<t

(1 + δik)−1
){ n∑

j=1

|aij(t)|
∣∣∣fj( ∏

0≤tk<t

(1 + δjk)yj(t)
)

− fj
( ∏

0≤tk<t

(1 + δjk)y∗j (t)
)∣∣∣
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+
n∑
j=1

|bij(t)|
∣∣∣fj( ∏

0≤tk<t−τij(t)

(1 + δjk)yj(t− τij(t))
)

− fj
( ∏

0≤tk<t−τij(t)

(1 + δjk)y∗j (t− τij(t))
)∣∣∣}eλt

≤ (λ− c−i )|ui(t)|eλt +
( ∏

0≤tk<t

(1 + δik)−1
)[ n∑

j=1

a+
ijL

f
j

( ∏
0≤tk<t

(1 + δjk)
)
|uj(t)|

+
n∑
j=1

b+ijL
f
j

( ∏
0≤tk<t−τij(t)

(1 + δjk)
)
|uj(t− τij(t))|

]
eλt, (2.10)

where i = 1, 2, . . . , n. Let M > 1 denote an arbitrary real number and set

‖ϕ− ϕ∗‖ = sup
−τ≤s≤0

max
1≤j≤n

|ϕj(s)− ϕ∗j (s)| > 0, j = 1, 2, . . . , n.

Then by (2.10), we have

Vi(t) = |ui(t)|eλt < M‖ϕ− ϕ∗‖ for all t ∈ [−∞, 0], i = 1, 2, . . . , n.

Thus we can claim that

Vi(t) = |ui(t)|eλt < M‖ϕ− ϕ∗‖, for all t > 0, i = 1, 2, . . . , n. (2.11)

Otherwise, there must exist i ∈ {1, 2, . . . , n} and ti > 0 such that

Vi(ti) = M‖ϕ− ϕ∗‖, Vj(t) < M‖ϕ− ϕ∗‖ for all t ∈ [−τ, ti), j = 1, 2, . . . , n.
(2.12)

Combining (2.10) with (2.12), we obtain

0 ≤ D+(Vi(ti)−M‖ϕ− ϕ∗‖) = D+(Vi(ti))

≤ (λ− c−i )|ui(ti)|eλti

+
( ∏

0≤tk<ti

(1 + δik)−1
)[ n∑

j=1

a+
ijL

f
j

( ∏
0≤tk<ti

(1 + δjk)
)
|uj(ti)|eλτ0

+
n∑
j=1

b+ijL
f
j

( ∏
0≤tk<ti−τij(ti)

(1 + δjk)
)
|uj(ti − τij(ti))|eλti

]
= (λ− c−i )|ui(ti)|eλti

+
( ∏

0≤tk<ti

(1 + δik)−1
)[ n∑

j=1

a+
ijL

f
j

( ∏
0≤tk<ti

(1 + δjk)
)
|uj(ti)|eλti

+
n∑
j=1

b+ijL
f
j

( ∏
0≤tk<τ0−τij(ti)

(1 + δjk)
)
|uj(ti − τij(ti))|eλ(ti−τij(ti))eλτij(ti)

]
≤ (λ− c−i )M‖ϕ− ϕ∗‖

+
( ∏

0≤tk<ti

(1 + δik)−1
)[ n∑

j=1

a+
ijL

f
j

( ∏
0≤tk<ti

(1 + δjk)
)
M‖ϕ− ϕ∗‖

+
n∑
j=1

b+ijL
f
j

( ∏
0≤tk<ti−τij(ti)

(1 + δjk)
)
eλτM‖ϕ− ϕ∗‖

]
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=
{

(λ− c−i ) +
( ∏

0≤tk<ti

(1 + δik)−1
)[ n∑

j=1

a+
ijL

f
j

( ∏
0≤tk<ti

(1 + δjk)
)

+
n∑
j=1

b+ijL
f
j

( ∏
0≤tk<ti−τij(ti)

(1 + δjk)
)
eλτ
]}
M‖ϕ− ϕ∗‖

≤
{

(λ− c−i ) +
M

m

[ n∑
j=1

(a+
ij + b+ij)L

f
j

]
eλτ
}
M‖ϕ− ϕ∗‖.

Then

λ− c−i +
M

m

[ n∑
j=1

(a+
ij + b+ij)L

f
j

]
eλτ > 0,

which contradicts (H5), then (2.12) holds. In view of (2.11), we know that

Vi(t) = |ui(t)|eλt < M‖ϕ− ϕ∗‖, i = 1, 2, . . . , n.

Namely,

|yi(t)− y∗i (t)| = |ui(t)| < M‖ϕ− ϕ∗‖ for all t > 0, i = 1, 2, . . . , n.

This completes the proof. �

Remark 2.4. If y∗(t) = (y∗1(t), y∗2(t), . . . , y∗n(t))T is a T -anti-periodic solution of
(2.1), it follows from Lemma 2.2 and Definition 1.2 that y∗(t) is globally exponen-
tially stable.

3. Main results

In this section, we present our main result that there exists the exponentially
stable anti-periodic solution of (1.1).

Theorem 3.1. Assume that (H1)–(H5) are satisfied. Then (1.1) has exactly one T -
anti-periodic solution x∗(t). Moreover, this solution is globally exponentially stable.

Proof. Let v(t) = (v1(t), v2(t), . . . , vn(t))T be a solution of (2.1) with initial con-
ditions

vi(s) = ϕvi (s), |ϕvi (s)| < γ, s ∈ (−τ, 0], i = 1, 2, . . . , n. (3.1)
Thus according to Lemma 2.2, the solution v(t) is bounded and

|vi(t)| < γ for all t ∈ R, i = 1, 2, . . . , n. (3.2)

From (2.1), we obtain(
(−1)p+1vi(t+ (p+ 1)T )

)′
= (−1)p+1

{
− ci(t+ (p+ 1)T )vi(t+ (p+ 1)T )

+
∏

0≤tk<t+(p+1)T

(1 + δik)−1
[ n∑
j=1

aij(t+ (p+ 1)T )

× fj
( ∏

0≤tk<t+(p+1)T

(1 + δjk)vj(t+ (p+ 1)T )
)

+
n∑
j=1

bij(t+ (p+ 1)T )fj
( ∏

0≤tk<t+(p+1)T−τij(t+(p+1)T )

(1 + δjk)vj(t+ (p+ 1)T
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− τij(t+ (p+ 1)T ))
)]

+
∏

0≤tk<t+(p+1)T

(1 + δik)−1ui(t+ (p+ 1)T )
}

= −ci(t)(−1)p+1vi(t+ (p+ 1)T )

+
∏

0≤tk<t

(1 + δik)−1
[ n∑
j=1

aij(t)fj
( ∏

0≤tk<t

(1 + δjk)(−1)p+1vj(t+ (p+ 1)T )
)

+
n∑
j=1

bij(t)fj
( ∏

0≤tk<t−τij(t)

(1 + δjk)(−1)p+1vj(t+ (p+ 1)T − τij(t))
)]

+
∏

0≤tk<t

(1 + δik)−1ui(t), (3.3)

where i = 1, 2, . . . , n. Thus (−1)p+1v(t+ (p+ 1)T ) are the solutions of (2.1) on R
for any natural number p. Then, from Lemma 2.3, there exists a constant M > 1
such that

|(−1)p+1vi(t+ (p+ 1)T )− (−1)kvi(t+ pT )|

≤Me−λ(t+pT ) sup
−τ≤s≤0

max
1≤i≤n

|vi(s+ T ) + vi(s)|

≤ 2e−λ(t+pT )Mγ,

(3.4)

where i = 1, 2, . . . , n. Thus, for any natural number q, we have

(−1)q+1vi(t+(q+1)T ) = vi(t)+
q∑

k=0

[(−1)k+1vi(t+(k+1)T )−(−1)kvi(t+kT )]. (3.5)

Hence

|(−1)q+1vi(t+ (q + 1)T )|

≤ |vi(t)|+
q∑

k=0

|(−1)k+1vi(t+ (k + 1)T )− (−1)kvi(t+ kT )|,
(3.6)

where i = 1, 2, . . . , n. From (3.4), (3.6) it follows that (−1)q+1vi(t+(q+1)T ) is a fun-
damental sequence on any compact set of R. Obviously, {(−1)qv(t+qT )} converges
uniformly to a piece-wise continuous function y∗(t) = (y∗1(t), y∗2(t), . . . , y∗n(t))T on
any compact set of R.

Now we show that y∗(t) is T -anti-periodic solution of (2.1). Firstly, y∗(t) is
T -anti-periodic, since

y∗(t+ T ) = lim
q→∞

(−1)qv(t+ T + qT )

= − lim
(q+1)→∞

(−1)q+1v(t+ (q + 1)T ) = −y∗(t).
(3.7)

In the sequel, we prove that y∗(t) is a solution of (2.1). Noting that the right-hand
side of (2.1) is piece-wise continuous, (3.3) implies that {((−1)q+1v(t+ (q+ 1)T ))′}
uniformly converges to a piece-wise continuous function on any compact subset of
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R. Thus, letting q →∞, we can easily obtain

ẏ∗i (t) = −ci(t)y∗i (t) +
∏

0≤tk<t

(1 + δik)−1
[ n∑
j=1

aij(t)fj
( ∏

0≤tk<t

(1 + δjk)y∗j (t)
)

+
n∑
j=1

bij(t)fj
( ∏

0≤tk<t−τij(t)

(1 + δjk)y∗j (t− τij(t))
)]

+
∏

0≤tk<t

(1 + δik)−1ui(t), t > 0,

(3.8)

where i = 1, 2, . . . , n. Therefore, y∗(t) is a solution of (2.1). Applying Lemma 2.1,
Definition 1.2 and Lemma 2.3, we can easily check that x∗(t) is globally exponen-
tially stable. The proof is complete. �

Shi and Dong [38] investigated the following Hopfield neural networks with im-
pulses:

ẋi(t) = −ci(t)xi(t) +
n∑
j=1

bij(t)fj(xj(t)) + Ii(t), t 6= tk,

xi(t+k ) = (1 + dik)xi(tk), k = 1, 2, . . . ,

(3.9)

where i = 1, 2, . . . , n. About the manning of the parameters, one can see [38]. By
some analytical technique and by upper left derivative of the Lyapunov functional
with t 6= tk and t = tk, Shi and Dong [38] obtained some sufficient conditions
which ensure the existence and the global exponential stability of anti-periodic
solution of system (3.9). In this paper, we consider a more general neural networks
with delays and impulses. Moreover, the research technique is different from that
of [38]. By transforming the neural networks with impulses into an equivalent
form without impulses and constructing the Lyapunov functional, we obtain the
sufficient conditions which ensure the existence and global exponential stability of
anti-periodic solution of the model. From this viewpoint, we say that the results
obtained in this paper complement the previous results in [38].

In [13, 22, 23, 30, 33, 34, 36, 47, 48, 51], authors considered the anti-periodic
solution of neural networks without impulses. In [31, 37, 45, 46, 49], authors inves-
tigated the global exponential stability of anti-periodic solution of neural networks
with impulses by upper left derivative of the Lyapunov functional with t 6= tk and
t = tk. In [21], author studied the existence and global exponential stability anti-
periodic solution of neural networks with impulses by the method of coincidence
degree theory and Lyapunov functions. In this paper, we firstly transform the neu-
ral networks with impulses into an equivalent neural networks without impulses,
then consider the existence and global exponential stability of anti-periodic solution
of the equivalent model by constructing a suitable Lyapunov functional. To the best
of our knowledge, there are very few papers that deal with this aspect. Moreover,
all the results in [13, 22, 23, 30, 31, 33, 34, 36, 37, 45, 46, 47, 48, 49, 51] and the ref-
erences therein cannot applicable to system (1.1) to obtain the existence and global
exponential stability of anti-periodic solutions. Therefore the results obtained in
this paper are essentially new and complement the previous publications.
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4. An example

In this section, we illustrate the results obtained in previous sections. Let n = 2,
consider the cellular neural networks with time-varying delays and impulsive effects

ẋ1(t) = −c1(t)x1(t) +
2∑
j=1

a1j(t)fj(xj(t))

+
2∑
j=1

b1j(t)fj(xj(t− τ1j(t))) + u1(t), t 6= tk,

ẋ2(t) = −c2(t)x2(t) +
2∑
j=1

a2j(t)fj(xj(t))

+
2∑
j=1

b2j(t)fj(xj(t− τ2j(t))) + u2(t), t 6= tk,

x1(t+k ) = (1 + δ1k)xi(tk), k = 1, 2, . . . ,

x2(t+k ) = (1 + δ2k)xi(tk), k = 1, 2, . . . ,

(4.1)

which is equivalent to

ẏ1(t) = −c1(t)y1(t) +
∏

0≤tk<t

(1 + δ1k)−1
[ 2∑
j=1

aij(t)fj
( ∏

0≤tk<t

(1 + δjk)yj(t)
)

+
2∑
j=1

b1j(t)fj
( ∏

0≤tk<t−τ1j(t)

(1 + δjk)yj(t− τ1j(t))
)]

+
∏

0≤tk<t

(1 + δ1k)−1u1(t), t > 0

ẏ2(t) = −c2(t)y2(t) +
∏

0≤tk<t

(1 + δ2k)−1
[ 2∑
j=1

a2j(t)fj
( ∏

0≤tk<t

(1 + δjk)yj(t)
)

+
2∑
j=1

b2j(t)fj
( ∏

0≤tk<t−τ2j(t)

(1 + δjk)yj(t− τ2j(t))
)]

+
∏

0≤tk<t

(1 + δ2k)−1u2(t), t > 0,

(4.2)

where fj(u) = 1
2 (|u+ 1| − |u− 1|) (j = 1, 2), u1(t) = 0.1 sin t, u2(t) = 0.2 cos t and[

c1(t) c2(t)
u1(t) u2(t)

]
=
[
3 + | cos t| 3 + | sin t|

2 sin t 3 sin t

]
[
a11(t) a12(t)
a21(t) a22(t)

]
=
[

1
5 | sin t|

1
5 | cos t|

1
4 | cos t| 1

4 | sin t|

]
,[

b11(t) b12(t)
b21(t) b22(t)

]
=
[

1
4 | sin t|

1
4 | cos t|

1
5 | cos t| 1

5 | sin t|

]
,[

τ11(t) τ12(t)
τ21(t) τ22(t)

]
=
[

0.05| sin t| 0.05| sin t|
0.04| cos t| 0.04| cos t|

]
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Then Lfj = 1, c−1 = c−2 = 2, a+
1j = 0.2, a+

2j = 0.25, b+1j = 0.25, b+2j = 0.2, τ = 0.05.
Let η = 0.6, λ = 0.5, m = 1 and M = 2. Then

λ−c−i +
M

m

[ 2∑
j=1

(a+
ij+b

+
ij)L

f
j

]
eλτ < 0.5−3+0.9×2×e0.05×0.5 = −0.6544 < −0.6 < 0,

which implies that system (4.2) satisfies all the conditions in Theorem 3.1. Thus
we can conclude that (4.1) has exactly one π-anti-periodic solution. Moreover, this
solution is globally exponentially stable. The results are verified by the numerical
simulations in Figure 1.

0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

t

 x
1(t

),
 x

2(t
)

Figure 1. Time response of state variables x1(t) (red) and x2(t) (blue).

Conclusion. In this paper, we investigated the asymptotical behavior of a cellu-
lar neural networks with time-varying delays and impulsive effects. Applying the
fundamental theorem, we reduce the existence of solution of system (1.1) to the
corresponding problem for a delayed differential equation without impulses and
derive a series of new sufficient conditions to guarantee the existence and global
exponential stability of an anti-periodic solution for the cellular neural networks
with time-varying delays and impulsive effects. The obtained conditions are easily
to check in practice. Finally, an example is given to illustrative the feasibility and
effectiveness. To the best of our knowledge, there are only few papers that focus on
the anti-periodic solution problem of cellular neural networks with impulsive effects
by reducing the impulsive cellular neural networks to the cellular neural networks
without impulse. Thus our work is new and an excellent complement of previously
known results.
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