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GLOBAL STABILITY OF A VACCINATION MODEL WITH
IMMIGRATION

SARAH HENSHAW, C. CONNELL MCCLUSKEY

Abstract. We study an SV IR model of disease transmission with immi-

gration into all four classes. Vaccinated individuals may only receive partial

immunity to the disease, giving a leaky vaccine. The incidence function per-
mits a nonlinear response to the number of infectives, so that mass action and

saturating incidence are included as special cases. Because of the immigration

of infected individuals, there is no disease-free equilibrium and hence no basic
reproduction number. We use the Brouwer Fixed Point Theorem to show that

an endemic equilibrium exists and the Poincaré-Hopf Theorem to show that it

is unique. We show the equilibrium is globally asymptotically stable by using
a Lyapunov function.

1. Introduction

With modern levels of travel and migration between various parts of the world,
it is inevitable that disease will be carried across international borders. Fighting
infectious disease has become a global issue.

Vaccination against measles has been available for over 50 years. In Canada,
the number of measles cases has fallen from about 350,000 per year in 1963 to less
than 2000 per year in 1995 [2]. For various reasons, a portion of the population,
including children, remains unvaccinated. A consequence of this is that there have
been several measles outbreaks in Canada in recent years (2007-2014). These out-
breaks are believed to be initiated by unvaccinated individuals travelling abroad
and bringing the infection home with them [10].

In this article, we consider an infectious disease for which there is a vaccine that
may not be fully effective. The population is divided into susceptible, vaccinated,
infectious and recovered classes, giving an SVIR model. A key feature of the model
is that there is immigration into each class, accounting for infected individuals
entering the study population. Additionally, the incidence rate is permitted to
have a non-linear dependence on the number of infectives, including mass action
and saturating incidence as special cases.

Ordinary differential equation compartmental models for infectious disease with
immigration, but without vaccination are studied in [1, 3, 4, 7, 12, 13]. In each of
these models, the disease is not explicitly modelled outside the main population
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being studied. Instead, contact with external regions arises as a constant influx
into various classes of the model. This can be interpreted as the disease being at a
constant endemic level in some other region, so that a constant immigration influx
with no screening (or imperfect screening) leads to a steady flow of infectious (and
other) individuals into the study population.

A delay differential equation model with migration was introduced in [15], and
studied further in [11].

This paper is laid out as follows. In Section 2, we present our model. In Section
3, we show that there exists a unique equilibrium, which corresponds to the disease
remaining endemic, and we show that the equilibrium is locally asymptotically
stable. The global stability of the equilibrium is shown in Section 4. In Section 5,
we show that increased vaccination always leads to a lower prevalence of the disease
(at equilibrium). The results are discussed in Section 6.

2. The Model

The population is divided into four classes, susceptible, vaccinated, infectious
and recovered individuals, with the sizes of the groups given by the variables S, V ,
I and R, respectively.

We assume nonlinear incidence Sf(I) for the susceptible population. Further-
more, we allow that the vaccine is imperfect so that infection of vaccinated indi-
viduals is possible, however, we assume that the vaccine is not deleterious. Thus,
the incidence for the vaccinated population is V g(I), with g(I) ≤ f(I), as stated
below in (H2). Additionally, we assume that the incidence functions f and g satisfy
certain reasonable restrictions, stated below in (H1).

We assume that there is constant recruitment into each of the four classes at
rates ΩS , ΩV , ΩI and ΩR. These rates represent the total of births and immi-
gration into the population. For example, in the absence of vertical transmission,
ΩS and ΩV would include all births, with some vaccinated and some unvaccinated.
Additionally, immigration into all four groups would also be included in these pa-
rameters.

The per capita death rate for non-disease related reasons is µ, and for disease
related reasons is γ. Individuals who recover from the disease do so after an average
duration 1

δ , and develop permanent immunity.
Susceptibles are vaccinated at a per capita rate α. We allow that vaccinated

individuals may develop full immunity to the disease after an average duration 1
γ1

,
so that the per capita rate at which individuals move from V to R is γ1. The case
that full immunity is never achieved is included in the model by having γ1 = 0.

An incidence function h is assumed to be continuous for I ≥ 0, and to satisfy
the following criteria:

h(0) = 0, h(I) ≥ 0,

h′(I) ≥ 0, h′′(I) ≤ 0,
(2.1)

for I > 0.

(H1) The functions f and g satisfy the criteria given in (2.1).
(H2) g(I) ≤ f(I) for all I ≥ 0.
(H3) ΩS ,ΩV ,ΩI ,ΩR, µ > 0 and α, δ, γ, γ1 ≥ 0.
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The corresponding differential equations are:
dS

dt
= ΩS − Sf(I)− (µ+ α)S

dV

dt
= ΩV + αS − V g(I)− (µ+ γ1)V

dI

dt
= ΩI + Sf(I) + V g(I)− (µ+ γ + δ)I

dR

dt
= ΩR + γ1V + δI − µR.

(2.2)

Because R does not appear in the equations for the other variables, it can be
omitted; we work with S, V , and I. The initial conditions are (S(0), V (0), I(0)) ∈
R3
≥0. Let Ω = ΩS + ΩV + ΩI . For any ε ≥ 0, let

Dε =
{

(S, V, I) : S, V, I ≥ ε and S + V + I ≤ Ω
µ

}
.

Proposition 2.1. The non-negative octant R3
≥0 is positively invariant. There ex-

ists ε̄ > 0 such that Dε̄ is nonempty, attracting, and positively invariant.

Proof. Clearly the vector field defined by equations (2.2) is smooth and therefore
solution is unique. Since dS

dt |S=0= ΩS > 0, dI
dt |I=0= ΩI > 0 and dV

dt |V=0=
ΩV +αS > 0 within R3

≥0, [5, Proposition 2.1] implies that R3
≥0 is positively invariant.

Let N = S + V + I. Then
dN

dt
= ΩS + ΩV + ΩI − µ(S + V + I)− γ1V − (γ + δ)I ≤ Ω− µN.

Thus, lim supt→∞N(t) ≤ Ω
µ , and so D0 is attracting. If N(t0) ≤ Ω

µ for some t0 ∈ R,
then N(t) ≤ Ω

µ for all t ≥ t0, and so D0 is positively invariant.
In D0, dSdt

∣∣
S=0

= ΩS > 0. Since the vector field is continuous and D0 is compact,
there exists εS > 0 such that dS

dt > 0 for S ≤ εS . Therefore, S will increase to be
larger than εS , and will remain above that level for all future time.
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A similar argument holds for V and I, allowing us to define εV and εI . Let
ε̄ = min

{
εS , εV , εI

}
. Then Dε̄ is positively invariant and attracting. �

3. Existence, local stability and uniqueness of an equilibrium point

Note that dI
dt is strictly positive when I is zero. Thus, there is no disease-free

equilibrium and therefore there is no basic reproduction number R0.
Solving for equilibria directly gives the existence of an endemic equilibrium, but

showing the uniqueness of this solution is problematic. Here, we take a different
approach. First we show the existence of at least one equilibrium. Next we show
that each equilibrium is locally asymptotically stable. Then we demonstrate the
uniqueness of the equilibrium.

Proposition 3.1. There exists at least one equilibrium. Furthermore, all equilibria
lie in the set Dε̄.

Proof. By Proposition 2.1, the set Dε̄ is nonempty and positively invariant. Since
Dε̄ is also compact and convex, it follows from the Brouwer Fixed Point Theorem
(see [14, Theorem 4.8], for example) that Dε̄ contains at least one equilibrium.

By Proposition 2.1, Dε̄ is attracting, and so all equilibria are elements of Dε̄. �

In the proof of Proposition 3.4, the following result will be applied to f and g.
It appears in [12, Proposition 4.1].

Proposition 3.2. Suppose h satisfies the criteria in (2.1). Then h′(I) ≤ h(I)
I for

all I > 0.

Proof. Let I > 0. By the Mean Value Theorem, there exists c ∈ (0, I) with h′(c) =
h(I)−h(0)

I−0 . The criteria in (2.1) imply h(0) = 0, and so h′(c) = h(I)
I . Because

h′′(I) ≤ 0, it follows that h′(I) is decreasing and so h′(I) ≤ h′(c) = h(I)
I . �

The following lemma, [7, Lemma 3], will also be used in the proof of Proposition
3.4. For 3× 3 real matrices, it is an alternative to the Routh-Hurwitz criteria. To
state the lemma, it is necessary to define the second compound M [2] of a square
matrix M , which we do here only for the case of 3× 3 matrices. If

M =

A a b
c B d
e f C

 , then M [2] =

A+B d −b
f A+ C a
−e c B + C

 .
The eigenvalues of M [2] are sums of pairs of eigenvalues of M . Further reading on
compound matrices can be found in [9].

Lemma 3.3. Let M be a 3 × 3 real matrix. If trace(M), det(M) and det(M [2])
are all negative, then all of the eigenvalues of M have negative real part.

Proposition 3.4. Each equilibrium is locally asymptotically stable.

Proof. Let X∗ = (S∗, V ∗, I∗) ∈ Dε̄ denote an equilibrium and let τ = (µ+ γ+ δ)−
S∗f ′(I∗)− V ∗g′(I∗). The Jacobian at X∗ is

J =

 −J1 0 −S∗f ′(I∗)
α −J2 −V ∗g′(I∗)

f(I∗) g(I∗) −J3

 ,
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where J1

J2

J3

 =

 f(I∗) + µ+ α
g(I∗) + µ+ γ1

(µ+ γ + δ)− S∗f ′(I∗)− V ∗g′(I∗)

 .
We begin by showing that J3 is positive. Applying Proposition 3.2 to f and to g,
we have

J3 = (µ+ γ + δ)− S∗f ′(I∗)− V ∗g′(I∗)

≥ (µ+ γ + δ)− S∗ f(I∗)
I∗

− V ∗ g(I∗)
I∗

=
(µ+ γ + δ)I∗ − S∗f(I∗)− V ∗g(I∗)

I∗

=
ΩI
I∗

> 0.

Thus, each of J1, J2 and J3 is positive. Thus, we can now see that trace(J) =
−(J1 + J2 + J3) < 0. The determinant of J satisfies

det(J) = −J1J2J3 − S∗f ′(I∗)g(I∗)α− J1g(I∗)V ∗g′(I∗)− S∗f ′(I∗)f(I∗)J2 < 0.

The second compound of J is

J [2] =

−(J1 + J2) −V ∗g′(I∗) S∗f ′(I∗)
g(I∗) −(J1 + J3) 0
−f(I∗) α −(J2 + J3)

 ,
with

det(J [2]) = −(J1 + J2)(J1 + J2)(J2 + J3) + S∗f ′(I∗)g(I∗)α

− V ∗g′(I∗)g(I∗)(J2 + J3)− S∗f ′(I∗)f(I∗)(J1 + J3)

< S∗f ′(I∗)g(I∗)α− S∗f ′(I∗)f(I∗)(J1 + J3).

Using (H2), g(I) ≤ f(I) and therefore

det(J [2]) < S∗f ′(I∗)f(I∗)[α− (J1 + J3)] < 0.

Thus, Lemma 3.3 implies that each eigenvalue of J has negative real part. Hence,
the equilibrium X∗ is locally asymptotically stable. �

Proposition 3.5. The equilibrium is unique.

Proof. Let G(x) denote the vector field described by the differential equation given
in (2.2). Let F = −G. Then the vector field F is outward pointing on the boundary
of Dε̄. Note that Dε̄ is homeomorphic to the ball in R3, and therefore has Euler
characteristic +1. The zeroes of G (given by equilibria) are also zeroes of F . Since
the equilibria are locally asymptotically stable for G, they are all isolated and each
has an index of +1 for F . Thus, the sum of the indices of the equilibria is equal to
the number of equilibria.

However, by the Poincaré-Hopf Theorem [8, Chapter 6], the sum of the indices
of the equilibria is equal to the Euler characteristic of Dε̄. Thus, there is only one
equilibrium. �
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4. Global stability

In this section, a Lyapunov function will be used to show the global stability of
the unique equilibrium. Let

ω(x) = x− 1− lnx

The following result appears in [6, Lemma 2.3].

Proposition 4.1. If a, b, c, d > 0, then (a−b)(c−d) = ω(ac)−ω(ad)−ω(bc)+ω(bd).

Proof. Note that

ω(ac)− ω(ad)− ω(bc) + ω(bd)

= ac− 1− ln(ac)− ad+ 1 + ln(ad)− bc+ 1 + ln(bc) + bd− 1− ln(bd)

= ac− ad− bc+ bd− ln(ac) + ln(ad) + ln(bc)− ln(bd)
= ac− ad− bc+ bd

= (a− b)(c− d).

�

The following result appears in [12, Proposition A.1].

Proposition 4.2. Suppose h satisfies the criteria in (2.1). If I > 0, then

ω
( h(I)
h(I∗)

)
≤ ω(

I

I∗
).

Proof. Suppose I ≥ I∗. Let m(I) = h(I)
I . Then

m′(I) =
h′(I)I − h(I)

I2
≤ h(I)− h(I)

I2
= 0.

Thus m is decreasing. Thus m(I) ≤ m(I∗). Thus, h(I)
I ≤

h(I∗)
I∗ , and so h(I)

h(I∗) ≤
I
I∗ .

Since h is increasing, we have 1 ≤ h(I)
h(I∗) ≤

I
I∗ . Note that

ω′(x) = 1− 1
x
.

Thus, ω is increasing for x > 1. Hence, ω
( h(I)
h(I∗)

)
≤ ω( II∗ ).

A similar argument works for I ∈ (0, I∗). �

In the following proof, the equilibrium equations
ΩS = S∗f(I∗) + (µ+ α)S∗,

ΩV = V ∗g(I∗) + (µ+ γ1)V ∗ − αS∗,

µ+ γ + δ =
ΩI + S∗f(I∗) + V ∗g(I∗)

I∗
.

(4.1)

will be used.

Theorem 4.3. The equilibrium is globally asymptotically stable.

Proof. Let

U = S∗ω
( S
S∗
)

+ V ∗ω
( V
V ∗
)

+ I∗ω
( I
I∗
)
.

Note that
dU

dt
= (1− S∗

S
)
dS

dt
+ (1− V ∗

V
)
dV

dt
+ (1− I∗

I
)
dI

dt
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= (1− S∗

S
)[ΩS − Sf(I)− (µ+ α)S]

+ (1− V ∗

V
)[ΩV + αS − V g(I)− (µ+ γ1)V ]

+ (1− I∗

I
)[ΩI + Sf(I) + V g(I)− (µ+ γ + δ)I].

Using (4.1) to replace ΩS , ΩV and µ+ γ + δ gives

dU

dt
= (1− S∗

S
)[S∗f(I∗) + (µ+ α)S∗ − Sf(I)− (µ+ α)S]

+ (1− V ∗

V
)[V ∗g(I∗) + (µ+ γ1)V ∗ − αS∗ + αS − V g(I)− (µ+ γ1)V ]

+ (1− I∗

I
)
[
ΩI + Sf(I) + V g(I)− ΩI + S∗f(I∗) + V ∗g(I∗)

I∗
I
]

= (1− S∗

S
)
[
S∗f(I∗)(1− Sf(I)

S∗f(I∗)
) + (µ+ α)S∗(1− S

S∗
)
]

+ (1− V ∗

V
)
[
V ∗g(I∗)(1− V g(I)

V ∗g(I∗)
) + (µ+ γ1)V ∗(1− V

V ∗
) + αS∗(

S

S∗
− 1)

]
+ (1− I∗

I
)
[
ΩI(1−

I

I∗
) + S∗f(I∗)

( Sf(I)
S∗f(I∗)

− I

I∗
)

+ V ∗g(I∗)(
V g(I)
V ∗g(I∗)

− I

I∗
)
]
.

Next, we apply Proposition (4.1) (noting that ω(1) = 0), and group and cancel
terms to obtain

dU

dt
= (µ+ α)S∗

[
− ω(

S∗

S
)− ω(

S

S∗
)
]
− ΩI

(I − I∗)2

II∗

+ S∗f(I∗)
[
− ω(

S∗

S
) + ω(

f(I)
f(I∗)

)− ω(
I

I∗
)− ω(

Sf(I)I∗

S∗f(I∗)I
)
]

+ V ∗g(I∗)
[
− ω(

I

I∗
)− ω(

V g(I)I∗

V ∗g(I∗)I
)− ω(

V ∗

V
) + ω(

g(I)
g(I∗)

)
]

+ (µ+ γ1)V ∗
[
− ω(

V ∗

V
)− ω(

V

V ∗
)
]

+ αS∗
[
ω(

S

S∗
)− ω(

SV ∗

S∗V
) + ω(

V ∗

V
)
]
.

(4.2)
It follows from the second line of (4.1), that αS∗ < V ∗g(I∗) + (µ + γ1)V ∗. Thus,
the three terms in (4.2) involving ω(V

∗

V ) combine to give a quantity that is less
than or equal to zero. Also, the term αS∗ω( SS∗ ) in the final line of (4.2) cancels
with part of the term (µ+ α)S∗ω( SS∗ ) in the first line. Thus,

dU

dt
≤− (µ+ α)S∗ω(

S∗

S
)− µS∗ω(

S

S∗
)− ΩI

(I − I∗)2

II∗

+ S∗f(I∗)
[
− ω(

S∗

S
) + ω

( f(I)
f(I∗)

)
− ω(

I

I∗
)− ω

( Sf(I)I∗

S∗f(I∗)I
)]

+ V ∗g(I∗)
[
− ω(

I

I∗
)− ω(

V g(I)I∗

V ∗g(I∗)I
) + ω

( g(I)
g(I∗)

)]
− (µ+ γ1)V ∗ω(

V

V ∗
)− αS∗ω

(SV ∗
S∗V

)
.
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The functions f and g each satisfy the criteria in (2.1). Thus, Proposition 4.2
implies ω

( f(I)
f(I∗)

)
, ω
( g(I)
g(I∗)

)
≤ ω( II∗ ). Therefore,

dU

dt
≤ −(µ+ α)S∗ω(

S∗

S
)− µS∗ω(

S

S∗
)− ΩI

(I − I∗)2

II∗

− S∗f(I∗)
[
ω(
S∗

S
) + ω

( Sf(I)I∗

S∗f(I∗)I
)]
− V ∗g(I∗)ω

( V g(I)I∗

V ∗g(I∗)I
)

− (µ+ γ1)V ∗ω(
V

V ∗
)− αS∗ω

(SV ∗
S∗V

)
≤ 0,

since ω is non-negative. Furthermore, we only obtain dU
dt = 0 at the equilibrium.

Thus, by Lyapunov’s Direct Method, the equilibrium (S∗, V ∗, I∗) is globally asymp-
totically stable. �

5. Effect of vaccination on disease prevalence

We now explore the connection between higher vaccination levels (i.e. increasing
α) and disease prevalence at equilibrium. In doing so, we consider S∗ and V ∗ to
be functions of I∗ and α, where I∗ is in turn considered to be a function of α.
Throughout this section, the variables S, V and I are only considered at the equi-
librium, and so we omit the superscripts ∗ in order to present a tidier calculation.
For similar reasons, we also define

F = f(I) + µ+ α, G = g(I) + µ+ γ1. (5.1)

From dS
dt = 0 and dV

dt = 0, at equilibrium we have

S =
ΩS

f(I) + µ+ α
=

ΩS
F
, V =

ΩV + αS

g(I) + µ+ γ1
=

ΩV + αΩS

F

G
. (5.2)

Adding dS
dt , dV

dt and dI
dt at equilibrium gives

0 = ΩS + ΩV + ΩI − µS − (µ+ γ1)V − (µ+ γ + δ)I.

Differentiating with respect to α and using (5.2) gives

0 = −µdS
dα
− (µ+ γ1)

dV

dα
− (µ+ γ + δ)

dI

dα

= µ
ΩS
F 2

(
f ′(I)

dI

dα
+ 1
)
− (µ+ γ1)

(S + αdSdα )G− (ΩV + αS)g′(I) dIdα
G2

− (µ+ γ + δ)
dI

dα
.

Using (5.2) to replace the last instance of dS
dα , and also to replace terms involving

ΩS and ΩV , we obtain

0 =
µS(f ′(I) dIdα + 1)

F
− (µ+ γ1)

S − αS
F (f ′(I) dIdα + 1)− V g′(I) dIdα

G
− (µ+ γ + δ)

dI

dα
.
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Solving for dI
dα , using (5.1) to replace F and G as needed, and then using the third

line of (4.1), gives

dI

dα
= S

γ1f(I) + µ(f(I)− g(I))
(µ+ γ1)FV g′(I) + (µ+ γ1)αSf ′(I) + µGSf ′(I)− (µ+ γ + δ)FG

= S
γ1f(I) + µ(f(I)− g(I))

(µ+ γ1)FV g′(I) + [(µ+ γ1)α+ µG]Sf ′(I)− (ΩI

I + Sf(I)
I + V g(I)

I )FG
.

(5.3)
By (H1), we can apply Proposition 3.2 to f and g, allowing us to conclude that the
denominator in (5.3) is negative. The numerator in (5.3) is non-negative by (H2).
Thus, it follows that

dI

dα
≤ 0. (5.4)

In fact, equality is only obtained in (5.4) in degenerate cases: either f and
g are identically zero, in which case there is no disease transmission, or γ1 = 0
and f(I∗) = g(I∗), in which case there is no difference between susceptible and
vaccinated individuals (at equilibrium). Outside of these cases, we have dI

dα < 0,
and so vaccination has an impact on decreasing disease prevalence.

6. Discussion

We have studied an SVIR infectious disease model, including vaccination of sus-
ceptibles and immigration into each group. The vaccine is allowed to be imperfect,
but not deleterious, so that the force of infection for vaccinated individuals is less
than or equal to the force of infection for susceptibles. We allow that the incidence
may have a nonlinear dependence on the size of the infectious population.

For all parameter values, there is no disease-free equilibrium and there is a
unique endemic equilibrium, which is globally asymptotically stable. Existence and
uniqueness are shown using the Brouwer Fixed Point Theorem and the Poincaré-
Hopf Theorem. The global stability is shown using Lyapunov’s Direct Method.

The global stability means that the disease cannot be fully eradicated from the
population when there is an influx of infected individuals from a region where the
disease is endemic. Given the high level of interconnectedness between all regions
of the world, it is inevitable that disease will travel between countries. Control of
the disease in any one region requires treating the disease as a global problem, and
controlling it in all regions.
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NSERC USRA. The second author is supported by an NSERC Discovery Grant.
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