Electron. J. Diff. Equ., Vol. 2015 (2015), No. 55, pp. 1-25.

Weak solutions to the Landau-Lifshitz-Maxwell system with nonlinear Neumann boundary conditions arising from surface energies

Gilles Carbou, Pierre Fabrie, Kevin Santugini

Abstract:
We study the Landau-Lifshitz system associated with Maxwell equations in a bilayered ferromagnetic body when super-exchange and surface anisotropy interactions are present in the spacer in-between the layers. In the presence of these surface energies, the Neumann boundary condition becomes nonlinear. We prove, in three dimensions, the existence of global weak solutions to the Landau-Lifshitz-Maxwell system with nonlinear Neumann boundary conditions.

Submitted June 4, 2014. Published February 26, 2015.
Math Subject Classifications: 35D30, 35F31, 35Q61.
Key Words: Ferromagnetism; Micromagnetism; surface energy; Landau-Lifshitz-Maxwell equation; nonlinear PDE.

Show me the PDF file (339 KB), TEX file, and other files for this article.

  Gilles Carbou
Université de Pau et des Pays de l'Adour
LMAP, UMR CNRS 5142, F-64000 Pau, France
email: gilles.carbou@univ-pau.fr
  Pierre Fabrie
Bordeaux INP, IMB, UMR 5251, F-33400
Talence, France
email: Pierre.Fabrie@math.u-bordeaux1.fr
Kévin Santugini
Bordeaux INP, IMB, UMR 5251, F-33400
Talence, France
email: Kevin.Santugini@math.u-bordeaux1.fr

Return to the EJDE web page