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MULTIPLICITY OF SOLUTIONS TO THE SUM OF
POLYHARMONIC EQUATIONS WITH

CRITICAL SOBOLEV EXPONENTS

WEI LIU, GAO JIA, LU-QIAN GUO

Abstract. In this article, we prove multiplicity of solutions for the sum of

polyharmonic equation with critical Sobolev exponent. The proof is based
upon the methods of weakly lower semi-continuous of the functionals and the

Mountain Pass Lemma without (PS) conditions.

1. Introduction

In this article, we discuss the multiplicity of solutions for the sum polyharmonic
equation

k∑
i=0

(−∆)iu = λ|u|q−2u+ |u|N−2u+ µf(x), in Ω,

u ∈ Hk
0 (Ω),

(1.1)

where Ω ⊂ Rn is a bounded smooth domain, k is positive integer, q is a real number
with 2 < q < N , N = 2n/(n−2k) is the critical Sobolev exponent in the embedding
Hk

0 (Ω) ↪→ LN (Ω), λ, µ are both positive real parameters and f(x) is continuous
with not identical to 0 in Ω. Our main result is the following theorem.

Theorem 1.1. Let Ω ⊂ Rn be a bounded smooth domain, n > 2k and f(x) be
continuous and not identical to 0 in Ω. Then there exist λ0 > 0 and µ0 > 0, such
that for any λ > λ0 and 0 < µ < µ0, problem (1.1) admits at least two distinct
weak solutions u1 with positive energy and u2 with negative energy.

Remark 1.2. For the highest order term (−∆)ku of problem (1.1), we need to
discuss that k is odd or even. In fact, no matter k is odd or even, we obtain the
similar result of Theorem 1.1. For the sake of simplicity, in the following discussion,
we let k be an even, that is k = 2m and m is positive integer.

Higher-order elliptic boundary problems have abundant applications in physics
and engineering [16] and have also been studied in many areas of mathematics,
including conformal geometry [12], some geometry invariants [5] and non-linear
elasticity [13].
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The existence of the solutions of the Brezis-Nirenberg problem [9] for the higher-
order equations has been studied in many papers [1, 3, 7, 11, 14, 18]. Grunau [15]
considered the existence of positive solution for semilinear polyharmonic Dirichlet
problem with critical Sobolev exponent

(−∆)ku = λu+ |u|s−2
u in B,

Dαu = 0, |α| ≤ k − 1 on ∂B,
(1.2)

where k ∈ N, B is the unit ball centered at the origin, λ ∈ R, n > 2k, s =
2n/(n− 2k) is the critical Sobolev exponent. He proved the existence of a positive
radial solution for: λ ∈ (0, λ1), if n ≥ 4k; λ ∈ (λ, λ1) for some λ = λ(n, k) ∈ (0, λ1),
if 2k+ 1 ≤ n ≤ 4k− 1, where λ1 is the first eigenvalue of (−∆)k with homogeneous
Dirichlet boundary conditions.

Recently, Benalili and Tahri [6] considered the multiplicity of solutions considered
for the equation

∆2u−∇i(aρ−σ∆iu) + bρ−µu = λ|u|q−2u+ f(x)|u|s−2u (1.3)

where the function a(x) and b(x) are smooth on M and 1 < q < 2. s = 2n
n−4 is the

critical Sobolev exponent. They proved that when 0 < σ < 2 and 0 < µ < 4, there
is λ∗ > 0 such that if λ ∈ (0, λ∗), the equation (1.3) possesses at least two distinct
nontrivial solutions in the distribution sense.

The multiplicity of solutions for higher-order equations can be founded in [4] and
the references therein.

Here, our motivation comes from the recent papers [6, 15]. We consider the situ-
ation of the multiplicity of the higher-order equation with critical Sobolev exponent
when k ≥ 1 and q > 2.

The paper is organized as follows. In Section 2, we will introduce the Sobolev
spaces and the embedding theorem which is applicable to problem (1.1). In Section
3, since a lack of compactness, we use analytic techniques and variational arguments
to overcome the difficulty and establish some basic lemmas. In Section 4, we give
the proof of two distinct weak solutions of Theorem 1.1. Our methods are mainly
based on the weakly lower semi-continuous of the functional and the Mountain Pass
Lemma without (PS) condition.

2. Preliminaries

Suppose Ω ⊂ Rn is a bounded smooth open domain. We let H2m
0 (Ω) be the

Sobolev space which is the completion of the space C∞0 (Ω) with respect to the
norm

‖u‖H2m = (‖∆mu‖22 + ‖∇∆m−1u‖22 + · · ·+ ‖∇u‖22 + ‖u‖22)1/2. (2.1)

It is well known that a weak solution of the equation (1.1) is a critical point of
the following functional

Iλ,µ(u) =
1
2

∫
Ω

((∆mu)2 + |∇∆m−1u|2 + · · ·+ (∆u)2 + |∇u|2 + u2)

− 1
q
λ

∫
Ω

|u|q − 1
N

∫
Ω

|u|N − µ
∫

Ω

f(x)u.
(2.2)
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Under the above assumptions, it is easy to know that Iλ,µ(u) ∈ C1(H2m
0 (Ω),R)

and with the Gâteaux derivative

〈∇Iλ,µ(u), v〉 =
∫

Ω

(∆mu∆mv) + (∇∆m−1u · ∇∆m−1v) + · · ·+∇u · ∇v + uv)

− λ
∫

Ω

|u|q−2
uv −

∫
Ω

|u|N−2
uv − µ

∫
Ω

f(x)v

(2.3)

for every v ∈ H2m
0 (Ω) (see [15]).

Lemma 2.1 (Mountain Pass Theorem [2]). Let E be a real Banach space and let
I(u) ∈ C1(E,R). Suppose I(0) = 0 and

(I1) there is a constant ρ > 0 such that I|∂Bρ(0) > 0,
(I2) there is an e ∈ E\Bρ(0) such that I(e) ≤ 0.

Set
C = inf

γ∈Γ
sup
t∈[0,1]

I(γ(t)) > 0 (2.4)

where Γ denotes the class of paths joining 0 to e. Conclusion: there is a sequence
{uk} in E, such that

I(uk)→ C and ∇I(uk)→ 0 in a dual space E′.

Lemma 2.2 (Sobolev-Rellich-Knodrakov Theorem [19]). Assume that Ω ⊂ Rn is
a bounded domain with Lipschitz boundary, k is positive integer and 1 ≤ p < ∞.
Then the following hold:

• if n > kp, then W k,p(Ω) ↪→ Ls(Ω), for 1 ≤ s ≤ p∗ = np
n−kp ;

• the embedding is compact, for s < np
n−kp .

3. Basic Lemmas

To complete the proof of Theorem 1.1, the following lemmas are our main tools.

Lemma 3.1. For each fixed λ > 0, there exist δ > 0, µ0 > 0 and η > 0, such that
for all u ∈ H2m

0 (Ω) with ‖u‖H2m = δ and any 0 < µ < µ0, it holds Iλ,µ(u) > η > 0.

Proof. From (2.1), (2.2) and the Hölder inequality, we deduce that

Iλ,µ(u) =
1
2

∫
Ω

((∆mu)2 + (∇∆m−1u)2 + · · ·+ (∆u)2 + |∇u|2 + u2)

− λ

q

∫
Ω

|u|q − 1
N

∫
Ω

|u|N − µ
∫

Ω

f(x)u

≥ 1
2
‖u‖2H2m

− λ

q
|Ω|1−

q
N ‖u‖qN −

1
N
‖u‖NN − µmax

x∈Ω
f(x)|Ω|1− 1

N ‖u‖N .

(3.1)

By (3.1) and Lemma 2.2, we infer that

Iλ,µ(u) ≥ 1
2
‖u‖2H2m

− λ

q
(C)q|Ω|1−

q
N ‖u‖qH2m

− 1
N

(C)N‖u‖NH2m

− µmax
x∈Ω

f(x)|Ω|1− 1
N C‖u‖H2m

=
((1

2
− λC1‖u‖q−2

H2m
− C2‖u‖N−2

H2m

)
· ‖u‖H2m

− µC3

)
‖u‖H2m ,

with some positive constants C1, C2, C3 and 2 < q < N .
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Thus for any λ > 0, there exist δ = δ(λ) > 0, sufficiently small µ0 = µ0(δ) > 0,
and η0 = η0(µ0) > 0, such that for all u ∈ H2m

0 (Ω) with ‖u‖H2m = δ and for any
0 < µ < µ0, it holds Iλ,µ(u) > η0 �

Lemma 3.2. Suppose f(x) is continuous and not identical to 0 in Ω. For any
µ0 > 0, there exist λ0 > 0 and v0 ∈ H2m

0 (Ω), such that for any λ ≥ λ0, we have

0 < sup
t≥0

Iλ,µ(tv0) <
2m
n

(C∗)−n/(2m), (3.2)

where C∗ is the best Sobolev constant of H2m
0 (Ω) ↪→ LN (Ω), N = 2n/(n− 4m).

Proof. By the conditions of f(x), we can choose v0 ∈ H2m
0 (Ω), such that∫

Ω

f(x)v0 > 0 and
∫

Ω

|v0|N = 1.

Thus from (2.2), we obtain

Iλ,µ(tv0) =
t2

2
‖v0‖2H2m

− tq λ
q

∫
Ω

|v0|q −
1
N
tN − tµ

∫
Ω

f(x)v0. (3.3)

For any λ, µ > 0, we have

lim
t→+∞

Iλ,µ(tv0) = −∞. (3.4)

Using Lemma 3.1 and (3.4), there exists tλ,µ > 0, such that

Iλ,µ(tλ,µv0) = sup
t≥0

Iλ,µ(tv0) > 0. (3.5)

By (3.3) and (3.5), one gets

1
2
t2λ,µ‖v0‖2H2m

− (
λ

q
tqλ,µ‖v0‖qq +

1
N
tNλ,µ)− tλ,µµ

∫
Ω

f(x)v0 > 0. (3.6)

That is,

tq−1
λ,µ

(
λ

q
‖v0‖qq +

1
N
tN−qλ,µ

)
<

1
2
‖v0‖2H2m

− µ
∫

Ω

f(x)v0.

By simple analysis, we obtain

lim
λ→+∞

(
λ

q
‖v0‖qq +

1
N
tN−qλ,µ ) = +∞,

and
lim

λ→+∞
tλ,µ = 0. (3.7)

From (3.3) and (3.7), we obtain

lim
λ→+∞

λtq−1
λ,µ ≤ 0. (3.8)

Taking into account of (3.5), (3.7) and (3.8), we obtain

lim
λ→+∞

sup
t≥0

Iλ,µ(tλ,µv0) = 0. (3.9)

Then there exist λ0 such that for any λ > λ0, we have

0 < sup
t≥0

Iλ,µ(tv0) <
2m
n

(C∗)−n/(2m).

The proof is complete. �
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Lemma 3.3. For any λ > 0, there exists sufficiently small µ0 > 0, such that for
any 0 < µ < µ0, the Iλ,µ(u) satisfies the (PS)Cλ,µ-condition for all Cλ,µ in the
interval

0 < Cλ,µ <
2m
n

(C∗)−n/(2m). (3.10)

Proof. First we prove that each (PS)Cλ,µ sequence is bounded in H2m
0 (Ω). Let

{uk} ⊂ H2m
0 (Ω) be a (PS)Cλ,µ sequence for Iλ,µ(u), defined by (2.2), i.e.,

Iλ,µ(uk)→ Cλ,µ, and ∇Iλ,µ(uk)→ 0, in H2m
0 (Ω)

′
, as k →∞.

That is,

Iλ,µ(uk) =
1
2

∫
Ω

((∆muk)2 + (∇∆m−1uk)2 + · · ·+ (∆uk)2 + |∇uk|2 + u2
k)

− λ

q

∫
Ω

|uk|q −
1
N

∫
Ω

|uk|N − µ
∫

Ω

f(x)uk

= Cλ,µ + o(1)

(3.11)

and

〈∇Iλ,µ(uk), uk〉 =
∫

Ω

((∆muk)2 + (∇∆m−1uk)2 + · · ·+ (∆uk)2 + |∇uk|2 + u2
k)

− λ
∫

Ω

|uk|q −
∫

Ω

|uk|N − µ
∫

Ω

f(x)uk

= o(1)‖uk‖H2m ,

(3.12)

as k →∞. By (3.11), (3.12), the Hölder inequality and Lemma 2.2, we obtain

Iλ,µ(uk)− 1
q
〈∇Iλ,µ(uk), uk〉

= (
1
2
− 1
q

)‖uk‖2H2m
+ (

1
q
− 1
N

)
∫

Ω

|uk|N − (1− 1
q

)µ
∫

Ω

f(x)uk

≥ (
1
2
− 1
q

)‖uk‖2H2m
− (1− 1

q
)µ
∫

Ω

f(x)uk

≥ (
1
2
− 1
q

)‖uk‖2H2m
− (1− 1

q
)µmax

x∈Ω
f(x)|Ω|1− 1

N (C∗)‖uk‖H2m .

(3.13)

It follows from (3.11), (3.12) and (3.13) that

o(1) + Cλ,µ + o(1)‖uk‖H2m

≥ (
1
2
− 1
q

)‖uk‖2H2m
− (1− 1

q
)µmax

x∈Ω
f(x)|Ω|1− 1

N (C∗)‖uk‖H2m ,

i.e.

(
1
2
− 1
q

)‖uk‖2H2m

≤ o(1) + Cλ,µ +
[
(1− 1

q
)µmax

x∈Ω
f(x)|Ω|1−

1
N (C∗) + o(1)

]
‖uk‖H2m ,

(3.14)

where q > 2. Hence, for each λ , µ > 0, fixed Cλ,µ ∈ R, we conclude that the
sequence {uk} is bounded in H2m

0 (Ω).
Now, we show that the (PS)Cλ,µ sequence contains a strongly convergent sub-

sequence.
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Since the sequence {uk} is bounded in H2m
0 (Ω) and the well-known Sobolev’s

embedding, there exists a subsequence, still denoted by {uk}, and u ∈ H2m
0 (Ω),

such that

uk ⇀ u weakly in H2m
0 (Ω),

uk → u strongly in Li(Ω), for 1 < i < N =
2n

n− 4m
,

∇uk → ∇u strongly in L2(Ω),

∆uk → ∆u strongly in L2(Ω),
. . .

∇∆m−1uk → ∇∆m−1u, strongly in L2(Ω),
uk → u a.e. in Ω.

Thus ∫
Ω

u2
k →

∫
Ω

u2,∫
Ω

|∇uk|2 →
∫

Ω

|∇u|2,

. . .∫
Ω

|∇∆m−1uk|
2 →

∫
Ω

|∇∆m−1u|2,∫
Ω

|uk|q →
∫

Ω

|u|q, q < N,∫
Ω

f(x)uk →
∫

Ω

f(x)u,

as k →∞. By Brezis-Lieb Lemma [8], we have

‖∆muk‖22 − ‖∆mu‖22 = ‖∆m(uk − u)‖22 + o(1),∫
Ω

(|uk|N − |u|N ) =
∫

Ω

|uk − u|N + o(1).

Now, by doing some calculations, we obtain

Iλ,µ(uk)− Iλ,µ(u) =
1
2
‖∆m(uk − u)‖22 −

1
N

∫
Ω

|uk − u|N + o(1). (3.15)

By (3.12) and {uk} being bounded, we have

o(1) = 〈∇Iλ,µ(uk), uk − u〉

=
∫

Ω

(∆m(uk − u))2 −
∫

Ω

(|uk|N − |u|N ) + o(1).
(3.16)

From (3.15) and (3.16), we have

Iλ,µ(uk)− Iλ,µ(u) = (
1
2
− 1
N

)‖∆m(uk − u)‖22 + o(1). (3.17)

On the other hand, the Vitali convergence theorem see [17, chap. III.2] yields∫
Ω

|uk|N−
∫

Ω

(|uk|N−2|uk − u|2)→
∫

Ω

|u|N , as k →∞. (3.18)
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From (3.15) and (3.18), one gets

Iλ,µ(uk)− Iλ,µ(u) =
1
2
‖∆m(uk − u)‖22 −

1
N

∫
Ω

|uk|N−2|uk − u|2 + o(1). (3.19)

Using (3.19), Lemma 2.2 and Hölder inequality, we obtain

Iλ,µ(uk)− Iλ,µ(u) ≥
(1

2
− 1
N
‖uk‖N−2

N (C∗)2
)
‖∆m(uk − u)‖22 + o(1). (3.20)

Taking account of (3.17) and (3.20), we obtain

(
1
2
− 1
N

)‖∆m(uk − u)‖22 ≥
(1

2
− 1
N
‖uk‖N−2

N (C∗)2
)
‖∆m(uk − u)‖22 + o(1),

i.e. (
1− ‖uk‖N−2

N (C∗)2
)
‖∆m(uk − u)‖22 ≤ o(1).

Hence
lim

k→+∞
sup ‖uk‖N < (C∗)−

2
N−2 , (3.21)

which implies
‖∆m(uk − u)‖22 = o(1), k →∞.

Thus uk → u strongly in H2m
0 (Ω).

Now, we verify (3.21). Using (3.11), (3.12) and that the sequence {uk} is bounded
in H2m

0 (Ω), we have

(
1
2
− 1
N

)‖uk‖NN + (
1
2
− 1
q

)λ‖uk‖qq −
µ

2

∫
Ω

fuk = Cλ,µ + o(1). (3.22)

By (3.14), for any ε > 0 and µ is sufficiently small, we have
µ

2
|
∫

Ω

fuk| < ε.

Thus for any λ > 0 and µ is sufficiently small, we obtain

(
1
2
− 1
N

)‖uk‖NN ≤ Cλ,µ. (3.23)

By the assumption 0 < Cλ,µ <
2m
n (C∗)−n/(2m), we have thus (3.21). �

Lemma 3.4. For all λ > 0 and µ > 0, the function Iλ,µ(u) is weak lower semi-
continuous on the set

{u ∈ H2m
0 (Ω) : ‖u‖H2m

≤ r0},

where r0 =
(

N
22N−2(C∗)N

)1/(N−2).

Proof. Let {uk} be a sequence in H2m
0 (Ω), and 0 < r <

(
N

22N−3(C∗)N

)1/(N−2), such
that

uk ⇀ u, in H2m
0 (Ω) and ‖uk‖H2m

≤ r.
Then we have ‖u‖H2m ≤ r. Up to a subsequence, we obtain

uk → u, strongly in Lp(Ω), for all p < N,

uk → u a.e. in Ω.

Thus ∫
Ω

|uk|q →
∫

Ω

|u|q, 2 < q < N, (3.24)
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Ω

f(x)uk →
∫

Ω

f(x)u. (3.25)

By the Brezis-Lieb Lemma [8], we have

‖∆iuk‖22 − ‖∆iu‖22 = ‖∆i(uk − u)‖22 + o(1), i = 0, 1, 2, . . . ,m, (3.26)

‖∇∆iuk‖22 − ‖∇∆iu‖22 = ‖∇∆i(uk − u)‖22 + o(1), i = 0, 1, 2, . . . ,m− 1, (3.27)∫
Ω

(|uk|N − |u|N ) =
∫

Ω

|uk − u|N + o(1). (3.28)

From (3.26) and (3.27), we obtain

‖uk‖2H2m
− ‖u‖2H2m

= ‖uk − u‖2H2m
+ o(1). (3.29)

Using (3.28) and Lemma 2.2, we have∫
Ω

|uk − u|N ≤ (C∗)N‖uk − u‖NH2m

≤ (C∗)N‖uk − u‖2H2m
2N−2(‖uk‖H2m + ‖u‖H2m)N−2

≤ 22N−4(C∗)NrN−2‖uk − u‖2H2m
.

(3.30)

To sum up (3.24), (3.25), (3.29) and (3.30), we obtain

Iλ,µ(uk)− Iλ,µ(u) =
1
2
‖uk − u‖2H2m

− 1
N

∫
Ω

|uk − u|N + o(1)

≥
(1

2
− 22N−4 1

N
(C∗)NrN−2

)
‖uk − u‖2H2m

+ o(1).

Taking r = r0 =
(

N
22N−2(C∗)N

)1/(N−2) in above equation,

Iλ,µ(uk)− Iλ,µ(u) ≥ 1
4
‖uk − u‖2H2m

+ o(1).

If ‖uk − u‖H2m
→ 0, as k →∞, by the (3.15) and (3.16), we have

lim inf
k→∞

Iλ,µ(uk) = Iλ,µ(u).

If ‖uk − u‖H2m → 0, as k →∞, thus

lim inf
k→∞

Iλ,µ(uk) ≥ Iλ,µ(u).

In brief, we obtain
lim inf
k→∞

Iλ,µ(uk) ≥ Iλ,µ(u).

This completes the proof. �

4. Proof of main results

Proposition 4.1. Suppose that f(x) is continuous with not identical to 0 in Ω and
λ > 0. For µ0 > 0 small enough such that for any 0 < µ < µ0, then (1.1) has a
solution with negative energy.

Proof. Since f(x) is continuous and not identical to 0 in Ω, then there exists φ ∈
H2m

0 (Ω), such that
∫

Ω
f(x)φ > 0. For any t > 0, we have

Iλ,µ(tφ) =
1
2
t2‖φ‖2H2m

− 1
N
tN‖φ‖NN − λ

1
q
tq‖φ‖qq − µt

∫
Ω

f(x)φ. (4.1)
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Hence, there exists t0(λ, µ) > 0, such that 0 < t ≤ t0(λ, µ) and

Iλ,µ(tφ) < 0.

By Lemma 3.4, there exist r0 > 0 and v ∈ H2m
0 (Ω) with ‖v‖H2m ≤ r0, such that

Iλ,u(v) = inf
‖u‖H2m

≤r0
Iλ,µ(u) < 0. (4.2)

Thus v is a weak solution of (1.1) with negative energy. �

Proposition 4.2. Suppose f(x) is continuous and not identical to 0 in Ω. If λ > 0
is sufficiently large and µ > 0 is enough small, then (1.1) has a weak solution with
positive energy.

Proof. Lemma 3.1 implies that Iλ,µ(u) satisfies the condition (I1) in Lemma 2.1.
On the other hand, from (4.1), we obtain

lim
t→+∞

Iλ,µ(tφ) = −∞.

There exists a constant T > 0, taking e = Tφ with ‖e‖H2m > δ such that

Iλ,µ(e) < 0,

where δ > 0 is the constant in Lemma 3.1. Thus the condition (I2) of Lemma 2.1
holds. Denote

Cλ,µ = inf
γ∈Γ

sup
t∈[0,1]

Iλ,µ(γ(t)), (4.3)

where

Γ = {γ ∈ C([0, 1], H2m
0 (Ω)) : γ(0) = 0, γ(1) = e}.

From Lemma 3.2 and (4.3), it follows that

0 < Cλ,µ <
2m
n

(C∗)−n/(2m).

Applying Lemma 2.1, there exists a sequence {uk} ⊂ H2m
0 (Ω), such that

Iλ,µ(uk)→ Cλ,µ, and ∇Iλ,µ(uk)→ 0, as k →∞.

By Lemma 3.3, there exists a subsequence of {uk} which strongly converges to u
in H2m

0 (Ω). Thus Iλ,µ(u) has a critical point u with Iλ,µ(u) = Cλ,µ > 0. Hence we
obtain a weak solution of equation (1.1) with positive energy. �

Proof of Theorem 1.1. From Propositions 4.1 and 4.2, problem (1.1) has two dis-
tinctic solutions u1, u2 with Iλ,µ(u1) < 0 < Iλ,µ(u2). �
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