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EXACT CONTROLLABILITY PROBLEM OF A WAVE
EQUATION IN NON-CYLINDRICAL DOMAINS

HUA WANG, YIJUN HE, SHENGJIA LI

Abstract. Let α : [0,∞)→ (0,∞) be a twice continuous differentiable func-

tion which satisfies that α(0) = 1, α′ is monotone and 0 < c1 ≤ α′(t) ≤ c2 < 1
for some constants c1, c2. The exact controllability of a one-dimensional wave

equation in a non-cylindrical domain is proved. This equation characterizes

small vibrations of a string with one of its endpoint fixed and the other mov-
ing with speed α′(t). By using the Hilbert Uniqueness Method, we obtain the

exact controllability results of this equation with Dirichlet boundary control

on one endpoint. We also give an estimate on the controllability time that
depends only on c1 and c2.

1. Introduction and main results

Suppose α : [0,∞) → (0,∞) is a twice continuous differentiable function satis-
fying the following assumptions:

(A1) 0 < c1 ≤ α′(t) ≤ c2 < 1 for all 0 ≤ t <∞;
(A2) α′ is monotone;
(A3) α(0) = 1.

Let T > 0. We define the non-cylindrical domain Q̂αT by

Q̂αT = {(y, t) ∈ R2 : 0 < y < α(t), t ∈ (0, T )}.

This article concerns the exact controllability of the one-dimensional wave equation

utt(y, t)− uyy(y, t) = 0, (y, t) ∈ Q̂αT ,
u(0, t) = 0, u(α(t), t) = v(t), t ∈ (0, T ),

u(y, 0) = u0(y), ut(y, 0) = u1(y), y ∈ (0, 1),

(1.1)

where v ∈ L2(0, T ) and (u0, u1) ∈ L2(0, 1)×H−1(0, 1). Since supt∈(0,T ) |α′(t)| < 1,
by [9], the system of (1.1) admits a unique solution in the sense of transposition.
Here, as in [10], u ∈ L∞(0, T ;L2(0, α(t)) is called a solution by transposition of
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problem (1.1) if u verifies∫ T

0

∫ α(t)

0

u(y, t)ĥ(y, t) dy dt

=
∫ 1

0

[u1(y)θ(y, 0)− u0(y)θt(y, 0)]dy −
∫ T

0

v(t)θy(α(t), t)dt,

(1.2)

for all ĥ ∈ L1(0, T ;L2(0, α(t)), where θ is the weak solution of the problem

θtt(y, t)− θyy(y, t) = ĥ, (y, t) ∈ Q̂αT ,
θ(0, t) = θ(α(t), 0) = 0, t ∈ (0, T ),

θ(T ) = θ′(T ) = 0, x ∈ (0, 1).

(1.3)

The exact controllability problem of system (1.1) is stated as follows.

Definition 1.1. We say system (1.1) is exactly controllable at time T , if for any
(u0, u1) ∈ L2(0, 1)×H−1(0, 1), (u0

d, u
1
d) ∈ L2(0, α(T ))×H−1(0, α(T )), there exists

v ∈ L2(0, T ) such that the solution by transposition u of (1.1) satisfies u(T ) = u0
d

and ut(T ) = u1
d.

For a function α satisfying conditions (A1)–(A3), we define

T ∗ =
1
c2

{
exp

(2c22(1− c1)(1 + c2)
c1(1− c2)2

)
− 1
}
, (1.4)

T ∗1 =
1
c2

{
exp

(2c22(1− c1)
c1(1− c2)3

)
− 1
}
. (1.5)

One of the main results of this article as follows.

Theorem 1.2. For any given T > T ∗, (1.1) is exactly controllable at time T .

Similarly, for the exact controllability problem, when the control is acting on the
fixed endpoint,

utt(y, t)− uyy(y, t) = 0, (y, t) ∈ Q̂αT ,
u(0, t) = v(t), u(α(t), t) = 0, t ∈ (0, T ),

u(y, 0) = u0(y), ut(y, 0) = u1(y), y ∈ (0, 1),

(1.6)

we have the following result.

Theorem 1.3. For any given T > T ∗1 , (1.6) is exactly controllable at time T .

Remark 1.4. When α(t) = 1 + kt for some constant k ∈ (0, 1), T ∗ is reduced to
T ∗k defined in [4], and Theorem 1.2 is reduced to [4, Theorem 1.1].

Remark 1.5. Theorem 1.3 extends the results in [5] and [6]. In fact, when α(t) =
1 + kt, an exact controllability result of system (1.6) has been proved for 0 < k <
1− 1√

e
in [5] and for 0 < k < 1− 2

1+e2 in [6]. We also note that the controllability
time T ∗1 given here is better than the constants T ∗k in [5] and [6] in this case.

Remark 1.6. We note that there are many functions α(t) satisfying conditions
(A1)–(A3) but are not the form 1 + kt, for example α(t) = 1 + (t + arctan t)/c
where c is any constant that is greater than 2.
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Recently, several works on the controllability problems of wave equations in non-
cylindrical domains have been published. The existence of solutions of the initial
boundary value problem for the nonlinear wave equation in non-cylindrical domains
has been studied in [3, 8]. The controllability problem for a multi-dimensional wave
equation in a non-cylindrical domain has been investigated in [2, 9, 10]. About the
one-dimension cases, there have been extensive study of the controllability problem
in a non-cylindrical domain. We refer the reader to [1, 4, 5, 6].

When α(t) = 1 + kt for some constant 0 < k < 1, in [4], the exact controllability
of the system (1.1) has been acquired. When α(t) = 1 + kt, Cui and Song obtained
that the system (1.6) is exactly controllable for 0 < k < 1− 1√

e
in [5] and is exactly

controllable for 0 < k < 1− 2
1+e2 in [6].

There are also other results on the exact controllability problem for wave equa-
tions of variable coefficients in cylindrical domains, see [7, 10, 11, 12] and the refer-
ences therein. So, our first aim is to transform (1.1) and (1.6) into wave equations
with variable coefficients in a cylindrical domain.

Let x = y
α(t) and w(x, t) = u(y, t) = u(α(t)x, t) for (y, t) ∈ Q̂αT . Then, it

is straightforward to show that (x, t) varies in QT := (0, 1) × (0, T ) and (1.1) is
transformed into the wave equation with variable coefficients,

wtt −
[β(x, t)
α(t)

wx
]
x

+
γ(x, t)
α(t)

wtx +
τ(x, t)
α(t)

wx = 0, in QT ,

w(0, t) = 0, w(1, t) = v(t) t ∈ (0, T ),

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, 1),

(1.7)

where β(x, t) = 1−α′2(t)x2

α(t) , γ(x, t) = −2α′(t)x, τ(x, t) = −α′′(t)x, w0 = u0, w1 =
u1 + α′(0)xu0

x.
From [10], we know that for (u0, u1) ∈ L2(0, 1) × H−1(0, 1) and v ∈ L2(0, T ),

(1.7) admits a unique solution w ∈ C([0, T ];L2(0, 1)) ∩ C1([0, T ];H−1(0, 1)) in the
sense of transposition, where w is called a solution by transposition of problem (1.7)
if∫ T

0

∫ 1

0

whdx dt

=
∫ 1

0

[−w0(x)zt(x, 0) + α′(0)w0(x)z(x, 0) + w′(x)z(x, 0)]dx

−
∫ T

0

β(1, t)zx(1, t)v(t)dt+
∫ 1

0

[γx(x, 0)w0(x)z(x, 0) + γ(x, 0)w0
x(x)z(x, 0)]dx,

for every h ∈ L1(0, T ;L2(0, 1)) and z is the weak solution of the problem

L∗z = h, in QT ,

z(0, t) = z(1, t) = 0, t ∈ (0, T ),

z(x, T ) = zt(x, T ) = 0, x ∈ (0, 1),
(1.8)

where the formal adjoint L∗ of L is defined by

L∗z = α(t)ztt − [β(x, t)zx]x + γ(x, t)zxt + τ(x, t)zx. (1.9)

Thus, Theorem 1.2 can be restated as the following exact controllability result
for equation (1.7).
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Theorem 1.7. For any T > T ∗ where T ∗ is given by (1.4), any (w0, w1) ∈
L2(0, 1) × H−1(0, 1) and (w0

d, w
1
d) ∈ L2(0, 1) × H−1(0, 1), we can always find a

control v ∈ L2(0, T ) such that the corresponding solution by transposition w of
(1.7) satisfies w(T ) = w0

d, wt(T ) = w1
d.

Similarly, (1.6) can be transformed into the wave equation with variable coeffi-
cients,

wtt −
[β(x, t)
α(t)

wx
]
x

+
γ(x, t)
α(t)

wtx +
τ(x, t)
α(t)

wx = 0, in QT ,

w(0, t) = v(t), w(1, t) = 0, t ∈ (0, T ),

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, 1),

(1.10)

and Theorem 1.3 can be restated as the following exact controllability result for
equation(1.10).

Theorem 1.8. For any T > T ∗1 where T ∗1 is given by (1.5), any (w0, w1) ∈
L2(0, 1) × H−1(0, 1) and (w0

d, w
1
d) ∈ L2(0, 1) × H−1(0, 1), we can always find a

control v ∈ L2(0, T ) such that the corresponding solution by transposition w of
(1.10) satisfies w(T ) = w0

d, wt(T ) = w1
d.

2. Description of the Hilbert uniqueness method

In this section, we describe the Hilbert uniqueness method which is used in the
proof of Theorems 1.7 and 1.8. Next, we consider Theorem 1.7 in detail.

Firstly, for any (w0
d, w

1
d) ∈ L2(0, 1)×H−1(0, 1), the system

α(t)ξtt −
[
β(x, t)ξx

]
x

+ γ(x, t)ξtx + τ(x, t)ξx = 0, in QT ,

ξ(0, t) = 0, ξ(1, t) = 0, t ∈ (0, T ),

ξ(x, T ) = w0
d(x), ξt(x, T ) = w1

d(x), x ∈ (0, 1)

(2.1)

has a unique solution ξ ∈ C([0, T ];L2(0, 1)) ∩ C1([0, T ];H−1(0, 1)) in the sense of
transportation.

Secondly, for any (z0, z1) ∈ H1
0 (0, 1)× L2(0, 1), we solve

α(t)ztt − [β(x, t)zx]x + γ(x, t)zxt + τ(x, t)zx = 0, in QT ,

z(0, t) = z(1, t) = 0, t ∈ (0, T ),

z(x, 0) = z0(x), zt(x, 0) = z1(x), x ∈ (0, 1),

(2.2)

and
α(t)ηtt −

[
β(x, t)ηx

]
x

+ γ(x, t)ηtx + τ(x, t)ηx = 0, in QT ,

η(0, t) = 0, η(1, t) = zx(1, t), t ∈ (0, T ),

η(x, T ) = 0, ηt(x, T ) = 0, x ∈ (0, 1).

(2.3)

Then we define a linear operator Λ : H1
0 (0, 1)×L2(0, 1)→ H−1(0, 1)×L2(0, 1), by

(z0, z1) 7→ (ηt(·, 0) + γ(·, 0)ηx(·, 0)− α′(0)η(·, 0),−η(·, 0)),

Lastly, the problem is reduced to prove the existence of some (z0, z1) ∈ H1
0 (0, 1)×

L2(0, 1) such that

Λ(z0, z1) = ([w1− ξt(0)]−α′(0)[w0− ξ(0)] + γ(0)[w0
x− ξx(0)]− [w0− ξ(0)]). (2.4)
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To solve (2.4), we observe that∫ 1

0

β(1, t)|zx(1, t)|2dt = 〈Λ(z0, z1), (z0, z1)〉H−1(0,1)×L2(0,1),H1
0 (0,1)×L2(0,1). (2.5)

In section 3, we prove the following observability inequality for system (2.2):
there exists a constant C > 0 such that∫ T

0

β(1, t)|zx(1, t)|2dt ≥ C
(
‖z0‖2H1

0 (0,1) + ‖z1‖2L2(0,1)

)
. (2.6)

Also, we prove that Λ is a bounded linear operator; i.e., there exists a constant
C > 0 such that∫ T

0

β(1, t)|zx(1, t)|2dt ≤ C(||z0||2H1
0 (0,1) + ||z1||2L2(0,1)). (2.7)

Combining (2.6), (2.7) and the Lax-Milgram Theorem, we can show that Λ is an
isomorphism.

Then, the equation(2.4) has a unique solution (z0, z1) ∈ H1
0 (0, 1)×L2(0, 1), and

the function zx(1, t) is the desired control such that the solution w of (1.7) satisfies
w(T ) = w0

d, wt(T ) = w1
d.

For the proof of Theorem 1.8, the steps are similar to those of Theorem 1.7. In
this case, instead of (2.3), we consider the following homogeneous wave equation

α(t)ηtt −
[
β(x, t)ηx

]
x

+ γ(x, t)ηtx + τ(x, t)ηx = 0, in QT ,

η(0, t) = zx(0, t), η(1, t) = 0, t ∈ (0, T ),

η(x, T ) = 0, ηt(x, T ) = 0, x ∈ (0, 1),

(2.8)

and define a linear operator Λ just same as (2.4), then we observe that∫ 1

0

β(0, t)|zx(0, t)|2dt = −〈Λ(z0, z1), (z0, z1)〉H−1(0,1)×L2(0,1),H1
0 (0,1)×L2(0,1). (2.9)

We omit the details of the proof here.

3. Observability estimates

The main purpose of this section is to prove the observability inequalities for
system (2.2). To prove those estimates, we need some technical lemmas.

From [10], we know that: for any (z0, z1) ∈ H1
0 (0, 1) × L2(0, 1), the equation

(2.2) has a unique weak solution z ∈ C([0, T ];H1
0 (0, 1)) ∩C1([0, T ];L2(0, 1)) in the

sense of transportation.
The energy for (2.2) is defined as

E(t) =
1
2

∫ 1

0

[α(t)|zt(x, t)|2 + β(x, t)|zx(x, t)|2]dx, for t ≥ 0, (3.1)

where z is the solution of (2.2). Since α(0) = 1, we have

E0 := E(0) =
1
2

∫ 1

0

[
|z1(x)|2 + β(x, 0)|z0

x(x)|2
]
dx. (3.2)

First, we prove a lemma which is related to the decay rate of the energy E(t).



6 H. WANG, Y. HE, S. LI EJDE-2015/31

Lemma 3.1. If α(0) = 1, 0 < c1 ≤ α′(t) ≤ c2 < 1 and α′ is monotone, then
c3E0

α(t)
≤ E(t) ≤ c4E0

α(t)
, (3.3)

where

(c3, c4) =

{(
1−c2
1−c1 ,

c2
c1

)
, if α′ is increasing,(

c1
c2
, 1−c1

1−c2

)
, if α′ is decreasing.

(3.4)

Proof. For any 0 < t ≤ T , through multiplying the first equation of (2.2) by zt and
integrating the result on (0, 1)× (0, t), we conclude that

0 =
∫ t

0

∫ 1

0

{
α(s)ztt(x, s)zt(x, s)− [β(x, s)zx(x, s)]xzt(x, s)

+ γ(x, s)zxt(x, s)zt(x, s) + τ(x, s)zx(x, s)zt(x, s)
}
dx ds

:= I1 + I2 + I3 + I4,

where

I1 =
1
2

∫ 1

0

α(s)|zt(x, s)|2dx
∣∣t
0
− 1

2

∫ t

0

∫ 1

0

α′(s)|zt(x, s)|2 dx ds,

I2 =
1
2

∫ 1

0

β(x, s)|zx(x, s)|2dx
∣∣t
0
− 1

2

∫ t

0

∫ 1

0

βt(x, s)|zx(x, s)|2 dx ds

=
1
2

∫ 1

0

β(x, s)|zx(x, s)|2dx
∣∣t
0

+
1
2

∫ t

0

∫ 1

0

α′(s)
α(s)

β(x, s)|zx(x, s)|2 dx ds

+
∫ t

0

∫ 1

0

α′(s)α′′(s)
α(s)

x2|zx(x, s)|2 dx ds,

I3 =
∫ t

0

∫ 1

0

α′(s)|zt(x, s)|2 dx ds,

I4 = −
∫ t

0

∫ 1

0

xα′′(s)zx(x, s)zt(x, s) dx ds.

We thereby obtain:

E(t) = E0 −
∫ t

0

α′(s)
α(s)

E(s)ds−
∫ t

0

∫ 1

0

α′(s)α′′(s)
α(s)

x2|zx(x, s)|2 dx ds

+
∫ t

0

∫ 1

0

α′′(s)xzx(x, s)zt(x, s) dx ds.

E′(t) = −α
′(t)
α(t)

E(t)−
∫ 1

0

α′(t)α′′(t)
α(t)

x2|zx(x, t)|2dx+
∫ 1

0

α′′(t)xzx(x, t)zt(x, t)dx.

(3.5)
We subdivide the proof into two cases:

(1) α′ is increasing; that is, α′′(t) ≥ 0. By using the inequalities

− α′(t)α′′(t)
2ε(t)α(t)

x2|zx(x, t)|2 − ε(t)α(t)α′′(t)
2α′(t)

|zt(x, t)|2

≤ α′′(t)xzx(x, t)zt(x, t)

≤ α′(t)α′′(t)
2α(t)

x2|zx(x, t)|2 +
α(t)α′′(t)

2α′(t)
|zt(x, t)|2,
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where ε(t) = α′(t)
1−α′(t) , we easily obtain

− (
α′(t)
α(t)

+
α′′(t)

1− α′(t)
)E(t) ≤ E′(t) ≤ −(

α′(t)
α(t)

− α′′(t)
α′(t)

)E(t), (3.6)

so
(1− α′(t))E0

(1− α′(0))α(t)
≤ E(t) ≤ α′(t)E0

α′(0)α(t)
. (3.7)

Using 0 < c1 ≤ α′(t) ≤ c2 < 1, we conclude that
c3E0

α(t)
≤ E(t) ≤ c4E0

α(t)
, (3.8)

where c3 = 1−c2
1−c1 , c4 = c2

c1
.

(2) α′ is decreasing; that is, α′′(t) ≤ 0. By using the inequalities

α′(t)α′′(t)
2α(t)

x2|zx(x, t)|2 +
α(t)α′′(t)

2α′(t)
|zt(x, t)|2

≤ α′′(t)xzx(x, t)zt(x, t)

≤ −α
′(t)α′′(t)

2ε(t)α(t)
x2|zx(x, t)|2 − ε(t)α(t)α′′(t)

2α′(t)
|zt(x, t)|2,

where ε(t) = α′(t)
1−α′(t) , we easily get

− (
α′(t)
α(t)

− α′′(t)
α′(t)

)E(t) ≤ E′(t) ≤ −(
α′(t)
α(t)

+
α′′(t)

1− α′(t)
)E(t), (3.9)

so
α′(t)E0

α′(0)α(t)
≤ E(t) ≤ (1− α′(t))E0

(1− α′(0))α(t)
. (3.10)

Using 0 < c1 ≤ α′(t) ≤ c2 < 1, we conclude that
c3E0

α(t)
≤ E(t) ≤ c4E0

α(t)
, (3.11)

where c3 = c1
c2

, c4 = 1−c1
1−c2 . �

Remark 3.2. When α′′(t) ≡ 0, that is, α(t) = 1 + kt for some constant k ∈ (0, 1),
then c3 = c4 = 1, Lemma 3.1 is reduced to Lemma 3.1 in [4].

Next, similar to the proof of [4, Lemma 3.2], we can get the following estimate
for each weak solution z of (2.2) by the multiplier method.

Lemma 3.3. For any function q ∈ C1([0, 1]), the solution z of (2.2) satisfies the
estimate

1
2

∫ T

0

β(x, t)q(x)|zx(x, t)|2dt
∣∣∣1
0

=
1
2

∫ T

0

∫ 1

0

q′(x)[α(t)|zt(x, t)|2 + β(x, t)|zx(x, t)|2] dx dt

−
∫ T

0

∫ 1

0

α′(t)q(x)zx(x, t)zt(x, t) dx dt−
1
2

∫ T

0

∫ 1

0

βx(x, t)q(x)|zx(x, t)|2 dx dt

+
∫ 1

0

[α(t)q(x)zx(x, t)zt(x, t)− xα′(t)q(x)|zx(x, t)|2]dx
∣∣∣T
0
.

(3.12)
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Finally, we derive the continuity estimate.

Theorem 3.4. Assume T > 0, for any (z0, z1) ∈ H1
0 (0, 1)×L2(0, 1), there exists a

constant C > 0 such that the solution of (2.2) satisfies the following two estimates:∫ T

0

β(1, t)|zx(1, t)|2dt ≤ C(||z0||2H1
0 (0,1) + ||z1||2L2(0,1)), (3.13)∫ T

0

β(0, t)|zx(0, t)|2dt ≤ C(||z0||2H1
0 (0,1) + ||z1||2L2(0,1)); (3.14)

so zx(0, ·) ∈ L2(0, T ) and zx(1, ·) ∈ L2(0, T ).

Proof. First, we prove inequality (3.13). Let q(x) = x for x ∈ [0, 1] in (3.12) and
noticing that βx(x, t) = − 2α′2(t)x

α(t) , γ(x, t) = −2α′(t)x, it follows that

1
2

∫ T

0

β(1, t)|zx(1, t)|2dt

=
∫ T

0

E(t)dt−
∫ T

0

∫ 1

0

α′(t)xzt(x, t)zx(x, t) dx dt

+
∫ T

0

∫ 1

0

α′2(t)
α(t)

x2|zx(x, t)|2 dx dt

+
∫ 1

0

[α(t)xzt(x, t)zx(x, t)− α′(t)x2|zx(x, t)|2]dx
∣∣∣T
0
.

(3.15)

We estimate every terms on the right side of (3.15). By the assumption for α,
we have 1 ≤ α(t) ≤ 1 + c2T and 0 < 1−c22

1+c2T
≤ β(x, t) ≤ 1 for any (x, t) ∈ QT , these

inequalities together with (3.3) and the boundedness of α′(t) imply∫ T

0

E(t)dt−
∫ T

0

∫ 1

0

α′(t)xzt(x, t)zx(x, t) dx dt

+
∫ T

0

∫ 1

0

α′2(t)
α(t)

x2|zx(x, t)|2 dx dt

≤
∫ T

0

E(t)dt+ C

∫ T

0

∫ 1

0

[|zt(x, t)|2 + |zx(x, t)|2] dx dt

≤
∫ T

0

E(t)dt+ C

∫ T

0

∫ 1

0

[α(t)|zt(x, t)|2 + β(x, t)|zx(x, t)|2] dx dt

≤ CE0.

(3.16)

For each t ∈ [0, T ] and ε(t) > 0, it holds that∣∣∣ ∫ 1

0

[α(t)xzt(x, t)zx(x, t)− α′(t)x2|zx(x, t)|2]dx
∣∣∣

≤
∫ 1

0

[α(t)|zt(x, t)||zx(x, t)|+ α′(t)|zx(x, t)|2]dx

≤ 1
2ε(t)

∫ 1

0

α2(t)|zt(x, t)|2dx+
ε(t)
2

∫ 1

0

|zx(x, t)|2dx+
∫ 1

0

α′(t)|zx(x, t)|2dx

≤ α(t)
2ε(t)

∫ 1

0

α(t)|zt(x, t)|2dx+ [
ε(t)
2

+ α′(t)]
α(t)

1− α′2(t)

∫ 1

0

β(x, t)|zx(x, t)|2dx.
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Choosing ε(t) = 1− α′(t), then it is easy to see

ε(t) > 0 and
α(t)
ε

= [
ε

2
+ α′(t)]

2α(t)
1− α′2(t)

=
α(t)

1− α′(t)
.

This implies that∣∣∣ ∫ 1

0

[α(t)xzt(x, t)zx(x, t)− α′(t)x2|zx(x, t)|2]dx
∣∣∣ ≤ α(t)

1− α′(t)
E(t) ≤ α(t)

1− c2
E(t).

Then, using (3.3), it follows that∣∣∣ ∫ 1

0

[α(t)xzt(x, t)zx(x, t)− α′(t)x2|zx(x, t)|2]dx
∣∣∣T
0

∣∣∣ ≤ c5E0, (3.17)

where c5 = 2c4
1−c2 . Therefore, combining (3.15), (3.16) and (3.17), it follows that∫ T

0

β(1, t)|zx(1, t)|2dt ≤ CE0 ≤ C
(
‖z0‖2H1

0 (0,1) + ‖z1‖2L2(0,1)

)
.

Next, we prove the inequality (3.14). Let q(x) = x − 1 for x ∈ [0, 1] in (3.12)
and noticing that βx(x, t) = − 2α′2(t)x

α(t) , γ(x, t) = −2α′(t)x, it follows that

1
2

∫ T

0

β(0, t)|zx(0, t)|2dt

=
∫ T

0

E(t)dt−
∫ T

0

∫ 1

0

α′(t)(x− 1)zt(x, t)zx(x, t) dx dt

+
∫ T

0

∫ 1

0

α′2(t)
α(t)

x(x− 1)|zx(x, t)|2 dx dt

+
∫ 1

0

[α(t)(x− 1)zt(x, t)zx(x, t)− α′(t)x(x− 1)|zx(x, t)|2]dx
∣∣∣T
0
.

(3.18)

Through estimating every terms on the right side of (3.18), similar to the derive
of (3.16), it follows that∫ T

0

E(t)dt−
∫ T

0

∫ 1

0

α′(t)(x− 1)zt(x, t)zx(x, t) dx dt

+
∫ T

0

∫ 1

0

α′2(t)
α(t)

x(x− 1)|zx(x, t)|2 dx dt ≤ CE0.

(3.19)

Since ∣∣∣ ∫ 1

0

[α(t)(x− 1)zt(x, t)zx(x, t)− α′(t)x(x− 1)|zx(x, t)|2]dx
∣∣∣

≤
∫ 1

0

[α(t)|zt(x, t)||zx(x, t)|+ α′(t)|zx(x, t)|2]dx,

similar to the derive of (3.17), it follows that∣∣∣ ∫ 1

0

[α(t)(x− 1)zt(x, t)zx(x, t)− α′(t)x(x− 1)|zx(x, t)|2]dx
∣∣T
0

∣∣∣ ≤ c5E(0), (3.20)

where c5 = 2c4
1−c2 .
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From (3.18), (3.19) and (3.20), it follows that∫ T

0

β(0, t)|zx(0, t)|2dt ≤ CE0 ≤ (||z0||2H1
0 (0,1) + ||z1||2L2(0,1)).

�

Now, we give the proof of the observability inequalities.

Theorem 3.5. For T > T ∗ where T ∗ satisfies (1.4) and any (z0, z1) ∈ H1
0 (0, 1)×

L2(0, 1), there exists a constant C > 0 such that the corresponding solution of (2.2)
satisfies ∫ T

0

β(1, t)|zx(1, t)|2dt ≥ C
(
‖z0‖2H1

0 (0,1) + ‖z1‖2L2(0,1)

)
. (3.21)

Proof. If we choose ε(t) = α′(t)
1+α′(t) , then it is obvious that

0 < ε(t) <
1
2
, and 1− ε(t) = 1 +

(
2− 1

ε(t)

) α′2(t)
1− α′2(t)

=
1

1 + α′(t)
.

Thus, using

x2 =
α(t)x2

1− α′2(t)x2
β(x, t) ≤ α(t)

1− α′2(t)
β(x, t)

and (3.3), it follows that∫ T

0

E(t)dt−
∫ T

0

∫ 1

0

α′(t)xzt(x, t)zx(x, t) dx dt

+
∫ T

0

∫ 1

0

α′2(t)
α(t)

x2|zx(x, t)|2 dx dt

≥
∫ T

0

∫ 1

0

1− ε(t)
2

α(t)|zt(x, t)|2 dx dt

+
∫ T

0

∫ 1

0

{1
2
β(x, t) + (1− 1

2ε(t)
)
α′2(t)
α(t)

x2
}
|zx(x, t)|2 dx dt

≥
∫ T

0

∫ 1

0

1− ε(t)
2

α(t)|zt(x, t)|2 dx dt

+
∫ T

0

∫ 1

0

[
1 +

(2− 1
ε(t) )α′2(t)

1− α′2(t)
]1
2
β(x, t)|zx(x, t)|2 dx dt

=
∫ T

0

1
1 + α′(t)

E(t)dt

≥ c6E0

∫ T

0

1
α(t)

dt,

(3.22)

where c6 = c3/(1 + c2). By (3.15), (3.17) and (3.22), we obtain

1
2

∫ T

0

β(1, t)|zx(1, t)|2dt ≥ c6E0

∫ T

0

1
1 + c2t

dt− c5E0

=
(c6
c2

log(1 + c2T )− c5
)
E0.
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If we choose T ∗ as in (1.4), then it is easy to see that

T ∗ =
1
c2

{
exp

(c2c5
c6

)
− 1
}
, (3.23)

so for T > T ∗,∫ T

0

β(1, t)|zx(1, t)|2dt ≥ C
(
‖z0‖2H1

0 (0,1) + ‖z1‖2L2(0,1)

)
,

holds for C = 2c6
c2

log(1 + c2T )− 2c5 > 0. �

Theorem 3.6. For T > T ∗1 where T ∗1 satisfies (1.5) and any (z0, z1) ∈ H1
0 (0, 1)×

L2(0, 1), there exists a constant C > 0 such that the corresponding solution of (2.2)
satisfies ∫ T

0

β(0, t)|zx(0, t)|2dt ≥ C(||z0||2H1
0 (0,1) + ||z1||2L2(0,1)). (3.24)

Proof. Choosing ε(x, t) = α′(t)(1−α′(t)x)
α(t) , it is easy to see that

|α′(t)zx(x, t)zt(x, t)|

≤ α′2(t)
2ε(x, t)

|zt(x, t)|2 +
ε(x, t)

2
|zx(x, t)|2

=
α′(t)

1− α′(t)x
α(t)

2
|zt(x, t)|2 +

α′(t)
1 + α′(t)x

β(x, t)
2
|zx(x, t)|2.

Since x− 1 ≤ 0 for x ∈ [0, 1], we have∫ T

0

E(t)dt−
∫ T

0

∫ 1

0

α′(t)(x− 1)zt(x, t)zx(x, t) dx dt

+
∫ T

0

∫ 1

0

α′2(t)
α(t)

x(x− 1)|zx(x, t)|2 dx dt

≥
∫ T

0

E(t)dt+
∫ T

0

∫ 1

0

α′(t)(x− 1)
1− α′(t)x

α(t)
2
|zt(x, t)|2 dx dt

+
α′(t)(x− 1)
1 + α′(t)x

β(x, t)
2
|zx(x, t)|2 dx dt

+
∫ T

0

∫ 1

0

2α′2(t)x(x− 1)
1− α′2(t)x2

β(x, t)
2
|zx(x, t)|2 dx dt

=
1
2

∫ T

0

∫ 1

0

1− α′(t)
1− α′(t)x

[α(t)|zt(x, t)|2 + β(x, t)|zx(x, t)|2] dx dt

≥
∫ T

0

(1− α′(t))E(t)dt

≥ c∗6E0

∫ T

0

1
α(t)

dt,

(3.25)

where c∗6 = (1− c2)c3.
From (3.18), (3.20) and (3.25), we arrive at

1
2

∫ T

0

β(0, t)|zx(0, t)|2dt ≥ c∗6E0

∫ T

0

1
α(t)

dt− c5E0
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≥ c∗6E0

∫ T

0

1
1 + c2t

dt− c5E0 = (
c∗6
c2

log(1 + c2T )− c5)E0.

If we choose T ∗1 as in (1.5), then it is easy to see that

T ∗1 =
1
c2

{
exp(

c2c5
c∗6

)− 1
}

;

thus, when T > T ∗1 ,∫ T

0

β(0, t)|zx(0, t)|2dt ≥ C
(
‖z0‖2H1

0 (0,1) + ‖z1‖2L2(0,1)

)
.

holds for C = 2c∗6
c2

log(1 + c2T )− 2c5 > 0. �
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