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DIFFERENTIAL INCLUSIONS AND EXACT PENALTIES

ALEXANDER V. FOMINYH, VLADIMIR V. KARELIN, LYUDMILA N. POLYAKOVA

Abstract. The article considers differential inclusion with a given set-valued

mapping and initial point. It is required to find a solution of this differen-

tial inclusion that minimizes an integral functional. Some classical results
about the maximum principle for differential inclusions are obtained using the

support and exact penalty functions. This is done for differentiable and for

non-differentiable set-valued mappings in phase variables.

1. Introduction

Nowadays, differential inclusions (or differential equations with a multivalued
right-hand side) are almost indispensable in mathematical modeling of systems
with incomplete description [4] and analyzing behavior of discontinuous systems
[9]. Applications of differential inclusions to the problem of constructing Lyapunov
functions and optimization are known. The problem of finding solutions for a
differential inclusion is important for applications [5, 6, 10], [14]–[16]. As a rule, it
is possible to obtain an analytical solution of a differential inclusion only in special
cases but in the other cases we have to use numerical methods for this purpose.

It should be noted that the conditions known of the existence of solutions [1, 4]
usually contain either a continuity requirement, or both the semi-continuities and
the convexity of the corresponding multivalued mapping.

Definition 1.1. A differential inclusion is a relation of the form

ẋ(t) ∈ F (x(t), t) (1.1)

with respect to the unknown function x : I → Rn, where I ⊂ R is an interval,
F : R× Rn ⊂ 2Rn

(2M hereinafter means the set of all subsets of M).

Definition 1.2. A function x : I → Rn is called a solution of differential inclusion
(1.1) on the interval I (I ⊂ R) if it is absolutely continuous in I and almost
everywhere in I satisfies relation (1.1). If the gradient of x has only discontinuities
of the first kind, such a solution is called the proper one.

Definition 1.3. A multivalued mapping F : X → 2Y is called lower semicontinuous
in x0 if for every y0 ∈ F (x0) and for every neighborhood U(y0) of the point y0 there
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exists such a neighborhood U(x0) of the point x0 that F (x) ∩ U(0) 6= 0 for every
x ∈ U(x0).

Definition 1.4. A support function of multivalued mapping F from X to Y is the
function

c(F (x), p) := sup
y∈F (x)

(y, p) ∀x ∈ X, ∀p ∈ Y ∗,

where Y ∗ is a dual space, (·, ·) is a scalar product of vectors. It describes all closed
semispaces which contain F (x).

Definition 1.5. A subdifferential of the lower semicontinuous convex function V
on Hilbert space X with the values in R ∪ {+∞} is the set

∂V (x) = {p ∈ X∗ : (p, x)− V (x) = max
y∈X

[(p, y)− V (y)]}.

It is a closed convex subset of X∗. If V has the gradient ∇V (x) ∈ X∗ at the point
x, then ∂V (x) = {∇V (x)}.

If the function U(x) is a concave one, then the set

∂̄U(x) = {u : U(y)− U(x) ≤ (u, y − x) ∀y ∈ X}
is called a superdifferential of the function U at the point x.

Differential inequalities, implicit differential equations, differential equations with
restrictions on the phase coordinates may be represented in the form of the differ-
ential inclusion ẋ ∈ F (x, t). So a differential inclusion is generalization of ordinary
differential equations and since it has a whole family of trajectories which come
out from the initial point x0, then it is natural to state the problem of picking out
the solutions with definite properties, for example, those which minimize a certain
functional.

In [4], [9] some classical results are given which extend the known Pontryagin’s
maximum principle for differential inclusions. The maximum principle is obtained
under sufficiently stringent assumptions, in particular, provided that the support
function c(F (t, x), ψ) of the multivalued mapping F (t, x) is continuously differen-
tiable in the vector of phase coordinates. This article studies the problem in this
case using the apparatus of support functions [13] and exact penalty functions
[12]. With the help of this apparatus it is comparatively easy to obtain the known
Blagodatskih’s maximum principle. The case is additionally investigated when dif-
ferentiability in x of the support function c(F (t, x), ψ) is not assumed.

2. Statement of the problem

Consider the differential inclusion

ẋ ∈ F (x, t) (2.1)

with the initial condition
x(0) = x0. (2.2)

Here F (x, t), t ∈ [0, T ], is a given multivalued mapping, which is supposed to
be upper semicontinuous, x(t) is a n-dimensional vector-function of the phase co-
ordinates, which is supposed to be continuous with partially continuous in [0, T ]
gradient, T > 0 is a given moment of time. We assume that the function F (x, t)
puts in correspondence a certain convex compact set from Rn for every moment
of time t ∈ [0, T ] and for every phase point x ∈ Rn. It is required to find such a
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vector-function x∗(t) ∈ Cn[0, T ], which is the solution of inclusion (2.1), satisfies
initial condition (2.2) and minimizes the functional

I(x) =
∫ T

0

f0(x, t)dt, (2.3)

where f0 is a given real scalar function which is supposed to be continuous in both
arguments and continuously differentiable in x.

3. Equivalent statement of the Problem

Further, for brevity, we sometimes write F instead of F (x, t). Since for all
t ∈ [0, T ] and all x ∈ Rn the multivalued mapping F (x, t) is a convex, closed and
bounded set, inclusion (2.1) may be rewritten as follows [2]

(ẋ, ψ) ≤ c(F,ψ) ∀t ∈ [0, T ],

where ψ ∈ Rn, ‖ψ‖ = 1. Denote z(t) = ẋ(t), then from (2.2) we have

x(t) = x0 +
∫ t

0

z(τ)dτ.

We introduce the functions

l(ψ, z, t) = (z, ψ)− c(F,ψ), (3.1)

h(ψ, z, t) = max{0, l(ψ, z, t)} (3.2)

and construct the functional

ϕ(ψ, z) =
(∫ T

0

h2(ψ, z, t)dt
)1/2

. (3.3)

We consider the sets

Ω = [z ∈ Pn[0, T ] : ϕ(ψ, z) = 0], Ωδ = [z ∈ Pn[0, T ] | ϕ(ψ, z) < δ].

Then
Ωδ/Ω = [z ∈ Pn[0, T ] : 0 < ϕ(ψ, z) < δ].

One may easily check that for functional (3.3) the following relation holds

z

{
∈ Ω, if (ẋ, ψ) ≤ c(F,ψ) ∀t ∈ [0, T ],
/∈ Ω, if not.

Let us write the functional

Φ(ψ, z) = I(z) + λϕ(ψ, z), (3.4)

in which

I(z) = I
(
x0 +

∫ t

0

z(τ)dτ
)
,

where λ is a sufficiently big positive number which is called a penalty parameter.
It will be shown that under some additional assumptions it is an exact penalty
function. Then the problem of minimization of functional (2.3) under constraints
(2.1), (2.2) may be reduced to unconstrained minimization of functional (3.4).
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4. Differential properties of ϕ(z) and I(z)

Further we assume that the vector-function f(x, t) is continuous in both of its
arguments and continuously differentiable in x and that for all t ∈ [0, T ] and for
all x ∈ Rn the inclusion f(x, t) ∈ F (x, t) takes place. In the paper we sometimes
write f instead of f(x, t). Further we consider the functions l(ψ, z, t), h(ψ, z, t),
ϕ(ψ, z) and Φ(ψ, z) for a fixed value ψ, so we write l(z, t), h(z, t), ϕ(z) and Φ(z)
respectively instead of them.

Consider the functional ϕ(z). Let v ∈ Pn[0, T ]. Put

zα(t) = z(t) + αv(t).

We calculate
l(zα, t) = l(z, t) + αH1(zα, t) + o(α, t),

where
o(α, t)
α

→ 0 as α ↓ 0,

H1(zα, t) = (ψ, v(t))−max
f∈F

(∂f
∂x

∫ t

0

v(τ)dτ, ψ
)
.

Here the definition of a support function and the property of additivity of a support
function in the first argument are used [4]. Using (3.1) and (3.2), we find

h(zα, v) = h(z, t) + αH(zα, t) + o(α, t),

where
o(α, t)
α

→ 0 as α ↓ 0,

H(zα, t) = H1(zα, t), l(z, t) > 0,

H(zα, t) = 0, l(z, t) < 0,

H(zα, t) = max{0, H1(zα, t)}, l(z, t) = 0.

We introduce the sets

T+(z) = [t ∈ [0, T ] : l(z, t) > 0],

T−(z) = [t ∈ [0, T ] : l(z, t) < 0],

T0(z) = [t ∈ [0, T ] : l(z, t) = 0].

At first, consider the case z /∈ Ω.

Lemma 4.1. If z /∈ Ω, then the functional ϕ(z) is superdifferentiable [8] and its
superdifferential at a point z is expressed as follows

∂ϕ(z) =
h(z, t)
ϕ(z)

ψ +
∫ T

t

−
(∂f
∂x

)′h(z, τ)
ϕ(z)

ψ dτ, f ∈ F,

where ′ means the transpose operation.

Proof. From (3.3) we have

ϕ(zα) = ϕ(z) + α

∫ T

0

h(z, t)
ϕ(z)

H(zα, t)dt+ o(α),

where
o(α)
α
→ 0 as α ↓ 0.
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Since z /∈ Ω, we have H = H1. Then, using the expression for H1, the theorem of
the integral of a support function and positive homogeneity of a support function
in the second argument [2], one obtains

ϕ′(z, v) = lim
α↓0

ϕ(z + αv)− ϕ(z)
α

=
∫ T

0

(h(z, t)
ϕ(z)

ψ, v(t)
)
dt−max

f∈F

∫ T

0

(∂f
∂x

∫ t

0

v(τ)dτ,
h(z, t)
ϕ(z)

ψ
)
dt.

Integrating by parts in the last summand, we obtain

ϕ′(z, v)

=
∫ T

0

(h(z, t)
ϕ(z)

ψ, v(t)
)
dt−max

f∈F

∫ T

0

(
v(t),

∫ T

t

(∂f
∂x

)′h(z, τ)
ϕ(z)

ψ dτ
)
dt

=
∫ T

0

(h(z, t)
ϕ(z)

ψ, v(t)
)
dt+ min

f∈F

∫ T

0

(
v(t),

∫ T

t

−
(∂f
∂x

)′h(z, τ)
ϕ(z)

ψ dτ
)
dt

= min
V ∈∂ϕ(z)

(V, v),

(4.1)

where

∂ϕ(z) =
{
V ∈ Pn[0, T ] : V (t) =

h(z, t)
ϕ(z)

ψ +
∫ T

t

−
(∂f
∂x

)′h(z, τ)
ϕ(z)

ψ dτ, f ∈ F
}
.

We denote

κ(z, t) =
h(z, t)
ϕ(z)

, κ(z) ∈ P [0, T ] .

Then κ(z, t) ≥ 0 for all t ∈ [0, T ], ‖κ(z)‖ = 1, where ‖ · ‖ is the norm in L2[0, T ].
From (4.1) it is clear that the functional ϕ(z) is superdifferentiable and its subdif-
ferential is of the form

∂ϕ(z) = κ(z, t)ψ +
∫ T

t

−
(∂f
∂x

)′
κ(z, τ)ψ dτ, f ∈ F. (4.2)

The proof is complete. �

Now consider the case z ∈ Ω.

Lemma 4.2. If z ∈ Ω, then the functional ϕ(z) is Dini differentiable in any direc-
tion v ∈ Pn[0, T ] and its D-derivative in the direction v at a point z is expressed as
follows

ϕ′(z, v) = max
‖w‖≤1

[ ∫ T

0

(
w(t)ψ, v(t)

)
dt+ min

f∈F

∫ T

0

(∫ T

t

−
(∂f
∂x

)′
w(τ)ψ dτ, v(t)

)
dt
]
,

where w ∈ P [0, T ], ‖w‖ ≤ 1.

Proof. Since z ∈ Ω, we have ϕ(z) = 0. Then from expression (3.3) we obtain

ϕ′(z, v) = lim
α↓0

ϕ(z + αv)− ϕ(z)
α

= ‖H(zα)‖ = max
‖w‖≤1

∫ T

0

H(zα, t)w(t)dt.

Under the assumptions of this theorem we have T+(z) = ∅, so

ϕ′(z, v) = max
‖w‖≤1

∫
T0∪T−

w(t) max
w(t)∈[0,1]

(w(t)H1(zα, t))dt
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= max
w∈W1

∫ T

0

H1(zα, t)w(t)dt,

where

W1 = {w ∈ P [0, T ] : ‖w‖ ≤ 1, w(t) ≥ 0∀t ∈ T0, w(t) = 0∀t ∈ T−}. (4.3)

From the expression for H1 we obtain

ϕ′(z, v)

= max
w∈W1

[ ∫ T

0

(w(t)ψ, v(t))dt+ min
f∈F

∫ T

0

(∫ T

t

−
(∂f
∂x

)′
w(τ)ψ dτ, v(t)

)
dt
]
.

(4.4)

The proof is complete. �

Finding the derivative of the functional I(z) in the direction v ∈ Pn[0, T ], we
show that I is Gateaux differentiable

I ′(z, v) =
∫ T

0

(∫ T

t

∂f0

∂x
dτ, v(t)

)
dt,

and its gradient on the set Pn[0, T ] is expressed by the formula

∇I(z) =
∫ T

t

∂f0

∂x
dτ. (4.5)

Lemma 4.3. If the support function c(F,ψ) of the multivalued mapping F (x, t) is
continuously differentiable in the phase variable x, then:

• if z /∈ Ω, then the functional ϕ(z) is Gateaux differentiable and its gradient
on the set Pn[0, T ] may be found by the formula

∇ϕ(z) =
h(z, t)
ϕ(z)

ψ +
∫ T

t

−h(z, τ)
ϕ(z)

∂c(F (x, τ), ψ)
∂x

dτ ;

• if z ∈ Ω, then the functional ϕ(z) is subdifferentiable [8] and its subdiffer-
ential at a point z may be found by the formula

∂ϕ(z) =
{
W ∈ Pn[0, T ] | W (t) = w(t)ψ +

∫ T

t

−w(τ)
∂c(F (x, τ), ψ)

∂x
dτ, w ∈W1

}
,

where the set W1 is defined by the formula (4.3).

Proof. By the definition of the support function

c(F,ψ) = max
f∈F

(f, ψ).

It is clear that this function is subdifferentiable, and its subdifferential is expressed
by the formula

∂c(F,ψ) = co
{(∂f
∂x

)′
ψ
}
, f ∈ R = {f ∈ F : c(F,ψ) = (f, ψ)}.

Hence c(F,ψ) is differentiable in x if and only if the set R consists of the only
element. Let us denote it f∗. Thus, in this case we can assume that

c(F,ψ) = (f∗, ψ),

and the following relations hold(∂f∗
∂x

)′
ψ =

∂(f∗, ψ)
∂x

=
∂c(F,ψ)
∂x

. (4.6)
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Let z /∈ Ω. From expression (4.2) we conclude that the superdifferential of the
functional ϕ(z) consists of the only element, therefore ϕ(z) is Gateaux differentiable.
Its gradient on the set Pn[0, T ] is as follows

∇ϕ(z) =
h(z, t)
ϕ(z)

ψ +
∫ T

t

−h(z, τ)
ϕ(z)

(∂f∗
∂x

)′
ψ dτ. (4.7)

Using (4.6), from (4.7) we finally get the expression

∇ϕ(z) =
h(z, t)
ϕ(z)

ψ +
∫ T

t

−h(z, τ)
ϕ(z)

∂c(F (x, τ), ψ)
∂x

dτ,

which proves the first part of the lemma.
Let z ∈ Ω. From expression (4.4) we conclude that the derivative of the func-

tional ϕ(z) in the direction v may be expressed as

ϕ′(z, v) = max
‖w‖≤1

[ ∫ T

0

(w(t)ψ, v(t))dt+
(∫ T

t

−
(∂f∗
∂x

)′
w(τ)ψ dτ, v(t)

)
dt
]

= max
W∈∂ϕ(z)

(W, v),
(4.8)

where

∂ϕ(z) =
{
W ∈ Pn[0, T ]

∣∣ W (t) = w(t)ψ +
∫ T

t

−w(τ)
(∂f∗
∂x

)′
ψ dτ, w ∈W1

}
,

and W1 is defined in (4.3). Using (4.6), from (4.8) we finally get the expression

∂ϕ(z) =
{
W ∈ Pn[0, T ] : W (t) = w(t)ψ

+
∫ T

t

−w(τ)
∂c(F (x, τ), ψ)

∂x
dτ, w ∈W1

}
,

(4.9)

which proves the second part of the lemma. Note that in this case the following
equality also holds

γw(t)
∂c(F (x, t), ψ)

∂x
=
∂c(F (x, t), γw(t)ψ)

∂x
∀t ∈ [0, T ], ∀γ > 0. (4.10)

�

5. Necessary minimum conditions

Theorem 5.1. Let infz∈Ω I(z) = I(z∗) > −∞ and there exists such a positive
number λ0 <∞ that ∀λ > λ0 there exists z(λ) ∈ Pn[0, T ], for which

Φλ(z(λ)) = inf
z∈Pn[0,T ]

Φλ(z).

Let the functional I(z) be locally Lipschitz on the set Ωδ/Ω. Then functional (3.4)
will be an exact penalty function.

Proof. It is sufficient [7] to show that there exist such numbers a > 0, δ > 0 that

ϕ↓(z) = lim inf
y→z

ϕ(y)− ϕ(z)
ρ(z, y)

< −a < 0 ∀z ∈ Ωδ/Ω. (5.1)

Here y ∈ Pn[0, T ], ρ(z, y) is the following metric on the set Pn[0, T ]

ρ(z, y) = max
t∈[0,T ]

∣∣∣ ∫ t

0

z(t)− y(t)dt
∣∣∣.



8 A. V. FOMINYH, V. V. KARELIN, L. N. POLYAKOVA EJDE-2015/309

Put

y(t) = z(t) + αv∗(t), v∗(t) = −
(h(z, t)
ϕ(z)

ψ +
∫ T

t

−
(∂f
∂x

)′h(z, τ)
ϕ(z)

ψ dτ
)
.

Then using Lemma 4.1, one gets

ϕ′(z, v∗) = min
f∈F

∫ T

0

−
(h(z, t)
ϕ(z)

ψ +
∫ T

t

−
(∂f
∂x

)′h(z, τ)
ϕ(z)

ψ dτ,

h(z, t)
ϕ(z)

ψ +
∫ T

t

−
(∂f
∂x

)′h(z, τ)
ϕ(z)

ψ dτ
)
dt.

Let us show that

h(z, t)
ϕ(z)

ψ +
∫ T

t

−
(∂f
∂x

)′h(z, τ)
ϕ(z)

ψ dτ 6= 0, f ∈ F,

identically on the interval [0, T ]. Assume the contrary. Then h(z,t)
ϕ(z) ψ = 0 for all

t ∈ [0, T ] which contradicts the constraints on ψ and h(z,t)
ϕ(z) . Let ϕ(y) → ϕ(z) if

y → z, i. e. there exists sequence {zk} ∈ Ωδ/Ω such that ϕ′(zk, v∗)→ 0 if k →∞,
where

∂f

∂x
=
∂f(xk, t)

∂x
, f ∈ F,

xk(t) = x0 +
∫ t

0

zk(τ)dτ.

Therefore,

‖h(zk, t)
ϕ(zk)

ψ +
∫ T

t

−
(∂f
∂x

)′h(zk, τ)
ϕ(zk)

ψ dτ‖ → 0, as k →∞, f ∈ F,

hence

‖h(zk, t)
ϕ(zk)

ψ‖ → 0 as k →∞,

that also contradicts the assumptions

‖ψ‖ = 1, ‖h(z)
ϕ(z)

‖ = 1.

Then we conclude that

ϕ(y)− ϕ(z) = αϕ′(z, v∗) + o(α) < 0 ∀z ∈ Ωδ/Ω.

Now find that

ρ(z, y) = α max
t∈[0,T ]

∣∣∣ ∫ t

0

v∗(t)dt
∣∣∣ > 0.

From the last two inequalities follows (5.1). The proof is complete. �

Theorem 5.2. Let the conditions of Theorem 5.1 be satisfied. Let the support
function of the multivalued mapping F (x, t) from (2.1) be continuously differentiable
in x. For the point

x∗ = x0 +
∫ t

0

z∗(τ)dτ
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to satisfy inclusion (2.1) and condition (2.2) and to minimize functional (2.3), the
existence of such a vector-function Ψ(t) that for all t ∈ [0, T ] the following relations
hold

Ψ̇(t) = −∂c(F (x∗, t),Ψ(t))
∂x

+
∂f0(x∗, t)

∂x
, (5.2)

(ẋ∗,Ψ(t))− c(F (x∗, t),Ψ(t)) = 0, (5.3)

Ψ(T ) = 0 (5.4)
is necessary.

Proof. In Theorem 5.1 it has been shown that the functional (3.4) is an exact
penalty function, hence there exists such a number λ∗ > 0 that for all λ > λ∗

functional (2.3) minimization problem under constraints (2.1), (2.2) is equivalent
to the unconstrained optimization problem of functional (3.4) minimization.

Let us put Ψ(t) = λw(t)ψ, where the vector-function w(t) is an element of the
set W1. Since by Lemma 4.3 if z ∈ Ω, the functional ϕ(z) is subdifferentiable
and its subdifferential is represented in (4.9), and the functional I(z) is Gateaux
differentiable and its gradient is represented in (4.5), then from necessary minimum
condition [7]

0n ∈ ∂Φ(z∗).
Considering (4.10) we have that at the minimum point for all t ∈ [0, T ],∫ T

t

∂f0(x∗, t)
∂x

dτ + Ψ(t) +
∫ T

t

−∂c(F (x∗, t),Ψ(t))
∂x

dτ = 0n, (5.5)

where 0n is a zero element of the space Pn[0, T ]. Differentiating (5.5) on the interval
[0, T ], one obtains a system of differential equations

Ψ̇(t) = −∂c(F (x∗, t),Ψ(t))
∂x

+
∂f0(x∗, t)

∂x

with the terminal condition Ψ(T ) = 0, hence we obtain the relations (5.2), (5.4).
If t ∈ T0, from the formula of the functional l(z, t) one gets (z,Ψ) = c(F,Ψ), if

t ∈ T−, then w(t) = 0 and relation (5.3) still takes place. Thus (5.3) holds for all
t ∈ [0, T ]. The proof is complete. �

Remark 5.3. Theorem 5.2 has been formulated for the problem with the free
right end. It is not difficult to show that relations (5.2), (5.3) will also hold for the
problem with the fixed right end, but the terminal value Ψ(T ) for this problem will
not be equal to zero in the general case, i. e. relation (5.4) will not hold in this
case.

Using the known minimum conditions in terms of the derivative in directions
from Lemma 4.2 one gets the following lemma.

Lemma 5.4. Let the conditions of Theorem 5.1 be satisfied. For the point x∗ to
satisfy inclusion (2.1) and condition (2.2) and to minimize functional (2.3), it is
necessary to have

max
‖w‖≤1

[ ∫ T

0

(∫ T

t

∂f0(x∗, τ)
∂x

dτ + λw(t)ψ, v(t)
)
dt

+ min
f∈F

∫ T

0

(∫ T

t

−
(∂f(x∗, τ)

∂x

)′
λw(τ)ψ dτ, v(t)

)
dt
]
≥ 0 ∀v ∈ Pn[0, T ].

(5.6)
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Let F ⊂ F be a set of such f ∈ F that (5.6) holds. It can be shown that the
following lemma holds.

Lemma 5.5. Relation (5.6) is equivalent to the condition: for every fixed f ∈ F
there exists such a vector-function w ∈W1 that the following relation holds∫ T

t

∂f0(x∗, τ)
∂x

dτ + λw(t)ψ +
∫ T

t

−
(∂f(x∗, τ)

∂x

)′
λw(τ)ψ dτ = 0n (5.7)

for all t ∈ [0, T ].

Theorem 5.6. Let the conditions of Theorem 5.1 be satisfied. For the point x∗

to satisfy inclusion (2.1) and condition (2.2) and to minimize functional (2.3), the
existence of such a vector-function f ∈ F and such a vector-function Ψ(t), for
which for all t ∈ [0, T ] the following relations hold

Ψ̇(t) = −
(∂f(x∗, t)

∂x

)′
Ψ(t) +

∂f0(x∗, t)
∂x

, (5.8)(
ẋ∗,Ψ(t))− c(F (x∗, t),Ψ(t)

)
= 0, (5.9)

Ψ(T ) = 0, (5.10)

is necessary.

Proof. In view of Lemma 5.4 it is sufficient to show that (5.6) is equivalent to (5.8),
(5.10) for some f ∈ F and Ψ(t).

In view of Lemma 5.5 relation (5.6) is equivalent to (5.7) for every fixed f ∈ F .
Differentiating (5.7) on the interval [0, T ] and denoting

Ψ(t) = λw(t)ψ,

one gets a system of differential equations (5.8) with terminal condition (5.10).
Relation (5.9) can be proved in the same way as in Theorem 5.2. �

Remark 5.7. Theorem 5.6 has been formulated for the problem with the free
right end. It is not difficult to show that relations (5.8), (5.9) will also hold for the
problem with the fixed right end, but the terminal value Ψ(T ) for this problem will
not be equal to zero in the general case, i. e. relation (5.10) will not hold in this
case.

6. Example

Consider the system of differential equations

ẋ1 = u1, ẋ2 = x1,

where the restriction on control is given by the set

U = {u ∈ R2 : |u1| ≤ 1, u2 = 0}.
Let the initial condition x0 = (0, 0) and the terminal state x(1) = (−1/2,−1/3) of
the system be given. It is required to find such control u∗ ∈ U , which minimizes
the functional

I(x) =
∫ 1

0

x2(t)dt.

This system can be rewritten in the form of the inclusion ẋ ∈ F (x), where

F (x) =
(

[−1, 1]
x1

)
.
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Since the support function c(A, b) of the segment A = {a ∈ R : a ∈ [−1, 1]} is |b|,
then in this case the support function of the multivalued mapping F (x) is expressed
by the formula

c(F,ψ) = |ψ1|+ x1ψ2.

One can see that the function c(F,ψ) is continuously differentiable in the phase
variables and its gradient may be written as follows

∂c

∂x
= (ψ2, 0).

Further, we have

∂f0

∂x
= (0, 1).

From Theorem 5.2 and Remark 5.7 it follows that the vector-function ψ(t) must
satisfy the system of differential equations

ψ̇1 = −ψ2, ψ̇2 = 1. (6.1)

From Theorem 5.2 and Remark 5.7 one also gets that for ψ(t) and for all t the
following relations hold

(ẋ, ψ(t)) = u1ψ1 + x1ψ2 = c(F,ψ) = |ψ1|+ x1ψ2,

therefore for all t,

u1(t)ψ1(t) = |ψ1(t)|. (6.2)

From (6.1), (6.2) it is not difficult to obtain the optimal control

u∗1(t) = −1, t ∈ [0, τ1),

u∗1(t) = 1, t ∈ [τ1, τ2),

u∗1(t) = −1, t ∈ [τ2, 1],
(6.3)

and the corresponding optimal trajectory

x1(t) = −t, x2(t) = −t2/2, t ∈ [0, τ1),

x1(t) = t+ S1, x2(t) = t2/2 + S1t+ S2, t ∈ [τ1, τ2),

x1(t) = −t+ 1/2, x2(t) = −t2/2 + 1/2t− 1/2, t ∈ [τ2, 1],

(6.4)

where

τ1 = 13/24, τ2 = 19/24, S1 = −13/12, S2 = 169/576.

The values τ1, τ2, S1, S2 in (6.3), (6.4) are found using the boundary conditions
and the condition of trajectory continuity.

One can easily check that conditions (6.1), (6.2) may be obtained directly from
the Pontryagin’s maximum principle. Here a different approach has been demon-
strated, when we transit from the original system to the corresponding differential
inclusion, for which we apply the conditions of optimality (Theorem 5.2) to find
the optimal process (x∗(t), u∗(t)).



12 A. V. FOMINYH, V. V. KARELIN, L. N. POLYAKOVA EJDE-2015/309

Conclusion. Thus, in this paper application of the theory of exacts penalty func-
tions to the problem of optimal control of differential inclusion is demonstrated.
The apparatus of support functions gives opportunity to reduce the original prob-
lem to the optimization problem under constraints. With the help of exact penalties
this problem is reduced to minimization of the nonsmooth functional Φ(z) on the
whole space. Provided that the support function c(F (x, t), ψ) is continuously differ-
entiable in the vector of the phase coordinates, this functional appears to be subd-
ifferentiable, which allows to write out the necessary minimum conditions in terms
of a subdifferential, which coincide with some classical results for this problem. In
the case of nondifferentiability of c(F (x, t), ψ) in the phase variable D-derivative
in directions of the functional Φ(z) is found, which allows to formulate necessary
minimum conditions. The example of theoretical results application is given.
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