Laura Rocio Gonzalez-Ramirez, Osvaldo Osuna, Ruben Santaella-Forero
Abstract:
 
 In this work, we prove the existence of periodic solutions
 for a seasonally-dependent SIRS model using Leray-Schauder degree theory.
 We obtain criteria for the uniqueness and asymptotic stability of the
 periodic solution of the system. We also present suitable examples of
 a seasonal epidemiological disease.
 Submitted July 10, 2015. Published December 7, 2015.
Math Subject Classifications: 342C5, 37J45, 92D30.
Key Words: Leray-Schauder degree; SIRS models; periodic orbits.
Show me the PDF file (234 KB), TEX file, and other files for this article.
![]()  | 
 Laura Rocio González-Ramírez  Instituto de Física y Matemáticas Universidad Michoacana de san Nicolás de Hidalgo Edif. C-3, Cd. Universitaria, C.P. 58040 Morelia, Mich., México email: rgonzalez@ifm.umich.mx  | 
|---|---|
![]()  | 
 Osvaldo Osuna  Instituto de Física y Matemáticas Universidad Michoacana de san Nicolás de Hidalgo Edif. C-3, Cd. Universitaria, C.P. 58040 Morelia, Mich., México email: osvaldo@ifm.umich.mx  | 
![]()  | 
 Ruben Santaella-Forero Instituto de Física y Matemáticas Universidad Michoacana de san Nicolás de Hidalgo Edif. C-3, Cd. Universitaria, C.P. 58040 Morelia, Mich., México email: rusanfo@matmor.unam.mx  | 
Return to the EJDE web page