Laura Rocio Gonzalez-Ramirez, Osvaldo Osuna, Ruben Santaella-Forero
Abstract:
In this work, we prove the existence of periodic solutions
for a seasonally-dependent SIRS model using Leray-Schauder degree theory.
We obtain criteria for the uniqueness and asymptotic stability of the
periodic solution of the system. We also present suitable examples of
a seasonal epidemiological disease.
Submitted July 10, 2015. Published December 7, 2015.
Math Subject Classifications: 342C5, 37J45, 92D30.
Key Words: Leray-Schauder degree; SIRS models; periodic orbits.
Show me the PDF file (234 KB), TEX file, and other files for this article.
Laura Rocio González-Ramírez Instituto de Física y Matemáticas Universidad Michoacana de san Nicolás de Hidalgo Edif. C-3, Cd. Universitaria, C.P. 58040 Morelia, Mich., México email: rgonzalez@ifm.umich.mx | |
Osvaldo Osuna Instituto de Física y Matemáticas Universidad Michoacana de san Nicolás de Hidalgo Edif. C-3, Cd. Universitaria, C.P. 58040 Morelia, Mich., México email: osvaldo@ifm.umich.mx | |
Ruben Santaella-Forero Instituto de Física y Matemáticas Universidad Michoacana de san Nicolás de Hidalgo Edif. C-3, Cd. Universitaria, C.P. 58040 Morelia, Mich., México email: rusanfo@matmor.unam.mx |
Return to the EJDE web page