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NONLINEAR RITZ APPROXIMATION FOR FREDHOLM
FUNCTIONALS

MUDHIR A. ABDUL HUSSAIN

Abstract. In this article we use the modify Lyapunov-Schmidt reduction to

find nonlinear Ritz approximation for a Fredholm functional. This functional

corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-
order differential equation.

1. Introduction

Many of the nonlinear problems that appear in Mathematics and Physics can be
written in the operator equation form

f(u, λ) = b, u ∈ O ⊂ X, b ∈ Y, λ ∈ Rn, (1.1)

where f is a smooth Fredholm map of index zero and X, Y are Banach spaces
and O is open subset of X. For these problems, the method of reduction to finite
dimensional equation,

θ(ξ, λ) = β, ξ ∈M, β ∈ N, (1.2)

can be used, where M and N are smooth finite dimensional manifolds.
A passage from (1.1) into (1.2) (variant local scheme of Lyapunov -Schmidt) with

the conditions that equation (1.2) has all the topological and analytical properties
of (1.1) (multiplicity, bifurcation diagram, etc) can be found in [10, 12, 13, 16].

Suppose that f : Ω ⊂ E → F is a nonlinear Fredholm map of index zero. A
smooth map f : Ω ⊂ E → F has variational property, if there exists a functional
V : Ω ⊂ E → R such that f = gradH V or equivalently,

∂V

∂u
(u, λ)h = 〈f(u, λ), h〉H , ∀u ∈ Ω, h ∈ E,

where 〈·, ·〉H is the scalar product in Hilbert space H. In this case, the solutions
of equation f(u, λ) = 0 are the critical points of functional V (u, λ). Suppose that
f : E → F is a smooth Fredholm map of index zero, E, F are Banach spaces and

∂V

∂u
(u, λ)h = 〈f(u, λ), h〉H , h ∈ E.
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where V is a smooth functional on E. Also it is assumed that E ⊂ F ⊂ H, where
His a Hilbert space. By using a method of finite dimensional reduction (Local
scheme of Lyapunov-Schmidt) the problem

V (u, λ)→ extr u ∈ E, λ ∈ Rn

can be reduced into equivalent problem

W (ξ, λ)→ extr ξ ∈ Rn

The function W (ξ, λ) is called key function.
If N = span {e1, . . . , en} is a subspace of E, where e1, . . . , en is an orthonormal

set in H, then the key function W (ξ, λ) can be defined in the form of

W (ξ, λ) = inf
u:〈u,ei〉=ξi ∀i

V (u, λ), ξ = (ξ1, . . . , ξn).

The function W has all the topological and analytical properties of the functional
V (multiplicity, bifurcation diagram, etc.) [12]. The study of bifurcation solutions
of functional V is equivalent to the study of bifurcation solutions of key function.
If f has a variational property, then the equation

θ(ξ, λ) = gradW (ξ, λ) = 0

is called bifurcation equation.
Now we formulate one of the most important theorem of bifurcation analysis [9].

Theorem 1.1 ([9]). If a mapping f̃(·, ξ) : E ∩ N⊥ → F ∩ N⊥ is proper and the
condition 〈∂f∂x (x)h, h〉 > 0 is satisfied for every (x, h) in E × ((E ∩N⊥) \ 0), then
the marginal mapping ϕ : ξ →

∑n
i=1 ξiei + h(ξ), (where h(ξ) is defined by equation

f̃(h, ξ) = 0), establishes a one-to-one correspondence between critical points of key
function W (ξ, λ) and critical points of the (given) functional V (u, λ). Moreover,
the local singularity rings of the corresponding functions at the points ξ and ϕ(ξ)
are isomorphic to each other and, if two simple critical points correspond to each
other, then their Morse indices are equal to each other.

Definition 1.2 ([9]). The set of all λ for which the function W (ξ, λ) has degenerate
critical points is called Caustic and denoted by Σ.

Σ = {λ ∈ R :
∂W

∂ξ
= 0,

∂2W

∂ξ2
= 0}.

It is well known that in the Lyapunov-Schmidt method, the space E is decom-
posed into two orthogonal subspaces and then every element u ∈ E can be written
in the unique form as a sum of two elements such that the solution of the equation
(1.1) consists of the homogeneous solution and the particular solution. Sapronov
and his group [9, 17] used the complement solution to find the function W (ξ, λ)
which denotes the linear Ritz approximation of the functional V (u, λ). The study
of boundary value problems by using Lyapunov-Schmidt reduction can be found in
[1, 2, 3, 4, 5, 9]. Most of the authors that work this way have studied the linear
Ritz approximation of Fredholm functional. A review for the finite dimensional
reduction can be found in [9, 12, 13, 14, 15, 17]. In [5] the author introduced an
example to find nonlinear approximation of bifurcation solutions of the fourth-order
differential equation

d4u

dx4
+ α

d2u

dx2
+ βu+ u3 = 0
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In [6] the author introduce a general method for finding nonlinear Ritz approxi-
mation of Fredholm functionals. To the best of our information the method is new.
In this paper we find the nonlinear Ritz approximation of a functional V (u, λ) which
denotes the potential of the nonlinear operator

f(u, λ) =
d4u

dx4
+ λ

d2u

dx2
+ u+ u2 + u3.

2. Modified Lyapunov-Schmidt reduction

Consider the nonlinear Fredholm operator of index zero f : E → F defined by

f(u, λ) = 0, λ ∈ Rn, u ∈ Ω ⊂ E (2.1)

where E, F are real Banach spaces and Ω is an open subset of E. Assume that the
operator f has a variational property, i.e, there exists a functional V : Ω ⊂ E → R
such that f = gradH V where Ω is a bounded domain. The operator f can be
written as

f(u, λ) = Au+Nu = 0,

where A = ∂f
∂u (u0, λ) is a linear continuous Fredholm operator, ∂f∂u (u0, λ) the Frechet

derivative of the operator f at the point u0 and N the nonlinear operator. In this
article we consider the operator A as a differential operator. By using Lyapunov-
Schmidt reduction, the decomposition is obtained below

E = M ⊕M⊥, F = M̃ ⊕ M̃⊥

where M = kerA is the null space of the operator A, dimM = dim M̃ = n and
M⊥, M̃⊥ are the orthogonal complements of the subspaces M and M̃ respectively.
If e1, e2, . . . , en is an orthonormal set in H such that Aei = αi(λ)ei, αi(λ) is con-
tinuous function, i = 1, . . . , n, then every element u ∈ E can be represented in the
unique form of

u = w + v, w =
n∑
i=1

ξiei ∈M, M⊥v ∈M⊥, ξi = 〈u, ei〉,

where 〈·, ·〉 is the inner product in Hilbert space H. There exist projections p : E →
M and I − p : E →M⊥ such that w = pu and (I − p)u = v. Similarly, there exist
projections Q : F → M̃ and I −Q : F → M̃⊥ such that

f(u, λ) = Qf(u, λ) + (I −Q)f(u, λ) (2.2)

or
f(w + v, λ) = Qf(w + v, λ) + (I −Q)f(w + v, λ)

It follows that
Qf(w + v, λ) + (I −Q)f(w + v, λ) = 0

and hence the result becomes

Qf(w + v, λ) = 0,

(I −Q)f(w + v, λ) = 0.

The implicit function theorem implies that

W (ξ, δ) = V (Φ(ξ, δ), δ), ξ = (ξ1, ξ2, . . . , ξn)>
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where degW ≥ 2, then the linear Ritz approximation of the functional V is a
function W defined by

W (ξ, δ) = V
( n∑
i=1

ξiei, δ
)

= W0(ξ) +W1(ξ, δ) (2.3)

where W0(ξ) is a homogenous polynomial of order n ≥ 3 such that W0(0) = 0
and W1(ξ, δ) is a polynomial function of degree less than n. Let q1, q2, . . . , qm be
the coefficients of the quadratic terms of the function W1(ξ, δ), then the function
W1(ξ, δ) can be written in the form of

W1(ξ, δ) = W2(ξ, δ) +
m∑
k=1

qkξ
2
k

where degW2 = d, 2 < d < n.
The nonlinear Ritz approximation of the functional V is a function W defined

by

W (ξ, δ) = V
( n∑
i=1

ξiei + Φ(
n∑
i=1

ξiei, δ), δ
)

where Φ(w, δ) = v(x, ξ, δ), v ∈ N⊥. To determine the nonlinear Ritz approximation
of the functional V , Taylor’s expansion of the functions µk(ξ) and v(x, ξ, δ) is used
by assuming the following:

qk = q̂k + µk(ξ) = q̂k +
r∑
j=2

D
(j)
k (ξ), k = 1, . . . ,m,

v(x, ξ, δ) =
r∑
j=2

B(j)(ξ).

where D(j)
k (ξ) and B(j)(ξ) are homogenous polynomials of degree j with coefficients

µki and vji(x, δ) respectively, ξ = (ξ1, ξ2, . . . , ξn). Since

Qf(u, λ) =
n∑
i=1

〈f(u, λ), ei〉ei = 0

it follows that
n∑
i=1

〈Au+Nu, ei〉ei = 0

Hence
n∑
i=1

qiξiei +
n∑
i=1

〈Nu, ei〉ei = 0, qi = αi(λ)

or
n∑
i=1

qiξiei +
n∑
i=1

[ ∫
Ω

N(w + v)ei
]
ei = 0. (2.4)

From (2.2) it follows that

(I −Q)f(u, λ) = f(u, λ)−Qf(u, λ) .

From A(w + v) +N(w + v) = 0 it follows that

Av +N(w + v) +
n∑
i=1

qiξiei = 0 (2.5)
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Substituting the values of qi, µi(ξ) and v(x, ξ, δ) in (2.4) and (2.5) yields
n∑
i=1

[
q̂i +

r∑
j=2

D
(j)
i (ξ)

]
ξiei +

n∑
i=1

[ ∫
Ω

N
( n∑
i=1

ξiei +
r∑
j=2

B(j)(ξ)
)
ei

]
ei = 0, (2.6)

A
( r∑
j=2

B(j)(ξ)
)

+N
( n∑
i=1

ξiei +
r∑
j=2

B(j)(ξ)
)

+
n∑
i=1

(
q̂i +

r∑
j=2

D
(j)
i (ξ)

)
ξiei = 0.

(2.7)

To determine the functions v(x, ξ, λ) and µk(ξ) we equate the coefficients of ξ̂ =
ξ1ξ2 . . . ξn in (2.6) to find the value of µki and after some calculations from (2.7) it
is obtained a linear ordinary differential equation in the variable vji(x, λ). Solving
the resulting equation one can find the value of vji(x, λ).

3. Applications

In this section we introduced an example to study the bifurcation of periodic
solutions of the nonlinear fourth-order differential equation

d4u

dx4
+ λ

d2u

dx2
+ u+ u2 + u3 = 0, (3.1)

by finding the nonlinear Ritz approximation of the energy functional V (u, λ) given
by

V (u, λ) =
∫ 2π

0

( (u′′)2

2
− λ (u

/

)2

2
+
u2

2
+
u3

3
+
u4

4

)
dx.

To do this suppose that f : E → F is a nonlinear Fredholm operator of index zero
defined by

f(u, λ) =
d4u

dx4
+ λ

d2u

dx2
+ u+ u2 + u3 (3.2)

where E = Π4([0, 2π], R) is the space of all periodic continuous functions that have
derivative of order at most four, F = Π0([0, 2π], R) is the space of all periodic
continuous functions, u = u(x) and x ∈ [0, 2π]. Since the operator f is variational,
then there exists a functional V such that f is the gradient of V , i.e.

f(u, λ) = gradH V (u, λ)

hence every solution of equation (3.1) is a critical point of the functional V [9].
Thus the study of the solutions of equation (3.1) is equivalent to the study of an
extreme problem

V (u, λ)→ extr, u ∈ E.
Analysis of bifurcation can be found by using the local method of Lyapunov-
Schmidt, so by localizing the parameter

λ = λ1 + µ(ξ), µ : R→ R is a continuous function

the reduction leads to the function of one variable

W (ξ, δ) = inf
〈u,e〉=ξ

V (u, δ).

It is well known that in the reduction of Lyapunov-Schmidt the function W (ξ, δ) is
smooth. This function has all the topological and analytical properties of functional
V [6]. In particular, for small δ there is one-to-one corresponding between the
critical points of functional V and smooth functionW , preserving the type of critical
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points (multiplicity, bifurcation diagram, index Morse, etc.) [6]. By using the
scheme of Lyapunov-Schmidt, the linearized equation corresponding to the equation
(3.1) is given by

h′′′ + λh′′ + h = 0, h ∈ E
Let N = ker(A) = span {e}, e = sin(x)/

√
π and A = fu(0, λ) = d4

dx4 + λ d2

dx2 + 1,
then every element u ∈ E can be written in the form

u = w + v, w = ξe ∈ N, ξ ∈ R, v ∈ Ê = N⊥ ∩ E.
By the implicit function theorem, there exists a smooth map Φ : N → Ê such that

W (ξ, δ) = V (Φ(ξ, δ), δ),

and then the linear Ritz approximation of the functional V is a function W given
by

W (ξ, δ) = V (ξe, δ) = ξ4 + qξ2.

the nonlinear Ritz approximation of the functional V is a function W given by

W (ξ, δ) = V (ξe+ Φ(ξ, δ), δ), v(x, ξ) = Φ(ξ, δ).

We will apply the method in section 2 to find the nonlinear Ritz approximation
of the functional V . So from the Lyapunov-Schmidt method we note that the
space E can be decomposed in direct sum of two subspaces, N and the orthogonal
complement to N ,

E = N ⊕ Ê, Ê = N⊥ ∩ E = {v ∈ E : v⊥N}.
Similarly, the space F decomposed in direct sum of two subspaces, N and orthog-
onal complement to N ,

F = N ⊕ F̂ , F̂ = N⊥ ∩ F = {v ∈ F : v⊥N}.

There exist projections p : E → N and I − p : E → Ê such that pu = w and
(I − p)u = v, (I is the identity operator). Hence every vector u ∈ E can be written
in the form

u = w + v, w ∈ N, N ⊥ v ∈ Ê.
Similarly, there exists projections Q : F → N and I −Q : F → F̂ such that

f(u, λ) = Qf(u, λ) + (I −Q)f(u, λ) (3.3)

Accordingly, (3.2) can be written in the form

Qf(w + v, λ) = 0,

(I −Q)f(w + v, λ) = 0.

To determine the nonlinear Ritz approximation of the functional V , the functions
v(x, ξ, λ) = O(ξ3) and µ(ξ) = O(ξ2) must be found in the form of power series in
terms of ξ, as follows:

v(x, ξ) = v0(x)ξ3 + v1(x)ξ4 + v2(x)ξ5 + . . . ,

µ(ξ) = µ0ξ
2 + µ1ξ

3 + µ2ξ
4 + . . . ,

(3.4)

and (3.2) can be written in the form

f(u, λ) = Au+ Tu = 0, Tu = u2 + u3.

Since
Qf(u, λ) = 〈f(u, λ), sin(x)〉 sin(x) = 0,
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we have 〈Au+ Tu, sin(x)〉 sin(x) = 0 and hence

− πξµ(ξ) +
∫ 2π

0

(v + ξ sin(x))2 sin(x) dx+
∫ 2π

0

(v + ξ sin(x))3 sin(x) dx = 0. (3.5)

From (3.3) and (3.5) we have

viv + (λ1 + µ(ξ))v′′ + v + (v + ξ sin(x))2 + (v + ξ sin(x))3 − ξµ(ξ) sin(x) = 0 (3.6)

As a consequence

− πξµ(ξ) +
∫ 2π

0

v2 sin(x) dx+ 2ξ
∫ 2π

0

v(sin(x))2 dx+
3π
4
ξ3

+ 3ξ2

∫ 2π

0

v(sin(x))3 dx+ 3ξ
∫ 2π

0

v2(sin(x))2 dx+
∫ 2π

0

v3 sin(x) dx = 0,
(3.7)

viv + (λ1 + µ(ξ))v′′ + v + v2 + 2vξ sin(x) + ξ2(sin(x))2

+ v3 + 3v2ξ sin(x) + 3vξ2(sin(x))2 + ξ3(sin(x))3 − ξµ(ξ) sin(x) = 0.

To determine the functions v(x, ξ) and µ(ξ) first we substitute (3.4) in (3.7) and
then we find the coefficients µ0, µ1, µ2, v0, v1 and v2 by equating the terms of ξ as
follows: Equating the coefficients of ξ3 we have the following two equations,

−πµ0 +
3π
4

= 0,

v
(4)
0 + λ1v

′′
0 + v0 + (sin(x))3 − µ0 sin(x) = 0

(3.8)

From the first equation in (3.8) we have µ0 = 3/4. Substituting this value in the
second equation of (3.8), we have the linear differential equation

v
(4)
0 + λ1v

′′
0 + v0 + (sin(x))3 − 3

4
sin(x) = 0,

and then we have

v
(4)
0 + λ1v

′′
0 + v0 −

1
4

sin(3x) = 0. (3.9)

Then

v0(x) =
sin(3x)

256
.

Similarly, equating the coefficients of ξ4 we have

−πµ1 + 2
∫ 2π

0

v0(x)(sin(x))2dx = 0,

v
(4)
1 + λ1v

′′
1 + v1 + 2v0 sin(x)− µ1 = 0.

(3.10)

From the first equation in (3.10) we have µ1 = 0. Substituting this value in the
second equation of (3.10) we have

v
(4)
1 + λ1v

′′
1 + v1 +

sin(x) sin(3x)
128

= 0. (3.11)

Then

v1(x) =
−1
256

[cos(2x)
9

− cos(4x)
225

]
.
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Equating the coefficients of ξ5 we have

−πµ2 + 2
∫ 2π

0

v1(x)(sin(x))2dx+ 3
∫ 2π

0

v0(x)(sin(x))3dx = 0,

v
(4)
2 + λ1v

′′
2 + v2 + µ0v

′′
0 + 2v1 sin(x) + 3v0(sin(x))2 − µ2 sin(x) = 0

(3.12)

substituting the values of v0 and v1 in the first equation of (3.12) and then solving
this equation we find that

µ2 = − 23
9216

.

Also, substituting the values of µ0, v0 and v1 and in the second equation of (3.12)
we have the linear differential equation

v
(4)
2 + λ1v

′′
2 + v2 +

3
1024

[7 sin(3x) + sin(5x)]− 6 sin(3x)− sin(x)
11520

= 0 (3.13)

Solving (3.13) we have

v2(x) =
[ 21

65536
− 1

122880

]
sin(3x) +

1
24

[ 1
8192

+
1

276480

]
sin(5x).

Now substituting the values of µ0, µ1, µ2, v0, v1 and v2 in (3.4) we have the bifur-
cation equation

u(x, ξ) =
ξ sin(x)√

π
+

ξ3

256π
√
π

sin(3x)− ξ4

57600π

[
25 cos(2x)− cos(4x)

]
+ ξ5

([ 21
65536π2

√
π
− 1

122880π
√
π

]
sin(3x)

+
1
24

[ 1
8192π2

√
π

+
1

276480π
√
π

]
sin(5x)

)
+O(ξ7)

λ = λ1 +
3
4
ξ2 − 23

9216
ξ4 +O(ξ6)

(3.14)

From the above result we deduced the following theorem.

Theorem 3.1. The key function of the functional V has the form

Ŵ (ξ, δ) = U(ξ, δ) +O(|ξ|20) +O(|ξ|20)O(|δ|)
= c1ξ

20 + c2ξ
18 + c3ξ

16 + c4ξ
14 + c5ξ

12 + α1ξ
10 + α2ξ

8

+ α3ξ
6 + c6ξ

4 + α4ξ
2 +O(|ξ|20) +O(|ξ|20)O(|δ|),

(3.15)

where

c1 = 0.11742× 1019, c2 = 0.52310× 1021, c3 = 0.47769× 1023,

c4 = 0.23733× 1027, c5 = −0.41660× 1029,

α1 = −(0.63868× 1031 + 0.99142× 1029λ1),

α2 = −(0.11220× 1032λ1 + 0.94599× 1032),

α3 = 0.31596× 1035 − 0.17154× 1033λ1,

c6 = −0.77749× 1037, α4 = −(0.24658× 1038 + 0.12329× 1038λ1)

The prove of Theorem 3.1 follows directly from the formula

Ŵ (ξ, δ) = V (ξe+ Φ(ξ, δ), δ).
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We note that c1, c2, c3, c4, c5, c6 are constants and α1, α2, α3, α4 are parame-
ters.The key function Ŵ (ξ, δ) in Theorem 3.1 is the required nonlinear Ritz ap-
proximation of the functional V (ξe + Φ(ξ, δ), δ). The geometry of the bifurcation
of critical points and the principal asymptotic of the branches of bifurcating points
for the function Ŵ (ξ, δ) are entirely determined by its principal part U(ξ, δ). The
function has all the topological and analytical properties of functional V , also the
function have 19 critical points. The point u(x) = ξe+ v(x, ξ) is a critical point of
the functional V (u, λ) if and only if the point ξ is a critical point of the function
Ŵ (ξ, δ), (Theorem 1.1). This means that the existence of the solutions of equa-
tion (3.2) depend on the existence of the critical points of the functional V (u, λ)
and then on the existence of the critical points of the function Ŵ (ξ, δ). From this
notation we can find a nonlinear approximation of the solutions of equation (3.2)
corresponding to each critical point of the function Ŵ (ξ, δ). To avoid the singu-
larities of the function U(ξ, δ) we must find the caustic, so from definition 1.2 the
caustic of the function U(ξ, δ) is the set of all λ1 satisfying the equation

(λ1 + 6.168595401)(λ1 + 6.168557117)(λ1 + 1.997966599)

× (λ1 − 7.420188558)(λ1 − 7.420220242)(λ2
1 + 10.79759396λ1 + 39.30282312)

× (λ2
1 + 10.79751137λ1 + 39.30229176)(λ2

1 + 6.369291114λ1 + 42.39826243)

× (λ2
1 + 6.369244386λ1 + 42.39775611)(λ2

1 + 4.002037322λ1 + 4.004078787)

× (λ2
1 − 0.1636805324λ1 + 46.42060955)(λ2

1 − 0.1636921686λ1 + 46.42102879)

× (λ2
1 − 7.233265906λ1 + 50.57130598)(λ2

1 − 7.233315078λ1 + 50.57170600)

× (λ2
1 − 12.74882579λ1 + 53.82009714)(λ2

1 − 12.74888749λ1 + 53.82053975)
= 0.

(3.16)
The only real values satisfying the above equation are

Σ = {−6.168595401,−6.168557117,−1.997966599, 7.420188558, 7.420220242}.

Hence the caustic dividing the real lines into following six sets

(−∞,−6.168595401), (−6.168595401,−6.168557117),

(−6.168557117,−1.997966599), (−1.997966599, 7.420188558),

(7.420188558, 7.420220242), (7.420220242,∞)

every set has a fixed number of nondegenerate critical points. The spreading of real
critical points of the function U(ξ, δ) is given below:

If λ1 ∈ (−∞,−6.168595401), then we have five nondegenerate critical points
(three minima and two maxima).

If λ1 ∈ (−6.168595401,−6.168557117), then we have five nondegenerate critical
points (three minima and two maxima).

If λ1 ∈ (−6.168557117,−1.997966599), then we have five nondegenerate critical
points (three minima and two maxima).

If λ1 ∈ (−1.997966599, 7.420188558), then we have three nondegenerate critical
points (two minima and one maximum).

If λ1 ∈ (7.420188558, 7.420220242), then we have three nondegenerate critical
points (two minima and one maximum).
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If λ1 ∈ (7.420220242,∞), then we have three nondegenerate critical points (two
minima and one maximum).

To explain our results we have the following: We found that the linear Ritz
approximation of the functional V (u, λ) is the function

W (ξ, δ) = ξ4 + qξ2;

the critical points of this function are degenerate when q = 0, so for every q 6= 0
we have three nondegenerate critical points of the function W (ξ, δ). Corresponding
to each nondegenerate critical point we have a linear approximation solution of
(3.1) in the form of w = ξ sin(x)/

√
π. These solutions have only the two geometric

representations shown in Figure 1.

Figure 1. Graphs of the function w = ξ sin(x)/
√
π.

Figure 2. Graphs of the function (3.14).

In theorem 3.1 we proved that the nonlinear Ritz approximation of the functional
V (u, λ) is the function (3.15). All critical points of this function are degenerate
when λ1 is a solution of (3.16), so for every λ1 ∈ R\Σ we have only three or five
nondegenerate critical points. Corresponding to each nondegenerate critical point
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we have nonlinear approximation solution of (3.1) in the form of function (3.14).
These solutions have the four geometric representations shown in Figure 2.

Acknowledgments. I would like to thank the anonymous referee for the useful
comments and suggestions.
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