Electron. J. Diff. Equ., Vol. 2015 (2015), No. 289, pp. 1-19.

Singular limiting solutions to 4-dimensional elliptic problems involving exponentially dominated nonlinearity and nonlinear terms

Sami Baraket, Imen Bazarbacha, Maryem Trabelsi

Abstract:
Let $\Omega \in \mathbb{R}^4$ be a bounded open regular set, $x_1, x_2, \dots, x_m \in \Omega$, $\lambda, \rho >0$ and $Q_\lambda$ be a non linear operator (which will be defined later). We prove that the problem
$$
 \Delta^2u +Q_\lambda(u)= \rho^4 e^u
 $$
has a positive weak solution in $\Omega$ with $u=\Delta u=0$ on $\partial \Omega$, which is singular at each $x_i$ as the parameters $\lambda$ and $\rho$ tends to 0.

Submitted August 15, 2015. Published November 20, 2015.
Math Subject Classifications: 35J60, 53C21, 58J05.
Key Words: Biharmonic operator; nonlinear operator; singular limits; Green's function; nonlinear domain decomposition method.

Show me the PDF file (339 KB), TEX file, and other files for this article.

Sami Baraket
Department of Mathematics, College of Science
King Saud University, P.O. Box 2455
Riyadh 11451, Saudi Arabia
email: sbaraket@ksu.edu.sa
Imen Bazarbacha
Département de Mathématiques
Faculté des Sciences de Tunis
Campus Universitaire, 2092 Tunis
University Tunis El Manar, Tunisia
email: imen.bazarbacha@gmail.com
  Maryem Trabelsi
Département de Mathématiques
Faculté des Sciences de Tunis
Campus Universitaire, 2092 Tunis
University Tunis El Manar, Tunisia
email: trabelsi.maryem@gmail.com

Return to the EJDE web page