Miguel V. S. Frasson,  Marta C. Gadotti, 
     Selma H. J. Nicola, Placido Z. Taboas 
Abstract:
 
  In 1995 for a linear oscillator,  Myshkis imposed a constant impulse
  to the velocity, each moment the energy reaches a certain level. The
  main feature of the resulting system is that it defines a nonlinear
  discontinuous semigroup. In this note we study the orbital stability
  of a one-parameter family of periodic solutions and state the
  existence of a period-doubling bifurcation of such solutions.
 Submitted September 30, 2015. Published October 23, 2015.
Math Subject Classifications: 34C25, 34D20, 37G15.
Key Words: Periodic solutions; discontinuous energy;
           orbital stability; bifurcation.
Show me the PDF file (253 KB), TEX file, and other files for this article.
![]()  | 
 Miguel V. S. Frasson  Departamento de Matemática Aplicada e Estatística ICMC-Universidade de São Paulo Avenida Trabalhador São-carlense 400 13566-590 São Carlos SP, Brazil email: frasson@icmc.usp.br  | 
|---|---|
![]()  | 
 Marta C. Gadotti  Departamento de Matemática IGCE - Universidade Estadual Paulista Avenida 24A 1515, 13506-700 Rio Claro SP, Brazil email: martacg@rc.unesp.br  | 
![]()  | 
 Selma H. J. Nicola  Departamento de Matemática Universidade Federal de São Carlos Rodovia Washington Luis, km 235 Norte 13565-905 São Carlos SP, Brazil email: selmaj@dm.ufscar.br  | 
![]()  | 
Plácido Z. Táboas   Departamento de Matemática Aplicada e Estatística ICMC-Universidade de São Paulo Avenida Trabalhador São-carlense 400 13566-590 São Carlos SP, Brazil email: pztaboas@icmc.usp.br  | 
Return to the EJDE web page