Miguel V. S. Frasson, Marta C. Gadotti,
Selma H. J. Nicola, Placido Z. Taboas
Abstract:
In 1995 for a linear oscillator, Myshkis imposed a constant impulse
to the velocity, each moment the energy reaches a certain level. The
main feature of the resulting system is that it defines a nonlinear
discontinuous semigroup. In this note we study the orbital stability
of a one-parameter family of periodic solutions and state the
existence of a period-doubling bifurcation of such solutions.
Submitted September 30, 2015. Published October 23, 2015.
Math Subject Classifications: 34C25, 34D20, 37G15.
Key Words: Periodic solutions; discontinuous energy;
orbital stability; bifurcation.
Show me the PDF file (253 KB), TEX file, and other files for this article.
Miguel V. S. Frasson Departamento de Matemática Aplicada e Estatística ICMC-Universidade de São Paulo Avenida Trabalhador São-carlense 400 13566-590 São Carlos SP, Brazil email: frasson@icmc.usp.br | |
Marta C. Gadotti Departamento de Matemática IGCE - Universidade Estadual Paulista Avenida 24A 1515, 13506-700 Rio Claro SP, Brazil email: martacg@rc.unesp.br | |
Selma H. J. Nicola Departamento de Matemática Universidade Federal de São Carlos Rodovia Washington Luis, km 235 Norte 13565-905 São Carlos SP, Brazil email: selmaj@dm.ufscar.br | |
Plácido Z. Táboas Departamento de Matemática Aplicada e Estatística ICMC-Universidade de São Paulo Avenida Trabalhador São-carlense 400 13566-590 São Carlos SP, Brazil email: pztaboas@icmc.usp.br |
Return to the EJDE web page