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SOLUTION BRANCHES FOR NONLINEAR PROBLEMS WITH
AN ASYMPTOTIC OSCILLATION PROPERTY

LIN GONG, XIANG LI, BAOXIA QIN, XIAN XU

Abstract. In this article we employ an oscillatory condition on the nonlinear

term, to prove the existence of a connected component of solutions of a nonlin-

ear problem, which bifurcates from infinity and asymptotically oscillates over
an interval of parameter values. An interesting and immediate consequence

of such oscillation property of the connected component is the existence of

infinitely many solutions to the nonlinear problem for all parameter values in
that interval.

1. Introduction

Rabinowtz [8] obtained a well known result concerning the existence of un-
bounded connected components bifurcating from infinity for asymptotically linear
operators, 1973. Since then, by using this result many authors have studied the
existence of connected components of solutions of various boundary value problems.
By using different methods-such as the blow up method, the maximum principle,
the moving plane method, turning point theorem, eigenvalue theories and so on,
they tried to obtain much possible information on the connected components. An
interesting question concerning the connected component bifurcating from infinity
is: in which manner the connected component of solutions approaches infinity?
always from one side of a parameter in the parameter-norm plane, or oscillating
infinitely about a parameter (even an interval of parameters)?

Let us first recall some results in the literature concerning the above problem.
Schaaf and Schmitt [11] studied the existence of solutions of nonlinear Sturm Li-
ouville problems whose linear part is at resonance. By using bifurcation methods,
they studied the one parameter problem

u′′ + λu+ g(u) = h(x), 0 ≤ x ≤ π;

u(0) = 0 = u(π).
(1.1)

They showed that (1.1) has a connected component of solutions which bifurcates
from infinity at λ = 1, and showed that this connected component must cross the
λ = 1 parameter plane infinitely often.

2010 Mathematics Subject Classification. 47H07, 47H10.
Key words and phrases. Global solution branch; fixed point index;

asymptotic oscillation property.
c©2015 Texas State University.

Submitted August 20, 2015. Published October 19, 2015.

1



2 L. GONG, X. LI, B. QIN, X. XU EJDE-2015/269

Davidson and Rynne [2] studied the semilinear Sturm Liouville boundary value
problem

−u′′ = λu+ f(u) in (0, π),

u(0) = u(π) = 0,
(1.2)

where f : R+ = [0,∞) → R1 is Lipschitz continuous and λ is a real parameter. It
is assumed in [2] that f(s) oscillates, as s→∞, in such a manner that the problem
(1.2) is not linearizable at u = ∞ but does have a connected component C of
positive solutions bifurcating from infinity. Then, they investigated the relationship
between the oscillations of f and those of C in the λ−‖u‖ plane at large ‖u‖. They
obtained some results about the oscillation properties of C over a single point λ, or
over an interval I of λ values. An immediate consequence of such oscillations of I is
the existence of infinitely many solutions, of arbitrarily large norm ‖u‖, of problem
(1.2) for all values of λ ∈ I. Here, as defined as in [2], a continuum C ⊂ R+ ×E is
said to oscillate over an interval I = [λ−, λ+] if, for each ν ∈ {+,−}, there exists a
sequence of positive number {ζνn},such that ζνn → ∞ as n → ∞, and any solution
(λ, u) ∈ C with ‖u|| = ζνn must have ν(λ− λν) ≥ 0, and such solutions do exist for
all sufficiently large n. For other references concerning the connected component
of solutions with asymptotic oscillation property one can refer to [3, 5, 9, 12, 13].

Consider the three-point boundary-value problem

−u′′ = λu+ f(u) in (0, 1),

u(0) = 0, u(1) = αu(η),
(1.3)

where η ∈ (0, 1), α ∈ [0, 1), f : R+ → R1 is Lipschitz continuous, f(0) = 0 and λ is
a real parameter.

During the past twenty years the multi-point boundary value problems have
been studied extensively. Especially, some authors studied multi-boundary value
problems by using global bifurcation theories; see [4, 10, 15]. The main purpose of
this paper is to extend some main results in [2] to equation (1.3). By employing an
oscillatory condition on the nonlinear term f we will prove a result for the existence
of a connected component of solutions of (1.3), which bifurcates from infinity and
oscillates infinitely often over an interval of λ-values. There is a main difficulty
to extend the main results of [2] to the three point boundary value problem (1.3).
Obviously, the symmetric point of every positive solution in [2] is known and this
plays an important role in the proof of [2]. For example, every positive solution
of (1.2) is symmetric about t0 = 1/2 and has a single maximum occurring at this
point. However, the symmetric point of every positive solution of (1.3) is unknown
and the positive solution of (1.3) may not be symmetric about t0 = 1/2 when α 6= 0.
To overcome this difficulty in section 2 we will give a detailed analysis of positive
solutions of (1.3). Note the nonlinearity f may not be of asymptotically linear type.
Consequently, the corresponding nonlinear operator may be non-differentiable when
one converts (1.3) into an operator equation in C[0, 1], the methods in Rabinowitz’
well known global bifurcation theorems from [8] establishing existence results for
unbounded connected components bifurcating from infinity do not seem to work
in our situation. However, due to the contributions of Schmitt, Berestycki et al.,
during the past forty years significant progress on the nonlinear eigenvalue problems
for non-differential mappings has been achieved; see [1, 6, 7, 14] and the references
therein. By using the methods in [1, 6, 7, 14] we can show the existence of connected
component of solutions of (1.3) bifurcating from infinity.
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2. Properties of positive solutions

First let us recall some results concerning the linear eigenvalue problem

−u′′ = λu, t ∈ (0, 1),

u(0) = 0, u(1) = αu(η).
(2.1)

According to [17], there exists a sequence of eigenvalues

0 <
√
λ1(α) <

√
λ2(α) < · · · <

√
λn(α) < . . . ,

where
√
λi(α) is the i-th positive solution of the elementary equation sinx =

α sinxη. The corresponding eigenfunction to
√
λn(α) is φn,α(t) = sin

√
λn(α)t.

In what follows, for brevity, denote φ1,α by φα, for each α ∈ [0, 1). It is easy to
show the following result concerning the principal eigenvalue

√
λ1(α).

Lemma 2.1. Assume that α ∈ [0, 1). Then
(1) π

2 <
√
λ1(α) ≤ π;

(2)
√
λ1(α) is non-increasing with α ∈ [0, 1);

(3) there exists an unique t′α ∈ [ 12 , 1) such that ‖φα‖ = φα(t′α) = 1, and φ′α(t) >
0 for t ∈ [0, t′α), φ′α(t) < 0 for t ∈ (t′α, 1];

(4) φα → φ0 = sinπt in the C1 norm on [0, 1] as α→ 0.

For each α ∈ [0, 1
2 ], let

Sα =
{

(λ, u) : λ ∈ R+, u ∈ C[0, 1], u(t) > 0 for t ∈ (0, 1), such that

u(t) is a solution of (1.3)
}
.

Then, for each (λ, u) ∈ Sα, using integration by parts and the boundary condition,
we have

(λ1(α)− λ)
∫ 1

0

uφαdt =
∫ 1

0

f(u)φαdt−W (α), (2.2)

where

W (α) =
∣∣∣∣ u(1), u′(1)
φα(1), φ′α(1)

∣∣∣∣ = α

∣∣∣∣ u(η), u′(1)
φα(η), φ′α(1)

∣∣∣∣ .
Let

G(t, s) = min{t, s}(1−max{t, s}), ∀t, s ∈ [0, 1],
and the operator Kα : C[0, 1]→ C[0, 1] be defined by

Kαx(t) =
∫ 1

0

G(t, s)x(s)ds+
αt

1− αη

∫ 1

0

G(η, s)x(s)ds, t ∈ [0, 1].

Let P = {x ∈ C[0, 1] : x(t) ≥ 0 for t ∈ [0, 1]}. Then, for each h ∈ C[0, 1], y = Kαh
if and only if

−y′′ = h(t), t ∈ (0, 1),

y(0) = 0, y(1) = αy(η).

Let

eα(t) =
1
2
η(1− η)t[1− αη − (1− α)t], t ∈ [0, 1],

e(t) =
1
4
η(1− η)t(1− t), ∀t ∈ [0, 1].

Then, we have eα(t) ≥ e(t) for t ∈ [0, 1] and α ∈ [0, 1/2].
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Lemma 2.2. For each α ∈ [0, 1/2], let Qα = {x ∈ P : x(t) ≥ ‖x‖eα(t) for t ∈
[0, 1]}. Then Kα : P → Qα is completely continuous.

Proof. Obviously, Kα : P → C[0, 1] is completely continuous. Take h ∈ P , and let
y = Kαh. Using the fact that y is a concave function on [0, 1], by [18, Lemma 2]
we easily check that Kα : P → Qα. The proof is complete. �

In this paper we use the following symbols.

0 < κ− = lim inf
s→+∞

f(s)
s
≤ lim sup

s→+∞

f(s)
s

= κ+ < +∞,

−∞ < ζ− = lim inf
s→+∞

F (s)
s2
≤ lim sup

s→+∞

F (s)
s2

= ζ+ < +∞,

where F (s) =
∫ s
0
f(t)dt for all s ∈ [0,+∞).

In this article we always assume that
2− η
3− η

> κ+ − κ−. (2.3)

Take δ > 0 small enough, such that 2−η
3−η − (κ+ − κ−) > 2δ and κ− − δ > 0. Let

κ̂− = κ− − δ, κ̂+ = κ+ + δ, and

s̃0 = min
{

1,
2− η

2(3− η)
− 1

2
(κ̂+ − κ̂−)

}
.

Take s0 > 0 large enough, such that

κ̂−s ≤ f(s) ≤ κ̂+s, s ≥ s0. (2.4)

Let M0 = sup{|f(s)| : s ∈ [0, s0]}. By (2.4) we have

κ̂−s−M0 ≤ f(s) ≤ κ̂+s+M0, s ≥ 0. (2.5)

Let

γ0,α =
‖Kα‖−1 − κ̂+ − κ̂−

2
, γ1,α = 2‖Kαeα‖−1 + γ0,α.

Let

k0 = max
t∈[0,1]

∫ 1

0

G(t, s)s(1− s)ds.

For each t ∈ [0, 1], we have

3− η
2− η

≥ Kαeα(t) ≥
∫ 1

0

G(t, s)eα(s)ds ≥
∫ 1

0

G(t, s)e(s)ds

≥ 1
4
η(1− η)

∫ 1

0

G(t, s)s(1− s)ds.

and so,
3− η
2− η

≥ ‖Kαeα‖ ≥
1
4
k0η(1− η).

On the other hand, for t ∈ [0, 1] we have

k0 ≤ ‖Kα‖ ≤ 1 +
α

1− αη
≤ 3− η

2− η
.

Thus, we have

a− :=
1
2

(2− η
3− η

− κ̂+ − κ̂−
)
≤ γ0,α ≤

k−1
0 − κ̂+ − κ̂−

2
,
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a+ :=
k−1
0 − κ̂+ − κ̂−

2
+

8
k0η(1− η)

≥ γ1,α.

For each α ∈ [0, 1
2 ], let Λα = S̄α ∩

(
[a−, a+]× Bc(θ,R0)

)
, where Bc(θ,R0) = {x ∈

C[0, 1], ‖x‖ ≥ R0} and R0 = 8M0
η(1−η) .

Lemma 2.3. For each (λ, u) ∈ Λα, we have

u(t) ≥ 1
2
‖u‖eα(t), t ∈ [0, 1]. (2.6)

Proof. Define the operators F̃ (·, ·) : [a−,+∞)× C[0, 1]→ C[0, 1] by

F̃ (λ, u)(t) = λu(t) + f(u(t)) +M0, t ∈ [0, 1]

and B(·, ·) : [a−,+∞)×C[0, 1]→ C[0, 1] by B(λ, u)(t) = KαF̃ (λ, u)(t) for t ∈ [0, 1].
Let v(t) = B(λ, u)(t) for all t ∈ [0, 1]. By (2.3) and (2.5) we have F̃ (λ, u(t)) ≥
(κ̂− + a−)u(t) ≥ 0 for all t ∈ [0, 1]. It follows from Lemma 2.2 that v ∈ Qα.
Obviously, u(t) = B(λ, u)(t)−M0ωα(t) = v(t)−M0ωα(t) for all t ∈ [0, 1], where

ωα(t) =
∫ 1

0

G(t, s)ds+
αt

1− αη

∫ 1

0

G(η, s)ds,∀t ∈ [0, 1].

It is easy to see that

ωα(t) ≤ 1
2
t
[
1− t+

αη(1− η)
η(1− α)

]
=

eα(t)
η(1− η)(1− α)

≤ 2eα(t)
η(1− η)

, t ∈ [0, 1].

Then, we have

u(t) ≥ ‖v‖eα(t)− 2M0

η(1− η)
eα(t)

≥
(
‖u‖ −M0‖ωα‖ −

2M0

η(1− η)

)
eα(t)

≥ 1
2
‖u‖eα(t), t ∈ [0, 1].

This implies that (2.6) holds. The proof is complete. �

Lemma 2.4. For each (λ, u) ∈ Λα, there exists an unique tα ∈ (0, 1) such that
(1) u(tα) = ‖u‖;
(2) u′(t) > 0, t ∈ (0, tα); u′(t) < 0, t ∈ (tα, 1);
(3) u(tα − s) = u(tα + s), s ∈ [0, 1− tα];
(4) 1 > tα ≥ 1/2;
(5) tα = 1/2 as α = 0.

Proof. It follows from the theorem on the unique solutions of initial value problems
for differential equations (IVPU) that u′(0) > 0. From the boundary value condition
u(1) = αu(η), 0 ≤ α < 1/2, there must exist tα ∈ (0, 1) such that u′(tα) = 0.
Assuming that tα < 1/2, it follows from the fact that f is independent of t and
IVPU that

u(tα + s) = u(tα − s), s ∈ [0, tα].
Hence, u(2tα) = u(0) = 0, u′(2tα) = −u′(0) < 0, and so, there exists t′ > 2tα such
that u(t′) < 0, which is a contradiction. Hence, 1 > tα ≥ 1/2, and u(tα − s) =
u(tα + s) for s ∈ [0, 1 − tα]. Obviously, (1) and (2) hold. When α = 0, u(1) = 0
and so tα = 1/2. The proof is complete. �
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Lemma 2.5. Assume that Λα ∩
(
[a−, a+] × Bc(θ,R1)

)
6= ∅, where R1 = R0 +

24M0c
−1
1 and c1 = 1

8 s̃0η(1 − η). Let σ0(α) = 200αes0η(1−η) for α ∈ [0, es0η(1−η)
4000 ]. For

each (λ, u) ∈ Λα ∩
(
[a−, a+]×Bc(θ,R1)

)
, let tα be defined as in Lemma 2.4. Then

σ0(α)→ 0 as α→ 0, and for α ∈ [0, s̃0η(1− η)/4000],

0 ≤ tα −
1
2
≤ σ0(α). (2.7)

Proof. For each (λ, u) ∈ Λα∩
(
[a−, a+]×Bc(θ,R1)

)
, let v(t) = u(t)/‖u‖ for t ∈ [0, 1].

Then

−v′′(t) = λv(t) +
1
‖u‖

f(‖u‖v(t)), t ∈ (0, 1),

v(0) = 0, v(1) = αv(η).
(2.8)

It follows from Lemma 2.4 that v(tα) = 1, tα ≥ 1/2 and

v(tα − s) = v(tα + s), ∀s ∈ [0, 1− tα].

Hence, v(2tα − 1) = v(1) = αv(η) ≤ α. It follows from Lemma 2.4 that v′(t) > 0
for t ∈ (0, tα). Thus, if there exits a t′ ∈ [0, tα) such that v(t′) ≥ α ≥ v(2tα − 1),
then we have t′ ≥ 2tα − 1 or tα ≤ 1

2 (1 + t′).
By Lemma 2.3, for t ∈ [0, tα), we have

u′(t) = −
∫ tα

t

u′′(s)ds

≥ 1
2
s̃0‖u‖

∫ tα

t

eα(s)ds−M0(tα − t)

≥ 1
2
s̃0‖u‖

∫ tα

t

e(s)ds−M0(tα − t),

(2.9)

and so

v′(t) ≥ 1
2
s̃0

∫ tα

t

e(s)ds− M0

‖u‖
(tα − t).

Then, we have

v(t) = v(0) +
∫ t

0

v′(s)ds =
∫ t

0

v′(s)ds

≥ 1
2
s̃0

∫ t

0

ds

∫ tα

s

e(τ)dτ − M0

‖u‖

∫ t

0

(tα − s)ds

≥ c1
(
t

∫ tα

t

s(1− s)ds+
∫ t

0

s2(1− s)ds
)
− M0

‖u‖
t

= c1

(
t

∫ tα

0

s(1− s)ds− t
∫ t

0

s(1− s)ds+
∫ t

0

s2(1− s)ds
)
− M0

‖u‖
t

≥ c1
(
t

∫ 1/2

0

s(1− s)ds− t
(1

2
t2 − 1

3
t3
)

+
(1

3
t3 − 1

4
t4
))
− M0

‖u‖
t

≥
( 1

12
c1 −

M0

‖u‖

)
t− 1

6
c1t

2

≥ 1
24
c1t−

1
6
c1t

2.
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Solving the inequality
1
24
c1t−

1
6
c1t

2 ≥ α,
we obtain

1−
√

1− 384αc−1
1

8
≤ t ≤

1 +
√

1− 384αc−1
1

8
.

Let

t′ =
1−

√
1− 384αc−1

1

8
.

Then we have

0 ≤ tα −
1
2
≤

1−
√

1− 384αc−1
1

16
≤ 24α

c1
≤ σ0(α).

Obviously, σ0(α)→ 0 as α→ 0. The proof is complete. �

Lemma 2.6. Let λ1(α), t′α be defined as in Lemma 2.1 and σ1(α) = 100α
η(1−η) for

each α ∈ [0, es0η(1−η)
4000 ]. Then for each α ∈ [0, es0η(1−η)

4000 ],

0 ≤ t′α −
1
2
≤ σ1(α).

Proof. It follows from (2) in Lemma 2.1 that π2 = λ1(0) ≥ λ1(α) ≥ λ1( 1
2 ) ≥ π2

4 for
each α ∈ [0, 1/2]. According to Lemma 2.2 we have φα ∈ Qα for α ∈ [0, 1/2], and
so

φα(t) ≥ ‖φα‖eα(t) = eα(t) ≥ e(t), ∀t ∈ [0, 1].

Note that es0η(1−η)
4000 ≤ 1/2. As in the proof Lemma 2.5, for t ∈ [0, t′α], we have

φα(t) = φα(0) +
∫ t

0

φ′α(s)ds =
∫ t

0

φ′α(s)ds

≥ λ1(
1
2

)
∫ t

0

ds

∫ t′α

s

φα(τ)dτ

≥ η(1− η)
4

λ1(
1
2

)
∫ t

0

ds

∫ t′α

s

τ(1− τ)dτ

≥ π2η(1− η)
16

(
t

∫ 1/2

0

s(1− s)ds− t
∫ t

0

s(1− s)ds+
∫ t

0

s2(1− s)ds
)

≥ π2η(1− η)
16

( 1
12
t− 1

6
t2
)
.

Solving the inequality
π2η(1− η)

16

( 1
12
t− 1

6
t2
)
≥ α,

we have
1−

√
1− 1536α

π2η(1−η)

4
≤ t ≤

1 +
√

1− 1536α
π2η(1−η)

4
.

Then we have

0 ≤ t′α −
1
2
≤

1−
√

1− 1536α
π2η(1−η)

8
≤ σ1(α).

The proof is complete. �
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Lemma 2.7. Assume that Λα ∩
(
[a−, a+] × Bc(θ,R2)

)
6= ∅, where R2 = R1 +

200M0es0η(1−η) . Let c1 and σ0(α) be defined as in Lemma 2.5, c2 = c1
24 . Assume that

α ∈ [0, es0η(1−η)
4000 ]. For each (λ, u) ∈ Λα ∩

(
[a−, a+]×Bc(θ,R2)

)
, let tα be defined as

in Lemma 2.4. Then we have

|u′(t)| ≥ c2‖u‖|tα − t|, t ∈ [0, 1]. (2.10)

Proof. Now, (2.9) holds for each (λ, u) ∈ Λα ∩
(
[a−, a+] × Bc(θ,R2)

)
. From α ∈

[0, es0η(1−η)
4000 ], we have σ0(α) < 1

10 , and so, by (2.7) we have tα ∈ [1/2, 3/5] . On the
other hand, we have for t ∈ [0, tα),∫ tα

t

e(s)ds =
η(1− η)

4
[1
2

(tα + t)− 1
3

(t2α + tαt+ t2)
]
(tα − t). (2.11)

Let

g(t) =
1
2

(tα + t)− 1
3

(t2α + tαt+ t2), ∀t ∈ [0, 1].

It is easy to see that g(t) ≥ min{g(0), g(tα)} ≥ 1
8 for t ∈ [0, tα]. It follows from

(2.9) and (2.11) that for t ∈ (0, tα),

u′(t) ≥
[ 1
64
s̃0η(1− η)‖u‖ −M0

]
(tα − t) ≥ c2‖u‖(tα − t). (2.12)

Similarly, for t ∈ [tα, 1], we have

−u′(t) = −
∫ t

tα

u′′(s)ds

≥ 1
2
s̃0‖u‖

∫ t

tα

eα(s)ds−M0(t− tα)

≥ 1
2
s̃0‖u‖

∫ t

tα

e(s)ds−M0(t− tα)

≥
(
c1‖u‖g(t)−M0

)
(t− tα)

≥
( 1

12
c1‖u‖ −M0

)
(t− tα)

≥ c2‖u‖(t− tα).

(2.13)

Now (2.10) follows from (2.12) and (2.13). The proof is complete. �

Lemma 2.8. Assume that Λα ∩
(
[a−, a+]×Bc(θ,R3)

)
6= ∅, where R3 = R2 +M0.

For each (λ, u) ∈ Λα ∩
(
[a−, a+] × Bc(θ,R2)

)
, let tα be defined as in Lemma 2.4.

Then the following inequalities also hold:

(a− + κ̂−)u(t) ≤ −u′′(t) ≤ (|a+|+ κ̂+)u(t), ∀t ∈ E+(u; s0), (2.14)

|u′′(t)| ≤ (|a+|+ κ̂+)s0 + 3M0, ∀t ∈ E−(u; s0), (2.15)

|u′(t)| ≤ c3‖u‖|t− tα|,∀t ∈ [0, 1]. (2.16)

where c3 = |a+|+ κ̂+ + 1, E+(u; s0) = {s ∈ [0, 1] : u(s) ≥ s0} and E−(u; s0) = {s ∈
[0, 1] : u(s) < s0}.
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Proof. It follows from (2.4) and (2.5) that (2.14) and (2.15) hold. Also, by (2.5) we
have

u′(t) = −
∫ tα

t

u′′(s)ds =
∫ tα

t

(λu(s) + f(u(s)))ds

≤
∫ tα

t

(λu(s) + κ̂+u(s) +M0]ds

≤ (|a+|+ κ̂+ + 1)‖u‖(tα − t), t ∈ (0, tα).

(2.17)

Similarly, we have

− u′(t) ≤ (|a+|+ κ̂+ + 1)‖u‖(t− tα),∀t ∈ (tα, 1). (2.18)

Now (2.16) follows from (2.17) and (2.18). The proof is complete. �

Recall that if {Σn} is a sequence of sets then

lim inf
n→∞

Σn =
{
x : there exists a positive integer N0 such that every

neighborhood of x intersects Σn for n ≥ N0

}
,

lim sup
n→∞

Σn =
{
x : every neighborhood of x intersects Σn

for infinitely many integers n
}
.

The proof of the next lemma can be found in [16].

Lemma 2.9. Let {Σn} be a sequence of connected sets in a complete metric space
M . Assume that

(i) ∪∞n=1Σn is precompact in M ;
(ii) lim infn→∞ Σn 6= ∅.

Then lim supn→∞Σn is non-empty, closed and connected.

3. Oscillatory bifurcation from infinity

Let ζ0 = ζ+ + ζ−, ζ = ζ+−ζ−
2 , c4 = c3(2κ̂+ + ζ0) + 4ζ,

c5 =
η(1− η)ζ2

64c4

(
1− ζ

4c4

)
,

and

ϑ = min
{ s̃0η(1− η)

4000
,
c2c5s̃0η(1− η)

6400c4
,

c5
16(π + c3)

}
.

Recall the definition of Sα in section 2. Now we have the following main result.

Theorem 3.1. Suppose that (2.3) holds, and ζ− < ζ+. Then, for α ∈ [0, ϑ/2],
S̄α possesses at least one connected component Cα,∞ bifurcating from infinity and
oscillating over an interval Iα := [d−(α), d+(α)], where

d−(α) = λ1(α)− 3
4
c5 − ζ0, d+(α) = λ1(α) +

3
4
c5 − ζ0.

Proof. Take τn ∈ (0, 1) such that τn → 1 as n→∞. Let

c
(τn)
5 =

τn(2− τn)η(1− η)ζ2

64c3c4

(
1− (2− τn)ζ

4c4

)
,

ϑ(τn) = min
{ s̃0η(1− η)

4000
,
c2c

(τn)
5 s̃0η(1− η)

6400c4
,

c
(τn)
5

16(π + c3)

}
.
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Except for the last paragraph, in what follows of the proof we always assume that
α ∈ [0, ϑ(τn)].

By using the methods showing the main results in [1, 6, 7, 14] we can prove
that S̄α possesses at least one connected component bifurcating from infinity. For
brevity, we will omit the process. Let f̃(s) = f(s)− ζ0s, and F̃ (s) = F (s)− 1

2ζ0s
2

for s ≥ 0. Then we have

lim sup
s→+∞

F̃ (s)
s2

= ζ, lim inf
s→+∞

F̃ (s)
s2

= −ζ.

Thus, there exists two sequences of positive numbers {ρ+
n } and {ρ−n }, with ρ+

n →∞
and ρ−n →∞, such that

F̃ (ρ−n ) ≥ ζ

2
(ρ−n )2, F̃ (ρ+

n ) ≤ −ζ
2

(ρ+
n )2. (3.1)

For n = 1, 2, . . . , let

ς−n = inf
{
s ≥ 0 : F̃ (s) ≥ ζ

2
(ρ−n )2

}
,

ς+n = inf
{
s ≥ 0 : F̃ (s) ≤ −ζ

2
(ρ+
n )2
}
.

Assume without loss of generality that {ς+n } and {ς−n } are strictly increasing, and
R

(τn)
4 ≤ ς+n < ς−n < ς+n+1 for n ∈ N, where

R
(τn)
4 = R3 + 3M0(κ̂+)−1 + 32s0(η(1− η))−1 + 1 + 1024s0c6(η(1− η)c(τn)

5 )−1,

c6 =
c4[(|a+|+ |κ̂+|)s0 + 3M0]

2c22
,

and R3 is defined as in Lemma 2.8. Let (λ, u) ∈ S̄α, with ‖u‖ = ς−n and λ ∈ [a−, a+].
Then, (λ, u) satisfies (2.2). Writing Z(u; t) = F̃ (‖u‖) − F̃ (u(t)) for t ∈ [0, 1].
Obviously, Z(u; t) ≥ 0 for t ∈ [0, 1]. By a direct computation, we have∫ 1

0

f̃(u)φαdt =
∫ 1

0

Z(u; t)
u′φ′α − φαu′′

(u′)2
dt− Z(u; 1)

φα(1)
u′(1)

. (3.2)

By (2.5) and using the fact that ‖u‖ ≥ 3M0(κ̂+)−1, we have

|f(u(t))| ≤ κ̂+u(t) + 3M0 ≤ 2κ̂+‖u‖, t ∈ [0, 1]. (3.3)

Let tα ∈ [1/2, 1) be such that u(tα) = ‖u‖, and u′(tα) = 0. It follows from Lemma
2.5 that tα ∈ [ 12 ,

1
2 + σ0(α)]. Since Z ′t(u; t) = −f̃(u(t))u′(t), by (2.16) and (3.3) we

have
|Z ′t(u; t)| ≤ c4‖u‖2|t− tα|, ∀t ∈ [0, 1], (3.4)

and so

|Z(u; t)| =
∣∣Z(u; tα) +

∫ t

tα

Z ′s(u; s)ds
∣∣

≤
∫ t

tα

|Z ′s(u; s)|ds

≤ 1
2
c4‖u‖2(t− tα)2
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for each t ∈ [tα, 1]. Similarly, we also have

|Z(u; t)| ≤ 1
2
c4‖u‖2(t− tα)2, ∀t ∈ [0, tα].

Thus, we have

|Z(u; t)| ≤ 1
2
c4‖u‖2(t− tα)2, ∀t ∈ [0, 1]. (3.5)

Now we give estimates for each part of the right side of the equality (3.2), and
for W (α).

(1) Estimate for Z(u; 1)φα(1)
u′(1) . It follows from (3.5) and Lemma 2.7 that for

α ∈ [0, ϑ(τn)],∣∣Z(u; 1)
φα(1)
u′(1)

∣∣ ≤ 1
2
c4‖u‖2(1− tα)2

αφα(η)
c2‖u‖(1− tα)

≤ c4‖u‖α
2c2

≤ 1
16
c
(τn)
5 ‖u‖. (3.6)

(2) Estimate for
∫ 1

0
Z(u; t)−φαu

′′

(u′)2 dt. Since Z(u; t) ≥ 0 for t ∈ [0, 1], and −u′′(t) ≥
0 for t ∈ E+(u; s0), we have∫ 1

0

Z(u; t)
−φαu′′

(u′)2
dt =

(∫
E+(u;s0)

+
∫
E−(u;s0)

)
Z(u; t)

−φαu′′

(u′)2
dt

≥
∫
E−(u;s0)

Z(u; t)
−φαu′′

(u′)2
dt.

(3.7)

On the other hand, by (3.5), Lemmas 2.7 and 2.8 we have∣∣ ∫
E−(u;s0)

Z(u; t)
−φαu′′

(u′)2
dt
∣∣

≤
∫
E−(u;s0)

|Z(u; t)|
∣∣φαu′′
(u′)2

∣∣dt
≤
∫
E−(u;s0)

|Z(u; t)|
∣∣ u′′
(u′)2

∣∣dt
≤
∫
E−(u;s0)

1
2
c4‖u‖2(t− tα)2

|u′′|
c22‖u‖2(t− tα)2

dt

=
∫
E−(u;s0)

c4|u′′|
2c22

dt

≤
∫
E−(u;s0)

c4[(|a+|+ |κ̂+|)s0 + 3M0]
2c22

dt

≤ c6 ·meas(E−(u; s0)).

from Lemma 2.3, it follows that for α ∈ [0, ϑ(τn)],

E−(u; s0) ⊂
[
0,

1−
√

1− 32s0
η(1−η)‖u‖

2

]
∪
[1 +

√
1− 32s0

η(1−η)‖u‖

2
, 1
]
.

and so ∣∣ ∫
E−(u;s0)

Z(u; t)
−φαu′′

(u′)2
dt
∣∣ ≤ c6 ·mes(E−(u; s0))

≤ 64s0c6
η(1− η)‖u‖

≤ 1
16
c
(τn)
5 ‖u‖.

(3.8)
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It follows from (3.7) and (3.8) that∫ 1

0

Z(u; t)
−φαu′′

(u′)2
dt ≥ − 1

16
c
(τn)
5 ‖u‖. (3.9)

(3) Estimate for
∫ 1

0
Z(u; t)φ

′
α

u′ dt. According to Lemmas 2.5 and 2.6, there exist
tα, t

′
α ≥ 1/2 such that ‖u‖ = u(tα), ‖φα‖ = φα(t′α), and 0 ≤ tα − 1

2 ≤ σ0(α), 0 ≤
t′α − 1

2 ≤ σ1(α). Let σ(α) = max{σ0(α), σ1(α)}. Obviously, we have σ(α) = σ0(α).
Now we have∫ 1

0

Z(u; t)
φ′α
u′
dt =

(∫ 1/2

0

+
∫ 1

2+σ(α)

1
2

+
∫ 1

1
2+σ(α)

)
Z(u; t)

φ′α
u′
dt. (3.10)

It follows from Lemmas 2.1 and 2.4 that φ′α(t) < 0 and u′(t) < 0 for t ∈ [ 12 +σ(α), 1],
and so ∫ 1

1
2+σ(α)

Z(u; t)
φ′α
u′
dt ≥ 0. (3.11)

From Lemma 2.1 we have π/2 < |
√
λ1(α)| ≤ π, and so π/2 ≤ |φ′α| ≤ π. It follows

from (3.5), Lemmas 2.7 and 2.8 that

∣∣ ∫ 1
2+σ(α)

1
2

Z(u; t)
φ′α
u′
dt
∣∣ ≤ ∫ 1

2+σ(α)

1
2

|Z(u; t)
φ′α
u′
|dt

≤
∫ 1

2+σ(α)

1
2

1
2
c4‖u‖2(t− tα)2

π

c2‖u‖(t− tα)
dt

≤ c4π‖u‖
2c2

σ(α)

≤ 2c4‖u‖
c2

σ0(α) ≤ 1
16
c
(τn)
5 ‖u‖.

(3.12)

Obviously, by (3.1) we have

Z(u; 0) = F̃ (‖u‖)− F̃ (u(0)) = F̃ (‖u‖) =
ζ

2
(ρ−n )2 ≥ ζ

2
(ς−n )2 =

ζ

2
‖u‖2. (3.13)

By (3.4) and (3.13), for t ∈
[
0, 1−

√
1− (2−τn)ζ

2c4

]
, we have

Z(u; t) = Z(u; 0) +
∫ t

0

Z ′s(u; s)ds

≥ ζ

2
‖u‖2 −

∫ t

0

c4‖u‖2(tα − s)ds

≥ ζ

2
‖u‖2 −

∫ t

0

c4‖u‖2(1− s)ds

=
‖u‖2

2
(ζ + c4t

2 − 2c4t) ≥
τnζ

4
‖u‖2.

(3.14)

It follows from Lemmas 2.1 and 2.2 that φα = λ1(α)Kφα ∈ Qα, and so

φα(t) ≥ ‖φα‖eα(t) = eα(t) ≥ e(t), ∀t ∈ [0, 1].
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It follows from Lemmas 2.1 and 2.4 that φ′α(t) > 0 and u′(t) > 0 for t ∈ [0, 1/2].
By Lemma 2.7 and (3.14) we have∫ 1/2

0

Z(u; t)
φ′α
u′
dt =

(∫ 1−
q

1− (2−τn)ζ
2c4

0

+
∫ 1/2

1−
q

1− (2−τn)ζ
2c4

)
Z(u; t)

φ′α
u′
dt

≥
∫ 1−

q
1− (2−τn)ζ

2c4

0

Z(u; t)
φ′α
u′
dt

≥
∫ 1−

q
1− (2−τn)ζ

2c4

0

τnζ

4
‖u‖2 φ′α

c3‖u‖
dt

≥ τnζ

4c3
φα
(
1−

√
1− (2− τn)ζ

2c4

)
‖u‖

≥ τnζ

4c3
φα
( (2− τn)ζ

4c4

)
‖u‖

≥ τnη(1− η)ζ
64c3

(2− τn)ζ
c4

(
1− (2− τn)ζ

4c4

)
‖u‖

= c
(τn)
5 ‖u‖.

(3.15)

(4) Estimate for W (α). It follows from Lemma 2.8 that

|W (α)| =
∣∣α[u(η)φ′α(1)− u′(1)φα(η)

]∣∣
≤ α

(
‖u‖‖φ′α‖+ c3‖u‖(1− tα)‖φα‖

)
≤ α‖u‖

(
π + c3

)
≤ 1

16
c
(τn)
5 ‖u‖.

(3.16)

From Lemmas 2.2 and 2.3 it follows that

0 <
1
2
‖u‖

∫ 1

0

e2(t)dt ≤ 1
2
‖u‖

∫ 1

0

e2α(t)dt ≤
∫ 1

0

uφαdt ≤ ‖u‖. (3.17)

From (3.2), (3.6), (3.9)–(3.12), (3.15)–(3.17) it follows that∫ 1

0

f̃(u)φαdt−W (α) ≥ 3
4
c
(τn)
5 ‖u‖ ≥ 3

4
c
(τn)
5

∫ 1

0

uφαdt. (3.18)

Thus, by (2.2),(3.17) and (3.18), we have

λ ≤ λ1(α)− 3
4
c
(τn)
5 − ζ0 := d

(τn)
− (α).

Similarly, for each (λ, u) ∈ S̄α with ‖u‖ = ς+n ≥ R
(τn)
4 and λ ∈ [a−, a+], we have

λ ≥ λ1(α) +
3
4
c
(τn)
5 − ζ0 := d

(τn)
+ (α).

Assume that ϑ(τn) → ϑ as n → ∞. Obviously, ϑ > 0. Assume without loss
of generality that ϑ(τn) ≥ ϑ

2 for all n ∈ N. From the proof above we see that,
for each α ∈ [0, ϑ/2] and n ∈ N, there exists at least one connected component
C

(τn)
α,∞ of S̄α oscillating over the interval [d(τn)

− (α), d(τn)
+ (α)]. Note d(τn)

− (α)→ d−(α)
and d

(τn)
+ (α) → d+(α) as n → ∞. Applying Lemma 2.9, we see that for each

α ∈ [0, ϑ/2], there exists at least one connected component Cα,∞ of S̄α such that
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Cα,∞ contains lim supn→∞ C
(τn)
α,∞ and oscillates over the interval [d−(α), d+(α)].

The proof is complete. �

Corollary 3.2. Suppose that all condition of Theorem 3.1 hold. Then for α ∈
[0, ϑ/2] and λ ∈ [d−(α), d+(α)], (1.3) has infinitely many solutions.
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