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TRAVELING CURVED FRONTS OF BISTABLE
REACTION-DIFFUSION EQUATIONS WITH DELAY

XIONGXIONG, BAO WEN-HUI HUANG

Abstract. This article concerns the existence and stability of traveling curved

fronts for bistable reaction-diffusion equations with delay in two-dimensional
space. Using the comparison principle and establishing super- and sub- solu-

tions, we prove the existence of traveling curved fronts. We also show that

such traveling curved front is unique and stable.

1. Introduction

Traveling wave solutions of reaction-diffusion equations with delay have been
widely studied because of its significant in physics and biology, for example, see
[2, 3, 8, 9, 11, 12, 13, 14, 19, 21, 26, 27, 28, 30, 31, 32] and references therein.
Recently, the nonplanar traveling wave solutions of reaction-diffusion equations in
high dimensional spaces have attracted a lot of attention, see [1, 4, 5, 6, 7, 15, 16, 22,
23, 24] for the existence and stability results of nonplanar traveling wave solutions
of autonomous reaction-diffusion equation and see [20, 29] for non-autonomous
case. Moreover, we refer to [17, 25] for the existence of nonplanar traveling fronts
to reaction diffusion system. Compared to the planar traveling wave, the profiles
of nonplanar traveling wave solutions become more complicated and have various
new types in multidimensional space. Since many practical problems from physics,
chemistry and ecology are high-dimensional problems, the nonplanar traveling wave
solutions have important applications to describe multi-dimensional chemical waves
and ecology phenomena in multidimensional space, see [1, 6, 7, 15, 17, 22, 25] and
so on. It is then natural to ask whether such traveling curved fronts of reaction-
diffusion equations with delay exist and are stable. Resolving this issue is the main
contribution of our current paper.

More precisely, in this paper, we are interested in two-dimensional V-shaped
traveling fronts of the following bistable reaction diffusion equations with time
delayed

∂u

∂t
= uxx + uyy + f(u(x, y, t), u(x, y, t− τ)), (x, y) ∈ R2, t > 0, (1.1)
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where τ > 0 is a given constant and f(u(x, y, t), u(x, y, t−τ)) satisfies the following
structure hypotheses:

(H1) f ∈ C1(I2,R) for some open interval I ⊂ R with [0, 1] ⊂ I and ∂2f(u, v) ≥ 0
for (u, v) ∈ I2;

(H2) f(0, 0) = f(1, 1) = 0, ∂1f(0, 0)+∂2f(0, 0) < 0 and ∂1f(1, 1)+∂2f(1, 1) < 0.
(H3) There exists a monotone traveling wave solution U(xe1 + ye2 + ct) of (1.1)

connecting 0 and 1, that is U ′(ξ) > 0, U(−∞) = 0, U(∞) = 1 and U(ξ)
satisfy U ′′− cU ′+ f(U(ξ), U(ξ− cτ)) = 0. Furthermore, assume that wave
speed c > 0.

Note that the assumption (H1) and (H2) are standard. Assumption (H3) implies
that a traveling wave solution of (1.1) with the form U(xe1 + ye2 + ct) is a planar
traveling wave solution in R2. A typical example of f satisfying (H1), (H2) and
(H3) is the typical Huxley nonlinearity

f(u, v) =

{
u(1− u)(v − a), for 0 ≤ u ≤ 1, v ∈ R,
u(1− u)(u− a), u ∈ (−∞, 0) ∪ (1,+∞)

with 0 < a < 1. Let f̂ : I2 → R be a smooth extension of f : [0, 1]2 → R, then
f̂ satisfies (H1) and (H2), see Smith and Zhao [21, Remark 3.1]. Following from
Schaaf [19], for Huxley nonlinearity, there exists a unique function U(ξ) : R → R
and a unique constant c ∈ R such that

U ′′ − cU ′ + f(U(ξ), U(ξ − cτ)) = 0, ∀ξ ∈ R,
U(+∞) = 1, U(−∞) = 0,

U ′(ξ) > 0 in R.
(1.2)

As usual c is called the wave speed and U is the wave profile of front. In partic-
ular, equation (1.1) with the typical Huxley nonlinearity f(u, v) has an increasing
traveling wave solution for wave speed c > 0 if a ∈ (0, 1

2 ). Smith and Zhao [21]
proved the global asymptotic stability, Lyapunov stability and uniqueness of travel-
ing wave solutions of (1.2) under the assumption (H1), (H2) and (H3). It is known
from Wang et al.[28] (see also Schaaf[19]) that when (H1)-(H3) hold, there exist
positive constant β1 and C1 such that

max {U(−ξ), |U(ξ)− 1|, |U ′(±ξ)|, |U ′′(±ξ)|} ≤ C1e
−β1ξ, ∀ξ ≥ 0. (1.3)

Generally the curvature effect is excepted to accelerate the speed. Assume c > 0.
Fix s > c and we try to find two-dimensional V-shaped traveling fronts with wave
speed s to (1.1). Without loss of generality, we assume that the solutions travel
towards the y-direction. Take

u(x, y, t) = w(x, z, t), z = y + st,

we have
∂w

∂t
= wxx + wzz − s

∂w

∂z
+ f(w(x, z, t), w(x, z − sτ, t− τ)),

w(x, z, r) = φ(x, z, r), (x, z) ∈ R2, r ∈ [−τ, 0].
(1.4)

We denote the solution of (1.4) with w(x, z, r) = φ(x, z, r) by w(x, z, t;φ).
The purpose of the current paper is to seek for V (x, z) with

L[V ] := −Vxx − Vzz + s
∂V

∂z
− f(V (x, z), V (x, z − sτ)) = 0 for (x, z) ∈ R2. (1.5)
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Let m∗ =
√
s2 − c2/c, we know that U

(
c
s (z −m∗x)

)
and U

(
c
s (z +m∗x)

)
are two

planar traveling waves of (1.1). Then the function

v−(x, z) := max
{
U
( c
s

(z −m∗x)
)
, U
( c
s

(z +m∗x)
)}

= U
( c
s

(z +m∗|x|)
)

is a subsolution of (1.5). In particular, v−z (x, z) > 0.
The following theorem is the main result of this article.

Theorem 1.1. Assume that (H1)-(H3) hold. Then for each s > c, there exists a
solution u(x, y, t) = V (x, y + st) of (1.1) with V (x, z) > v−(x, z) and

lim
R→∞

sup
x2+z2≥R2

|V (x, z)− v−(x, z)| = 0.

Let φ(x, z, r) with φ(x, z, r) ≥ v−(x, z) for (x, z) ∈ R2 and r ∈ [−τ, 0] and

lim
R→∞

sup
x2+z2≥R2,r∈[−τ,0]

|φ(x, z, r)− v−(x, z)| = 0.

Then the solution w(x, z, t;φ) of (1.4) satisfies

lim
t→∞

‖w(x, z, t;φ)− V (x, z)‖L∞(R2) = 0. (1.6)

In the following, we call V (x, y+ st) a traveling curved front of (1.1). Note that
for every τ ≥ 0 there is exactly one c and one unique (up to translation) planar
traveling wave solution of (1.2) and the sign of the wave speed c can be obtained
by the sign of

∫ 1

0
f0(r)dr, where f0(r) = f(r, r), see [19, Theorem 3.13 and 3.16].

Because of the curvature effect, the speed of traveling curved front must be greater
than c. Following Theorem 1.1, for every given s > c, there exists a traveling curved
front V (x, z) of (1.1) and it is unique and stable for the initial value φ(x, z, r) with
φ(x, z, r) ≥ v−(x, z) in R2 and r ∈ [−τ, 0]. However, as the effect of time delay
τ , it is difficult to prove that the traveling curved front is stable for initial value
φ(x, z, r) ≤ v−(x, z) in R2 and r ∈ [−τ, 0] as that in [16, 29]. It remains as an
interested open problem. Furthermore, for (1.1) with nonlocal decay
∂u

∂t
= uxx + uyy + g

(
u(x, y, t),

(
h ∗ S(u)

)
(x, y, t)

)
, for (x, y) ∈ R2, t > 0, (1.7)

Wang et al [27] established the existence of traveling wave solution for (1.7). There
are some difficulties to construct the supersolution of (1.7) and the existence of
traveling curved fronts of (1.7) remains as an open problem. It is worth to point out
that, for some special kernels, the traveling curved fronts of (1.7) can be obtained,
see [25, Example 2] for the details proof of existence of traveling curved fronts to a
Lotka-Volterra competition-diffusion system with spatio-temporal delays.

This article is organized as follows. In Section 2, we make some preparations
which is needed in the sequel. In Section 3, we establish a super-solution and prove
the existence of traveling curved fronts of (1.1). In Section 4, we prove that the
traveling curved front is unique and stable.

2. Preliminaries

In this section, we establish a comparison theorem for equation (1.1) on R2. Let
f0(·, ·) : I → R be defined by f0(u) = f(u, u), u ∈ I. By the continuity of f0 and
assumption (H2), it then easily follows that there exist δ0, a−, a+ ∈ (0, 1) with
[−δ0, 1 + δ0] ⊂ I and a− ≤ a+ such that f0(·) : [−δ0, 1 + δ0]→ R satisfies

f0(0) = f0(a−) = f0(a+) = f0(1) = 0,
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f0(u) > 0 for u ∈ (−δ0, 0) ∪ (a+, 1),

f0(u) < 0 for u ∈ (0, a−) ∪ (1, 1 + δ0).

Let X = BUC(R2,R) be the Banach space of all bounded and uniformly con-
tinuous functions from R2 to R with the usual supremum norm. Let X+ =
{φ ∈ X : φ(x, y) ≥ 0, (x, y) ∈ R2}. Let C = C([−τ, 0], X) be the Banach
space of continuous functions from [−τ, 0] into X with the supremum norm and
C+ = {φ ∈ C : φ(s) ∈ X+, s ∈ [−τ, 0]}. Then C+ is a positive cone of C. We
identify an element φ ∈ C as a function from R2 × [−τ, 0] into R defined by
φ(x, y, s) = φ(s)(x, y). For any continuous function ω(·) : [−τ, b) → X, b > 0, we
define ωt ∈ C, t ∈ [0, b), by ωt(s) = ω(t+s), s ∈ [−τ, 0]. For any φ ∈ [−δ0, 1+δ0]C ={
φ ∈ C : φ(x, y, s) ∈ [0, 1], (x, y) ∈ R2, s ∈ [−τ, 0]

}
, define

F (φ)(x, y) = f(φ(x, y, 0), φ(x, y,−τ)), (x, y) ∈ R2.

By the global Lipschitz continuity of f(·, ·) on [−δ0, 1 + δ0]2, we can verify that
F (φ) ∈ X and F : [−δ0, 1 + δ0]C → X is globally Lipschitz continuous. In addition,
it follows from assumption (H1) that F is quasi-monotone on [−δ0, 1 + δ0]C in the
sense that

lim
h→0+

1
h

dist
(
ψ(0)− φ(0) + h[F (ψ)− F (φ)];X+

)
= 0

for all ψ, φ ∈ [−δ0, 1 + δ0]C with ψ ≥ φ. Let

T (t)φ(x, y) =
1√
4πt

∫
R2

exp
(
− (x− x1)2 + (y − y1)2

4t

)
φ(x1, y1) dx1 dy1,

for (x, y) ∈ R2, t > 0, and φ(·, ·) ∈ X.

Definition 2.1. A continuous function v : [−τ, b) → X, b > 0, is called a mild
supersolution (subsolution) of (1.4) on [0, b) if

v(t) ≥ (≤)T (t− s)v(s) +
∫ t

s

T (t− r)F (vr)dr (2.1)

for all 0 ≤ s ≤ t < b. If v is both supersolution and subsolution on [0, b), then we
call it a mild solution of (1.4).

Remark 2.2. Assume that there is a v(x, z, t) ∈ BUC(R2× [−τ, b),R), b > 0, such
that v(x, z, t) is C2 in (x, z) ∈ R2 and C1 in t ∈ [0, b], and
∂v

∂t
≥ (≤)vxx + vzz − s

∂v

∂z
+ f(v(x, z, t), v(x, z− sτ, t− τ)), (x, z) ∈ R2, t ∈ (0, b).

Then by the positivity of the linear semigroup T (t) : X → X implies (2.1) holds.
In this case v is called a smooth supersolution (subsolution) of (1.4) on (0, b).

Similar to [21, Theorem 2.2] and [27, Theorem 2.3], we have the following exis-
tence and comparison theorem, here we omit the details of the proof.

Theorem 2.3. Assume that (H1) and (H2) hold. Then for any φ ∈ [−δ0, 1 +
δ0]C, (1.4) has a unique mild solution w(x, z, t;φ) on [0,∞) and w(x, z, t;φ) is a
classical solution of (1.4) for (x, z, t) ∈ R2 × [τ,+∞). Moreover, suppose that
w+(x, z, t) and w−(x, z, t) are supersolution and subsolution of (1.4) on R2 × R+,
respectively, and satisfy w±(x, z, t) ∈ [−δ0, 1 + δ0] for (x, z) ∈ R2, t ∈ [−τ,+∞)
and w−(x, z, s) ≤ w+(x, z, s) for any (x, z) ∈ R2 and s ∈ [−τ, 0]. Then one has
w−(x, z, t) ≤ w+(x, z, t) for (x, z) ∈ R2 and t ≥ 0.
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3. Existence of traveling curved fronts

In this section, we establish the existence of traveling curved fronts of (1.1) by
constructing a suitable supersolution v+(x, z) with v+(x, z) ≥ v−(x, z) in R2.

For any s > c, it follows from [15] and the reference therein that there exists a
unique function ϕ(x, s) with asymptotic lines y = m∗|x| satisfying

s =
ϕxx

1 + ϕ2
x

+ c
√

1 + ϕ2
x. (3.1)

About the shape of the function ϕ, the readers can refer to [15, Fig. 3]. Following
from [15, Lemma 2.1], there exist positive constants β2, Ci (i = 2, 3, 4) and µ± such
that

max {|ϕ′′(x)|, |ϕ′′′(x)|} ≤ C2 sech(β2x), (3.2)

C3 sech(β2x) ≤ s√
1 + ϕ2

x

− c ≤ C4 sech(β2x), (3.3)

m∗|x| ≤ ϕ(x), (3.4)

µ− ≤ µ(x) ≤ µ+ (3.5)

for all x ∈ R, where

µ(x) =
s(ϕ(x)−m∗|x|)
s− c

√
1 + ϕ2

x

, β2 =
s
√
s2 − c2
c

.

The following lemma constructs a supersolution of (1.5).

Lemma 3.1. There exist a positive constant ε+0 and a positive function α+
0 (ε) such

that, for 0 < ε < ε+0 and 0 < α ≤ α+
0 (ε),

v+(x, z; ε, α) = U
( z + ϕ(αx)/α√

1 + ϕ′2(αx)

)
+ ε sech(β2αx)

is a supersolution of (1.5) with

lim
R→∞

sup
x2+z2>R2

|v+(x, z; ε, α)− v−(x, z)| ≤ 2ε, (3.6)

v−(x, z) < v+(x, z; ε, α), for (x, z) ∈ R2, (3.7)

v+
z (x, z; ε, α) > 0, for (x, z) ∈ R2. (3.8)

Proof. Let

ξ = αx, ζ =
z + ϕ(αx)/α√

1 + ϕ′2(αx)
, σ(ξ) = ε sech(β2ξ).

Then a direct calculation yields (see [15])

ζx = − αϕ′ϕ′′

1 + ϕ′2
ζ +

ϕ′√
1 + ϕ′2

,

ζxx = −αϕ
′′2 + α2ϕ′ϕ′′′

1 + ϕ′2
ζ +

3α2ϕ′
2
ϕ′′2

(1 + ϕ′2)2
ζ − α(ϕ′2 − 1)ϕ′′

(1 + ϕ′2)3/2
.

Then v+(x, z; ε, α) = U(ζ) + σ(ξ). Since U(ζ) is a solution of (1.2), we have

Uζζ − cUζ + f (U(ζ), U(ζ − cτ)) = 0 for ζ ∈ R.
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By assumptions (H1), (H3) and (3.3), we have that

f (U(ζ) + σ(ξ), U(ζ − cτ) + σ(ξ)) ≥ f
(
U(ζ) + σ(ξ), U

(
ζ − sτ√

1 + ϕ′2

)
+ σ(ξ)

)
.

Direct calculations yield

L[v+] = −v+
xx − v+

zz + s
∂v+

∂z
− f

(
v+(x, z), v+(x, z − sτ)

)
= Uζζ

(
− ζ2

x −
1

1 + ϕ′2(ξ)

)
− Uζζxx +

sUζ√
1 + ϕ′2(ξ)

− α2σ′′(ξ)

− f
(
U(ζ) + σ(ξ), U

(
ζ − sτ√

1 + ϕ′2(ξ)

)
+ σ(ξ)

)
+ f (U(ζ), U (ζ − cτ)) + Uζζ − cUζ

≥ Uζζ
(

1− ζ2
x −

1
1 + ϕ′2(ξ)

)
− Uζζxx +

( s√
1 + ϕ′2(ξ)

− c
)
Uζ

− f (U(ζ) + σ(ξ), U(ζ − cτ) + σ(ξ))

+ f (U(ζ), U(ζ − cτ))− α2σ′′(ξ)
= I1 + I2 + I3 + I4.

Let

I1 := Uζζ

(
1− ζ2

x −
1

1 + ϕ′2(ξ)

)
= −αUζζ

[( ϕ′ϕ′′

1 + ϕ′2

)2

αζ2 − 2ϕ′2ϕ′

(1 + ϕ′2)3/2
ζ
]
,

I2 := −Uζζxx = α
[ϕ′′2 + ϕ′ϕ′′

1 + ϕ′2
αζ − 3ϕ′2ϕ′′2

(1 + ϕ′2)3
αζ +

(ϕ′2 − 1)ϕ′′

(1 + ϕ′2)3/2
ζ
]
Uζ ,

I3 :=
( s√

1 + ϕ′2(ξ)
− c
)
Uζ

and

I4 : = f (U(ζ), U(ζ − cτ))− f (U(ζ) + σ(ξ), U(ζ − cτ) + σ(ξ))− α2σ′′(ξ)

= −
{∫ 1

0

[∂1f (U(ζ) + ησ(ξ), U(ζ − cτ) + ησ(ξ))

+ ∂2f (U(ζ) + ησ(ξ), U(ζ − cτ) + ησ(ξ))]dη
}
σ(ξ)− α2σ′′(ξ).

Then by (1.3) and (3.2)-(3.5), we have

|I1| ≤ C5α sech(β2ξ), |I2| ≤ C6α sech(β2ξ), I3 ≥ C3Uζ sech(β2ξ) > 0

for 0 < α ≤ 1 and 0 < ε < 1, where C3, C5 and C6 are positive constants indepen-
dent of α and ε. By assumption (H2), there are

lim
(u,v,β)→(0,0,0)

(∂1f(u, v) + ∂2f(u, v) + β) = ∂1f(0, 0) + ∂2f(0, 0) < 0,

lim
(u,v,β)→(1,1,0)

(∂1f(u, v) + ∂2f(u, v) + β) = ∂1f(1, 1) + ∂2f(1, 1) < 0.

Then we can fix β0 > 0 and choose δ∗ ∈ (0, δ0) such that [−δ∗, 1 + δ∗] ⊂ I and

∂1f(u, v) + ∂2f(u, v) < −β0, for (u, v) ∈ [−δ∗, δ∗]2 ∪ [1− δ∗, 1 + δ∗]2 . (3.9)



EJDE-2015/254 TRAVELING CURVED FRONTS 7

Since limξ→∞ U(ξ) = 0 and limξ→−∞ U(ξ) = 1, there exists M0 = M0(U, β0, δ
∗) >

0 such that

U(ζ) ≥ 1− δ∗

2
for ζ ≥M0 − cτ, (3.10)

U(ζ) ≤ δ∗

2
for ζ ≤ −M0 + cτ. (3.11)

Take

c1 = max
{
|∂1f(u, v)| : (u, v) ∈ [−δ∗, 1 + δ∗]2

}
+ max

{
|∂2f(u, v)| : (u, v) ∈ [−δ∗, 1 + δ∗]2

}
.

Next, we distinguish among three cases to consider I4 and prove L[v+] ≥ 0.

Case (i): |ζ| ≤ M0. For 0 < ε ≤ δ∗/2, we have σ(ξ) = ε sech(β2ξ) ≤ δ∗

2 . By the
choice of M0 and c1,∣∣∣−{∫ 1

0

∂1f (U(ζ) + ησ(ξ), U(ζ − cτ) + ησ(ξ))

+ ∂2f (U(ζ) + ησ(ξ), U(ζ − cτ) + ησ(ξ)) dη
}∣∣∣ ≤ c1.

Note that there exists a constant C7 > 0 such that σ′′(ξ) ≤ C7σ(ξ) for ξ ∈ R. Then

|I4| ≤
(
c1 + α2C7

)
ε sech(β2ξ).

Consequently, letting m0 = m0(U, β0, δ
∗) = min {U ′(ζ) : |ζ| ≤M0} > 0, we have

L[v+] = I1 + I2 + I3 + I4

≥ [−C5α− C6α+ C3m0 − c1ε− αC7] sech(β2ξ) ≥ 0

provided that ε and α satisfy

0 < ε ≤ min
{

1,
δ∗

2
,
C3m0

2c1

}
and α ≤ min

{
1,

C3m0

2(C5 + C6 + C7)
}
.

Case (ii): ζ ≥ M0. Clearly by (3.10), 1 ≥ U(ζ) ≥ 1 − δ∗

2 and 1 ≥ U (ζ − cτ) ≥
1− δ∗

2 . For 0 < ε ≤ δ∗

2 and any η ∈ (0, 1), we have

1− δ∗

2
≤ U(ζ) + ησ(ξ) < δ∗ + 1,

1− δ∗

2
≤ U(ζ − cτ) + ησ(ξ) < δ∗ + 1.

By (3.9), we have I4 ≥ β0σ(ξ)− α2σ′′(ξ) ≥ (β0 − C7)σ(ξ). Then

L[v+] = I1 + I2 + I3 + I4 (3.12)

≥ (−C5α− C6α+ (β0 − C7)ε) sech(β2ξ) ≥ 0 (3.13)

provided that 0 < α ≤ min
{

1, β0ε
C5+C6+C7

}
.

Case (iii): ζ ≤ −M0. By (3.11), we have 0 ≤ U(ζ), U (ζ − cτ) ≤ δ∗

2 and hence for
any η ∈ (0, 1),

0 ≤ U(ζ) + ησ(ξ) ≤ δ∗,
0 ≤ U (ζ − cτ) + ησ(ξ) ≤ δ∗
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for 0 < ε ≤ δ∗/2. Similarly, we have (3.12) holds for ζ ≤ −M0. Thus, combining
above three cases, we have v+(x, z; ε, α) is a supersolution of (1.5). Furthermore,
if we take α < εe2c2β2

1µ−
4C1C4s

, where e is the exponential, we can prove (3.6) and (3.7)
by an argument similar to that in [15] and we omit it. In addition, (3.8) directly
follows from the definition of v+(x, z; ε, α).

Finally, we take

ε+0 = min
{

1,
δ∗

2
,
C3m0

2c1

}
,

α+
0 (ε) = min

{
1,

C3m0

2(C5 + C6 + C7)
,

β0ε

C5 + C6 + C7
,
εe2c2β2

1µ−
4C1C4s

}
.

This completes the proof. �

Now, we are searching for a traveling curved front towards y-direction. From
Lemma 3.1, v+(x, z; ε, α) is also a supersolution of (1.4). Let w(x, z, t; v−) be the
solution of (1.4) with initial value φ(x, z, r) = v−(x, z). By Theorem 2.3, we have

v−(x, z) ≤ w(x, z, t; v−) ≤ v+(x, z), for (x, z) ∈ R2, t > 0.

Since v−(x, z) is a subsolution, we have w(x, z, t; v−) is monotone increasing in t.
Similar to Wang et al [28, Proposition 4.3], we have that

‖w(x, z, y; v−)‖C2,1(R2×[2(τ+1),∞),R) <∞.
Applying [10, Theorem 5.1.4 and 5.1.8], we have that

‖w(x, z, y; v−)‖C2+θ,1+θ/2(R2×[2(τ+1),∞),R) <∞ for some θ ∈ (0, 1).

Then there exists a function V (x, z) ∈ C2(R2) such that

w(x, z, t; v−)→ V (x, z) in C2
loc(R2) as t→∞. (3.14)

Furthermore,

L[V ] = 0 on R2,

∂

∂z
V (x, z) ≥ 0, v−(x, z) ≤ V (x, z) ≤ v+(x, z; ε, α), ∀(x, z) ∈ R2.

By (3.6) and the arbitrariness of ε, we have

lim
R→∞

sup
x2+y2≥R2

|V (x, z)− v−(x, z)| = 0.

Theorem 2.3 and the maximum principle implies that v−(x, z) < V (x, z) < 1 and
V (x, z) ≤ v+(x, z; ε, α) for all (x, z) ∈ R2. Moreover, one has ∂

∂zV (x, z) > 0 for
all (x, z) ∈ R2. Thus, the function u(x, y, t) = V (x, y + st) is just the expected
traveling curved fronts of (1.1).

4. Uniqueness and stability of traveling curved fronts

In this section we develop the arguments in [15] and [29] to establish the asymp-
totic stability and uniqueness of traveling curved fronts V (x, z) obtained in Section
3. We prove (1.6) for φ(x, z, r) ≥ v−(x, z) in R2 and r ∈ [−τ, 0].

Let wi(x, z, t) be the solution of

∂wi

∂t
= wixx + wizz − s

∂wi

∂z
+ f(wi(x, z, t), wi(x, z − sτ, t− τ)) ∀(x, z) ∈ R2, t > 0,

wi(x, z, r) = φi(x, z, r), ∀(x, z) ∈ R2, r ∈ [−τ, 0],
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for i = 1, 2.

Lemma 4.1. Let φi(x, z, r) ∈ [−δ0, 1+δ0]C for r ∈ [−τ, 0] and (x, z) ∈ R2, i = 1, 2.
Then

sup
(x,z)∈R2

|w2(x, z, t)− w1(x, z, t)| ≤ A(t+1) sup
(x,z)∈R2,r∈[−τ,0]

|φ2(x, z, r)− φ1(x, z, r)|,

for t > 0, where A is a positive constant independent of φ1 and φ2.

Proof. By the abstract setting in [14], wi(t) := wi(x, z, t) (i = 1, 2) is a solution to
its associated integral equation

wi(t) = T (t)wi(0) +
∫ t

0

T (t− s)F (wis)ds, t > 0,

wi(0) = φi ∈ [−δ0, 1 + δ0]C .

As aforementioned in Section 2, F : [−δ0, 1 + δ0]C → X is globally Lipschitz con-
tinuous. Let ŵ(t) = eMtT (t)ŵ(0) for t ≥ 0, where

ŵ(0) := sup
(x,z)∈R2,r∈[−τ,0]

|φ2(x, z, r)− φ1(x, z, r)|

and M = max{|F ′(w)| : w ∈ [−δ0, 1 + δ0]}. Then ŵ(t) satisfies

ŵ(t) = T (t)ŵ(0) +M

∫ t

0

T (t− s)ŵ(s)ds, t ≥ 0.

Define w̃(t) := w2(t)− w1(t). Note that w̃(t) satisfies

w̃(t) = T (t)w̃(0) +
∫ t

0

T (t− s)(F (w2
s)− F (w1

s))ds

≤ T (t)w̃(0) +M

∫ t

0

T (t− s)w̃(s)ds.

By [14, Proposition 3] with v− = −∞, v+ = ŵ(t), S(t, s) = S+(t, s) = T (t, s) =
T (t − s), t ≥ s ≥ 0 and B(t, ψ) = B+(t, ψ) = Mψ(0), we have ŵ(t) ≥ w̃(t) for
all t ≥ 0. Thus it follows that w2(t) − w1(t) ≤ eMtT (t)ŵ(0) for t ≥ 0. Similarly,
we have w1(t) − w2(t) ≤ eMtT (t)ŵ(0) for t ≥ 0. Note that there exist positive
constants A1 and A2 such that

|T (t)| ≤ A1

t
exp{−A2

(x− x1)2 + (z − z1)2

t
}

for (x, z) ∈ R2 and t ∈ (0, 1]. Then there exists a constant A > 1 such that
ŵ(t) ≤ Aŵ(0) for t ∈ (0, 1]. Note that ŵ(t+ s) = ŵ(t)ŵ(s). For any t > 0, we have

ŵ(t) = eMtT (t− [t])ŵ([t]),

where [t] = max{n ∈ Z, n ≤ t}. By induction, we obtain

ŵ(t) ≤ A[t]+1ŵ(0) ≤ At+1ŵ(0), ∀t > 0.

This implies

sup
(x,z)∈R2

|w2(x, z, t)− w1(x, z, t)| ≤ A(t+1) sup
(x,z)∈R2,r∈[−τ,0]

|φ2(x, z, r)− φ1(x, z, r)|.

�
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Lemma 4.2. There exists a positive constant β3 satisfying
∂V

∂z
(x, z) ≥ β3, when δ∗ ≤ V (x, z) ≤ 1− δ∗,

∂v+

∂z
(x, z) ≥ β3, when δ∗ ≤ v+(x, z) ≤ 1− δ∗.

This lemma is used to prove the uniqueness of traveling curved front and the
proof is completely similar to [15, Lemma 4.3], so we omit it here.

Lemma 4.3. Let v̄ be a supersolution to (1.5) with

v̄z(x, z) > 0, −δ
∗

2
< v̄(x, z) < 1 +

δ∗

2
, for all (x, z) ∈ R2,

v̄z(x, z) ≥ β3,
δ∗

2
< v̄(x, z) < 1− δ∗

2
, for all (x, z) ∈ R2.

Let v be a subsolution to (1.5) with

vz(x, z) > 0, −δ
∗

2
< v(x, z) < 1 +

δ∗

2
, for all (x, z) ∈ R2,

vz(x, z) ≥ β3,
δ∗

2
< v(x, z) < 1− δ∗

2
, for all (x, z) ∈ R2.

Then there exist a positive constant ρ sufficiently large and a positive constant β
small enough such that for any 0 < δ < δ∗

2 e
−βτ , the functions w+ and w− defined

by

w+(x, z, t; v̄) = v̄(x, z + ρδ(1− e−βt)) + δe−βt,

w−(x, z, t; v) = v(x, z − ρδ(1− e−βt))− δe−βt

are super- and subsolution of (1.4), respectively.

Proof. Since v̄(x, z) be a supersolution of (1.5), we have

−v̄xx − v̄zz + sv̄z ≥ f (v̄(x, z), v̄(x, z − sτ)) , ∀(x, z) ∈ R2.

For β > 0 and any t ∈ R, ρδ(1− e−β(t−τ)) < ρδ(1− e−βt). Then by the assumption
of v̄(x, z),

v̄
(
x, z + ρδ(1− e−β(t−τ))− sτ

)
< v̄

(
x, z + ρδ(1− e−βt)− sτ

)
.

Let ξ = z + ρδ(1− e−βt). Direct calculations yield that

N [w+]

:=
∂w+

∂t
− w+

zz − w+
xx + s

∂w+

∂z
− f(w+(x, z, t), w+(x, z − sτ, t− τ))

≥ δβe−βt
(
ρ
∂v̄

∂z
− 1
)

+ f (v̄(x, ξ), v̄(x, ξ − sτ))

− f
(
v̄(x, ξ) + δe−βt, v̄(x, z + ρδ(1− e−β(t−τ))) + δe−β(t−τ)

)
≥ δβe−βt

(
ρ
∂v̄

∂z
− 1
)

+ f (v̄(x, ξ), v̄(x, ξ − sτ))

− f
(
v̄(x, ξ) + δe−βt, v̄(x, ξ − sτ) + δe−β(t−τ)

)
≥ δe−βt

{
βρ
∂v̄

∂z
− β −

[∫ 1

0

∂1f
(
v̄(x, ξ) + θδe−βt, v̄(x, ξ − sτ) + θδe−β(t−τ)

)
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+ eβτ∂1f
(
v̄(x, ξ) + θδe−βt, v̄(x, ξ − sτ) + θδe−β(t−τ)

)
dθ
]}
,

where we have used assumption (H1). By the assumption (H2), there exists a
positive constant β such that

lim
(u,v,β)→(0,0,0)

(
∂1f(u, v) + eβτ∂2f(u, v)

)
= ∂1f(0, 0) + ∂2f(0, 0) < 0,

lim
(u,v,β)→(1,1,0)

(
∂1f(u, v) + eβτ∂2f(u, v)

)
= ∂1f(1, 1) + ∂2f(1, 1) < 0.

Then for β > 0 small enough, there exist η ∈ (0, β] and δ∗ ∈ (0, δ0) such that
[−δ∗, 1 + δ∗] ⊂ I and

∂1f(u, v) + eβτ∂2f(u, v) < −η for (u, v) ∈ [−δ∗, δ∗]2 ∪ [1− δ∗, 1 + δ∗]2 . (4.1)

Take

c′1 = c′1(β, δ∗)

= max
{
|∂1f(u, v)| : (u, v) ∈ [−δ∗, 1 + δ∗]2

}
+ eβτ max

{
|∂2f(u, v)| : (u, v) ∈ [−δ∗, 1 + δ∗]2

}
.

Case (i): δ∗

2 ≤ v ≤ 1− δ∗

2 . For δ ∈ (0, 1
2δ
∗e−βτ ) and any θ ∈ (0, 1), we have

−δ∗ < v̄(x, ξ) + θδe−βt, v̄(x, ξ − sτ) + θδe−β(t−τ) ≤ 1 + δ∗.

Then we have
N [w+] ≥ δe−βt [βρβ3 − β − c′1] ≥ 0

provided that ρ > β+c′1
ββ3

.

Case (ii): 1+ δ∗

2 ≥ v̄ ≥ 1− δ∗

2 . In this case, for δ ∈ (0, 1
2δ
∗e−βτ ) and any θ ∈ (0, 1),

1− δ∗

2
≤ v̄(x, ξ) + θδe−βt, v̄(x, ξ − sτ) + θδe−β(t−τ) ≤ 1 + δ∗.

By (4.1), we have

N [w+] ≥δe−βt
(
βρ
∂v̄

∂z
− β + η

)
≥ 0

for ρ large enough.
Case (iii): 0 ≤ v̄ ≤ δ∗

2 . Similarly, we have 0 ≤ v̄(x, ξ) + θδe−βt, v̄(x, ξ − sτ) +
θδe−β(t−τ) ≤ δ∗ and N [w+] ≥ 0.

Consequently, we have N [w+] ≥ 0 for (x, z) ∈ R2 and t ≥ 0. It then follows that
w+(x, z, t; v̄) is a supersolution of (1.4). Similarly, we can prove N [w−] ≤ 0 and
w−(x, z, t; v) is a subsolution of (1.4). This completes the proof. �

Lemma 4.4. Let w(x, z, t) be the solution of (1.4) with

lim
R→∞

sup
x2+z2≥R2,r∈[−τ,0]

|φ(x, z, r)− v−(x, z)| = 0.

Then
lim
R→∞

sup
x2+z2≥R2

|w(x, z, T )− v−(x, z)| = 0

holds for any fixed T > τ .
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Proof. For the sake of convenience, we define w(x, z, t;φ) by w(x, z, t). Define
W (x, z) = U( z+ϕ(x)√

1+ϕ′2(x)
). (3.2)-(3.5) implies that

lim
R→∞

sup
x2+z2>R2

|W (x, z)− v−(x, z)| = 0.

It then follows that

lim
R→∞

sup
x2+z2>R2,r∈[−τ,0]

|W (x, z)− φ(x, z, r)| = 0.

Define v(x, z, t) = w(x, z, t)−W (x, z). Consider the equation

∂ṽ

∂t
− ṽxx − ṽzz + s

∂ṽ

∂z
− ∂1f(v + θW,W (x, z − sτ))ṽ = h(x, z),

ṽ(x, z, r) = w(x, z, r)−W (x, z), r ∈ [−τ, 0]
(4.2)

for (x, z) ∈ R2, t > 0 and some θ ∈ (0, 1), where h(x, z) = −L[W ] satisfies
limR→∞ supx2+z2>R2 |h(x, z)| = 0. In view of

− f(v +W, v(x, z − sτ, t− τ) +W (x, z − sτ)) + f(W,W (x, z − sτ))

≤ −f(v +W,W (x, z − sτ)) + f(W,W (x, z − sτ))

= −∂1f(v + θW,W (x, z − sτ))v,

we have that v(x, z, t) is a subsolution of (4.2). It follows that v(x, z, t) ≤ ṽ(x, z, t)
for (x, z) ∈ R2 and t > 0. Define v(x, z, t) by

∂v

∂t
− vxx − vzz + s

∂v

∂z
−Mv = |h(x, z)|,

v(x, z, r) = |ṽ(x, z, r)|, r ∈ [−τ, 0]
(4.3)

for (x, z) ∈ R2, t > 0 and M = max{|∂1f(u, v)| : u, v ∈ I}. The maximum principle
(see [18]) yields v(x, z, t) ≥ 0 for (x, z) ∈ R2 and t > 0. Then we have

(
∂

∂t
− ∂2

∂x2
− ∂2

∂z2
+ s

∂

∂z
)(v − ṽ)− ∂1f(v + θW,W (x, z − sτ))(v − ṽ)

= (M − ∂1f(v + θW,W (x, z − sτ)))v + (|h(x, z)| − h(x, z)) ≥ 0

for (x, z) ∈ R2 and t > 0 with the initial value (v− ṽ)|t=r∈[−τ,0] ≥ 0. The maximum
principle implies v(x, z, t) ≥ ṽ(x, z, t) for (x, z) ∈ R2 and t > 0. It follows that
v(x, z, t) ≥ v(x, z, t) for (x, z) ∈ R2 and t > 0. Apply the similar arguments to
(−v), we obtain v(x, z, t) ≥ |v(x, z, t)| for (x, z) ∈ R2 and t > 0.

To complete the proof, it suffices to prove that limR→∞ supx2+z2>R2 |v(x, z, t)| →
0 for each T > τ . Because v(x, z, t) is the solution of (4.3) then there exists a
solution function |Γ(x, z, t;x1, z1, s)| ≤ B1

t−s exp{−B2
(x−x1)

2+(z−z1)2
t−s } and

v(x, z, t) =
∫

R2
Γ(x, z, t;x1, z1, 0)v(x1, z1, 0)dx1dz1

+
∫ t

0

∫
R2

Γ(x, z, t;x1, z1, s)|h(x1, z1)|dx1dz1,

where 0 ≤ s ≤ t < T , B1 and B2 are positive constants dependent of T . Thus, the
remainder proofs follows a similar arguments as that in [15, Lemma 4.5] and we
omit it here. This completes the proof. �
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In the following, we prove the uniqueness and stability of traveling curved fronts
of (1.1). Take 0 < ε ≤ ε+0 . Let

V ∗(x, z) := lim
t→∞

w(x, z, t; v+) (4.4)

for any (x, z) ∈ R2 and t ∈ R. Since v+(x, z; ε, α) is also a supersolution of (1.5),
we have w(x, z, t; v+) is nonincreasing in t and converges to some function V ∗(x, z)
under the norm ‖ · ‖C2+θ,1+θ/2(R2×[2(τ+1),∞),R) as t → ∞. Furthermore, V ∗(x, z)
satisfies (1.5) and

V (x, z) ≤ V ∗(x, z) ≤ v+(x, z; ε, α), ∀(x, z) ∈ R2. (4.5)

Lemma 4.5. Let V ∗(x, z) and V (x, z) be as (4.4) and (3.14). Then

V∗(x, z) ≡ V (x, z) for all (x, z) ∈ R2.

Proof. Assume that V∗(x, z) 6≡ V (x, z) by contradiction. Then the maximum prin-
ciple and (4.5) imply that

V (x, z) < V ∗(x, z) for all (x, z) ∈ R2.

Take β and ρ as in Lemma 4.3. For any 0 < δ < δ∗

2 e
−βτ , using (3.6) we make λ > 0

large enough such that

V ∗(x, z) ≤ V (x, z + λ) + δ for all (x, z) ∈ R2.

By Lemma 4.3,

w+(x, z + λ, t;V ) = V
(
x, z + λ+ ρδ(1− e−βt)

)
+ δe−βt

is a supersolution of (1.5). By Theorem 2.3, V ∗(x, z) ≤ w+(x, z + λ, t;V ) for any
(x, z) ∈ R2 and t > 0. Then let t→∞, we have

V ∗(x, z) ≤ V (x, z + λ+ ρδ), ∀(x, z) ∈ R2.

Define
Λ := inf

{
λ : V ∗(x, z) ≤ V (x, z + λ) for all (x, z) ∈ R2

}
.

Then we have that Λ ≥ 0 and

V ∗(x, z) ≤ V (x, z + Λ) for all (x, z) ∈ R2.

It is still needed to show Λ = 0 by contradiction and then obtain V ∗(x, z) ≡ V (x, z)
holds in R2. Assume Λ > 0. By the strong maximum principle of elliptic equation
(see [18]), we also have that either

V ∗(x, z) = V (x, z + Λ) for all (x, z) ∈ R2

or
V ∗(x, z) < V (x, z + Λ) for all (x, z) ∈ R2.

We show that the former is impossible. In fact, it is easy to see that

lim
x→±∞

V ∗(x,−m∗x) = U(0) and lim
x→±∞

V ∗(x,−m∗x+ Λ) = U(
c

s
Λ),

which is a contraction if V ∗(x, z) = V (x, z + Λ). Next, we assume that V ∗(x, z) <
V (x, z+ Λ) for any (x, z) ∈ R2. Since limR→∞ supx2+z2≥R2 |V (x, z)− v−(x, z)| = 0
and

lim
R→∞

sup
|z+m∗|x||≥R

|v−z (x, z)| = 0,
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by the interpolation ‖ · ‖C1 ≤ 2
√
‖ · ‖C0‖ · ‖2, we have

lim
R→∞

sup
|z+m∗|x||≥R

|Vz(x, z + Λ)| = 0.

Take R∗ > 0 such that

2ρ sup
|z+m∗|x||≥R∗−ρδ∗

| ∂
∂z
V (x, z + Λ)| < 1.

Define D := {(x, z) ∈ R2||z +m∗|x|| ≤ R∗}. Since V ∗(x, z) < V (x, z + Λ) in D, we
can choose a small positive constant h with

0 < h < min{δ
∗

2
,

Λ
2ρ
}, V ∗(x, z) ≤ V (x, z + Λ− 2ρh) in D. (4.6)

In (x, z) ∈ R2 \D, we have

V (x, z + Λ− 2ρh)− V (x, z + Λ) = −2ρh
∫ 1

0

Vz(x, z + Λ− 2θρh)dθ ≥ −h. (4.7)

Then by (4.6) and (4.7),

V (x, z + Λ) ≤ V (x, z + Λ− 2ρh) + h in (x, z) ∈ R2.

By Lemma 4.3,

w+(x, z + Λ− 2ρh, t;h) = V (x, z + Λ− 2ρh+ ρδ(1− e−βt)) + he−βt

is a supersolution of (1.4). Theorem 2.3 implies that

V ∗(x, z) ≤ w+(x, z + Λ− 2ρh, t;h) ∀(x, z) ∈ R2, t > 0.

Let t→∞ yields that V ∗(x, z) ≤ V (x, z+Λ−2ρh) for (x, z) ∈ R2, which contradicts
the definition of Λ. Thus Λ = 0. This proof is completed. �

Next, we establish asymptotic stability of V (x, z) and prove (1.6) for φ(x, z, r) ≥
v−(x, z) in R2 and r ∈ [−τ, 0].

Proof. For simplicity, we denote w(x, z, t;φ) as w(x, z, t). For any ε0 > 0, we show
that there exists T∗ > 0 such that

sup
(x,z)∈R2

|w(x, z, t)− V (x, z)| ≤ ε for t > T∗.

Choose δ small enough such that

V ∗(x, z + ρδ) ≤ V ∗(x, z) +
ε

3
, 0 < δ < ε+0 , (4.8)

where ε+0 and ρ are given in Lemma 3.1 and Lemma 4.3, respectively. By Theorem
2.3, there exists a positive constant Tδ > τ such that

w(x, z, t; v−) ≤ w(x, z, t) < 1 for (x, z) ∈ R2, t ≥ Tδ. (4.9)

Lemma 4.4 shows that for some R > 0,

w(x, z, Tδ) ≤ v−(x, z) +
δ

2
for x2 + z2 ≥ R2. (4.10)

If α is small enough, then we have

U(ζ) = U
( z + ϕ(ξ)/α√

1 + ϕ′2(ξ)

)
≥ U

( c
s

(
−R+

ϕ(0)
α

))
≥ 1− δ

2
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for x2+z2 ≤ R2. Choose α small to satisfy 0 < α < min
{
α+

0 (ε), ϕ(0)
s
c [U
−1(·)(1− δ2 )+R]

}
,

v+(x, z) ≥ 1− δ

2
for x2 + z2 ≤ R2. (4.11)

Combining (4.9)-(4.11), we obtain

w(x, z, Tδ) < v+(x, z) + δ ≤ w+(x, z, 0; δ) for (x, z) ∈ R2.

Theorem 2.3 implies

w(x, z, t+ Tδ; v−) ≤ w(x, z, t+ Tδ) ≤ w+(x, z, t; v+) (4.12)

for (x, z) ∈ R2 and t ≥ 0. By Theorem 2.3 again, we have

w(x, z, t+ s+ Tδ, v
−) ≤ w(x, z, t+ s+ Tδ) ≤ w(x, z, s;ut) (4.13)

for t ≥ 0 and s ≥ 0, where ut = w+(x, z, t; v+). Since w(x, z, t; v+) monotonically
converges to V (x, z) as t→∞, there exists a positive constant s1 ≥ τ with

sup
(x,z)∈R2

|w(x, z, s1; v+,δ)− V (x, z + ρδ)| ≤ ε

3
,

where v+,δ(x, z) = v+(x, z+ ρδ). By Lemma 4.1, for any φ(x, z, r) ∈ [−δ0, 1 + δ0]C ,

sup
(x,z)∈R2

|w(x, z, s1;φ)− w(x, z, s1; v+,δ)|

≤ A(s1+1) sup
(x,z)∈R2,r∈[−τ,0]

|φ(x, z, r)− v+,δ(x, z)|.
(4.14)

Since w+(x, z, t; v+)→ v+(x, z+ ρδ) as t→∞ uniformly in (x, z) ∈ R2, then there
exists T1 > τ large enough such that satisfy

A(s1+1) sup
(x,z)∈R2

|w+(x, z, t; v+)− v+(x, z + ρδ)| ≤ ε

3
(4.15)

for t ≥ T1 and (x, z) ∈ R2. Then, by (4.14) and (4.15) we have

|w(x, z, s1;ut)− V ∗(x, z + ρδ)|

≤ |w(x, z, s1;ut)− w(x, z, s1; v+,δ)|+ |w(x, z, s1; v+,δ)− V ∗(x, z + ρδ)|

≤ 2
3
ε

for any t ≥ T1 and (x, z) ∈ R2. By (4.13)

w(x, z, t+ s1 + Tδ, v
−) ≤ w(x, z, s1;ut) ≤ V ∗(x, z + ρδ) +

2
3
ε (4.16)

holds for t ≥ T1 and (x, z) ∈ R2. Combining (4.8), (4.13), (4.16) and Lemma 4.5,
we have

w(x, z, t; v−) ≤ w(x, z, t) ≤ V (x, z) + ε

for (x, z) ∈ R2 and t ≥ s1 + T1 + Tδ. Since V (x, z) = limt→∞ w(x, z, t; v−), we
obtain

lim
t→∞

‖w(x, z, t)− V (x, z)‖L∞(R2) = 0.

This completes the proof. �
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