Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 253, pp. 1-23. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

HOMOGENIZATION OF REACTION-DIFFUSION EQUATIONS IN FRACTURED POROUS MEDIA

HERMANN DOUANLA, JEAN LOUIS WOUKENG

Abstract

The article studies the homogenization of reaction-diffusion equations with large reaction terms in a multi-scale porous medium. We assume that the fractures and pores are equidistributed and that the coefficients of the equations are periodic. Using the multi-scale convergence method, we derive a homogenization result whose limit problem is defined on a fixed domain and is of convection-diffusion-reaction type.

1. Introduction

Our aim is to investigate, by means of mathematical homogenization techniques, the diffusion phenomenon in a multi-scale porous medium. The medium consists of a connected network made of pores and fractures which are equidistributed, and the diffusion process is modelled by a semilinear reaction-diffusion equation with a large reaction term. To be more precise, we consider a diffusion process modelled by the boundary-value problem

$$
\begin{gather*}
\rho\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{\varepsilon}}{\partial t}=\operatorname{div}\left(A\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) \nabla u_{\varepsilon}\right)+\frac{1}{\varepsilon} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, u_{\varepsilon}\right) \quad \text { in } Q_{T}^{\varepsilon}=\Omega^{\varepsilon} \times(0, T), \\
A\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) \nabla u_{\varepsilon} \cdot \nu=0 \quad \text { on }\left(\partial \Omega^{\varepsilon} \backslash \partial \Omega\right) \times(0, T), \tag{1.1}\\
u_{\varepsilon}=0 \quad \text { on }\left(\partial \Omega^{\varepsilon} \cap \partial \Omega\right) \times(0, T), \\
u_{\varepsilon}(x, 0)=u^{0}(x) \quad \text { in } \Omega^{\varepsilon}
\end{gather*}
$$

where $T>0$ is a fixed real number representing the final time of the process, Ω^{ε} is a fractured porous domain in which the process occurred and whose structure follows in the lines below (see [23]).

Let Ω be a bounded domain in $\mathbb{R}^{N}(N \geq 3)$ locally located on one side of its Lipschitz continuous boundary $\partial \Omega$. Let $Y=(0,1)^{N}$ be the unit cell in \mathbb{R}^{N} and put $Y=\bar{Y}_{c} \cup Y_{m}$ where Y_{m} and Y_{c} are two disjoint open connected sets representing the local structure of the porous matrix and the cracks (fissures), respectively. We assume that a periodic repetition of Y_{m} in \mathbb{R}^{N} is connected and has a Lipschitz continuous boundary. Next, we set $Y_{m}=Z_{s} \cup \bar{Z}_{p}$ where Z_{p} and Z_{s} are two disjoint open connected sets representing the local structure of the solid part of the porous

[^0]matrix and the pores, respectively. We assume that Z_{p} and Z_{s} have strictly positive Lebesgue measures and that Z_{s} has a Lipschitz continuous boundary. The fractured porous medium Ω^{ε} is defined as follows. For $\varepsilon>0$, we set
$$
G_{m}=\cup_{k \in \mathbb{Z}^{N}}\left(k+Y_{m}\right) \quad \text { and } \quad G_{c}=\mathbb{R}^{N} \backslash \bar{G}_{m}
$$
and
$$
G_{s}=\cup_{k \in \mathbb{Z}^{N}}\left(k+Z_{s}\right) \quad \text { and } \quad G_{p}=G_{m} \backslash \bar{G}_{s}
$$
and we define the pores space $\Omega_{p}^{\varepsilon}=\Omega \cap \varepsilon^{2} G_{p}$ (this include the pores crossing $\partial \Omega$), the cracks space $\Omega_{c}^{\varepsilon}=\Omega \cap \varepsilon G_{c}$ (this includes the cracks crossing $\partial \Omega$) and the fractured porous medium as
$$
\Omega^{\varepsilon}=\Omega \backslash\left(\Omega_{p}^{\varepsilon} \cup \Omega_{c}^{\varepsilon}\right)
$$

We assume that both Ω^{ε} and $\Omega_{p}^{\varepsilon} \cup \Omega_{c}^{\varepsilon}$ are connected.
This being so, the ε-problem (1.1) is constrained as follows:
(A1) (Uniform ellipticity) The matrix $A(y, \tau)=\left(a_{i j}(y, \tau)\right)_{1 \leq i, j \leq N}$ in the space $\left(L^{\infty}\left(\mathbb{R}^{N+1}\right)\right)^{N \times N}$ is real, symmetric, positive definite, i.e, there exists $\Lambda>0$ such that

$$
\begin{gathered}
\left\|a_{i j}\right\|_{L^{\infty}\left(\mathbb{R}^{N+1}\right)} \leq \Lambda, \quad 1 \leq i, j \leq N \\
\sum_{i j=1}^{N} a_{i j}(y, \tau) \zeta_{i} \zeta_{j} \geq \Lambda^{-1}|\zeta|^{2} \quad \forall(y, \tau) \in \mathbb{R}^{N+1}, \zeta \in \mathbb{R}^{N}
\end{gathered}
$$

(A2) (Lipschitz continuity) The function $g: \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following hypotheses. There exists $C>0$ such that for any $(y, \tau) \in \mathbb{R}^{N+1}$ and $u \in \mathbb{R}$,

$$
\begin{gathered}
\left|\partial_{u} g(y, \tau, u)\right| \leq C \\
\left|\partial_{u} g\left(y, \tau, u_{1}\right)-\partial_{u} g\left(y, \tau, u_{2}\right)\right| \leq C\left|u_{1}-u_{2}\right|\left(1+\left|u_{1}\right|+\left|u_{2}\right|\right)^{-1}
\end{gathered}
$$

(A3) $g(y, \tau, 0)=0$ for any $(y, \tau) \in \mathbb{R}^{N+1}$.
(A4) (Periodicity) We assume that:
(i) $g(\cdot, \cdot, u) \in \mathcal{C}_{\text {per }}(Y \times \mathcal{T})(\mathcal{T}=(0,1))$ for any $u \in \mathbb{R}$ with $\int_{Y} g(y, \tau, u) d y=$ 0 for all $(\tau, u) \in \mathcal{T} \times \mathbb{R}$;
(ii) the functions $a_{i j}$ lie in $L_{\text {per }}^{2}(Y \times \mathcal{T})$ for all $1 \leq i, j \leq N$;
(iii) the density function ρ belongs to $\mathcal{C}_{\text {per }}(Y)$ and satisfies $\Lambda^{-1} \leq \rho(y) \leq \Lambda$ for all $y \in \mathbb{R}^{N}$.

Remark 1.1. As a direct consequence of the periodicity and the zero mean value hypothesis for the function g (see precisely the first item of the hypothesis (A4) above), there exists a unique $R(\cdot, \cdot, u) \in \mathcal{C}_{\text {per }}(Y \times T)$ such that $\Delta_{y} R(\cdot, \cdot, u)=g(\cdot, \cdot, u)$ and $\int_{Y} R(y, \tau, u) d y=0$ for all $\tau, u \in \mathbb{R}$. Moreover $R(\cdot, \cdot, u)$ is at least twice differentiable with respect to y. Furthermore, on letting $G=\nabla_{y} R$ it follows from A2 and (A3) that

$$
\begin{gather*}
|G(y, \tau, u)| \leq C|u|, \quad\left|\partial_{u} G(y, \tau, u)\right| \leq C \tag{1.2}\\
\left|\partial_{u} G\left(y, \tau, u_{1}\right)-\partial_{u} G\left(y, \tau, u_{2}\right)\right| \leq C\left|u_{1}-u_{2}\right|\left(1+\left|u_{1}\right|+\left|u_{2}\right|\right)^{-1} \tag{1.3}
\end{gather*}
$$

The motivation for problem 1.1 arises from its applicability in the area of modeling of flow and transport in fractured porous media related to environmental and energy problems. In order to overcome difficulties encountered in numerical simulations in multi-scale porous media, we need to upscale such models, that is to
find equivalent models by letting $\varepsilon \rightarrow 0$. This leads to model problems posed on a fixed domain $Q=\Omega \times(0, T)$ with suitable boundary conditions, hence relatively easy to handle numerically.

Problem 1.1 can also be viewed as modelling the flow of a single phase compressible fluid in a fractured porous medium that obey nonlinear Darcy law. In that case, u_{ε} is the density of the fluid, $\rho(y)$ is the porosity of the medium while $A(y, \tau)$ is the permeability of the medium. As the scale (size) of the fractures and that of the pores are separated (ratio of order ε), we use the multi-scale (or reiterated two-scale) convergence method in the framework introduced in [20] to upscale the ε-problem.

The homogenization of parabolic equations in perforated has been widely investigated in the literature. We quote some works similar to ours. In [18] the homogenization of parabolic monotone operator in periodically perforated domain is considered. The problem they consider is degenerate and they use the two-scale convergence method. In [13, 14], the authors study the homogenization of a family of parabolic equations

$$
\frac{\partial}{\partial t} b\left(\frac{x}{\varepsilon}, u_{\varepsilon}\right)-\operatorname{div} a\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)=f
$$

in periodically perforated domain Ω_{ε} with Dirichlet boundary conditions and Neuman boundary conditions, respectively. In [6] is considered the upscaling of a convection-diffusion equation in a perforated domain made of holes periodically distributed. The homogenization limit for the diffusion equation with nonlinear flux condition on the boundary of a periodically perforated domain is studied in [12]. In [7] the homogenization of a semilinear parabolic equation in a periodically perforated domain is considered. In [10] the authors describe some diffusion models for fractured media. We also mention [11] where the author used the Γ convergence method associated with multi-scale convergence notions to get a limit law of an incompressible viscous flow in a porous medium with double porosity.

Taking into account the preceding review which is far from being exhaustive, we observe that the study of a problem like 1.1 is relevant due to many reasons. For example, contrarily to the problems studied in [7, 13, 14 where the perforations are on one scale with time independent coefficients, our problem is set up in a fractured porous media (perforation on two scale) and deals with time dependent coefficients with the time variable oscillating at a different speed from the space variable. The perforation on two scale and the oscillations at different speeds drive our problem into a non-standard framework of reiterated homogenization, which, combined with the large nonlinear oscillating reaction term makes the proofs in this paper quite involved. When passing to the limit (as $\varepsilon \rightarrow 0$), the large reaction term in the ε-problem generates a convection term and we get a limit problem of convection-diffusion-reaction type. The main result of the paper states as follows.

Theorem 1.2. Assume that the hypotheses (A1)-(A4) are satisfied and let $u_{\varepsilon}(\varepsilon>$ 0) be the unique solution to (1.1). Then as $\varepsilon \rightarrow 0$ we have

$$
u_{\varepsilon} \rightarrow u_{0} \quad \text { in } L^{2}\left(\Omega_{T}\right)
$$

where $u_{0} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ is the unique solution to

$$
\begin{aligned}
&\left|Z_{s}\right|\left(\int_{Y_{m}} \rho(y) d y\right) \frac{\partial u_{0}}{\partial t}= \operatorname{div}\left(\hat{A}(x, t) \nabla u_{0}\right)+\operatorname{div} L_{1}\left(x, t, u_{0}\right) \\
& \quad-L_{2}\left(x, t, u_{0}\right) \cdot \nabla u_{0}-L_{3}\left(x, t, u_{0}\right) \quad \text { in } \Omega_{T} \\
& u_{0}=0 \quad \text { on } \partial \Omega \times(0, T) \\
& u_{0}(x, 0)=u^{0}(x) \quad \text { in } \Omega
\end{aligned}
$$

The coefficients and operators in the theorem above are defined in Section 4 This article is organized as follows. A priori estimates and compactness results are formulated and proved in Section 2, In Section 3, we recall the concept of multiscale convergence and prove some preliminary results. Finally, Section 4 deals with the passage to the limit and the derivation of the macroscopic model for problem (1.1).

2. A PRIORI ESTIMATES AND COMPACTNESS RESULT

Throughout, C denotes a generic constant independent of ε that can change from one line to the next, the centered dot stands for the Euclidean scalar product in \mathbb{R}^{N} while the absolute value or modulus is denoted by $|\cdot|$.

With the connectedness of Ω^{ε} in mind, the space

$$
\begin{equation*}
V_{\varepsilon}=\left\{u \in H^{1}\left(\Omega^{\varepsilon}\right): u=0 \text { on } \partial \Omega \cap \partial \Omega^{\varepsilon}\right\} \tag{2.1}
\end{equation*}
$$

is Hilbertian when endowed with the gradient norm,

$$
\begin{equation*}
\|u\|_{V_{\varepsilon}}=\|\nabla u\|_{L^{2}\left(\Omega^{\varepsilon}\right)} \quad\left(u \in V_{\varepsilon}\right) . \tag{2.2}
\end{equation*}
$$

Therefore, the Lipschitzity of the function $g(y, \tau, \cdot)$ and the positivity assumption on the density function ρ readily imply (see e.g., [4, 17]) the existence of a unique solution $u_{\varepsilon} \in L^{2}\left(0, T ; V_{\varepsilon}\right) \cap \mathcal{C}\left(0, T ; L^{2}\left(\Omega^{\varepsilon}\right)\right)$ to the problem 1.1). Moreover the following uniform estimates hold.

Lemma 2.1. Assume that the hypotheses (A1)-(A4) are satisfied. Then the following estimates hold:

$$
\begin{gather*}
\sup _{0 \leq t \leq T}\left\|u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2} \leq C, \tag{2.3}\\
\int_{0}^{T}\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2} d t \leq C, \tag{2.4}\\
\left\|\rho^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}\right\|_{L^{2}\left(0, T ; V_{\varepsilon}^{\prime}\right)} \leq C, \tag{2.5}
\end{gather*}
$$

where C is a positive constant which does not depend on ε.
Proof. Let $t \in(0, T]$. Multiplying the first equation in (1.1) by u_{ε} and integrating over $\Omega^{\varepsilon} \times(0, t)$ yields:

$$
\begin{align*}
& \left\|\left(\rho^{\varepsilon}\right)^{1 / 2} u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2}-\left\|\left(\rho^{\varepsilon}\right)^{\frac{1}{2}} u^{0}\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2}+2 \int_{0}^{t} \int_{\Omega^{\varepsilon}} A^{\varepsilon}\left|\nabla u_{\varepsilon}(s)\right|^{2} d x d s \tag{2.6}\\
& =2 \int_{0}^{t} \int_{\Omega^{\varepsilon}} \frac{1}{\varepsilon} g^{\varepsilon}\left(u_{\varepsilon}(s)\right) u_{\varepsilon}(s) d x d s
\end{align*}
$$

But Remark 1.1 readily implies

$$
\frac{1}{\varepsilon} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, u_{\varepsilon}\right)=\operatorname{div} G\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, u_{\varepsilon}\right)-\partial_{r} G\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, u_{\varepsilon}\right) \cdot \nabla u_{\varepsilon}
$$

which combined with (2.6) leads to

$$
\begin{aligned}
& \left\|\left(\rho^{\varepsilon}\right)^{1 / 2} u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2}+2 \int_{0}^{t} \int_{\Omega^{\varepsilon}} A^{\varepsilon}\left|\nabla u_{\varepsilon}(s)\right|^{2} d x d s \\
& \leq\left\|\left(\rho^{\varepsilon}\right)^{1 / 2} u^{0}\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2}-2 \int_{0}^{t} \int_{\Omega^{\varepsilon}} G^{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla u_{\varepsilon} d x d s \\
& \quad-2 \int_{0}^{t} \int_{\Omega^{\varepsilon}}\left(\partial_{r} G^{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla u_{\varepsilon}\right) u_{\varepsilon} d x d s,
\end{aligned}
$$

where $G^{\varepsilon}\left(u_{\varepsilon}\right)=G\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, u_{\varepsilon}\right)$ and $\partial_{r} G^{\varepsilon}\left(u_{\varepsilon}\right)=\frac{\partial}{\partial_{r}} G\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, u_{\varepsilon}\right)$. Using 1.2 , the ellipticity of the matrix A and the boundedness of the function ρ, we have

$$
\begin{align*}
& \Lambda^{-1}\left\|u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2}+2 \Lambda^{-1} \int_{0}^{t} \int_{\Omega^{\varepsilon}}\left|\nabla u_{\varepsilon}(s)\right|^{2} d x d s \\
& \leq \Lambda\left\|u^{0}\right\|_{L^{2}(\Omega)}^{2}+4 C \int_{0}^{t} \int_{\Omega^{\varepsilon}}\left|u_{\varepsilon} \| \nabla u_{\varepsilon}\right| d x d s \tag{2.7}
\end{align*}
$$

For any real number $\delta>0$, we have by Young's inequality,

$$
4 C \int_{0}^{t} \int_{\Omega^{\varepsilon}}\left|u_{\varepsilon}\right|\left|\nabla u_{\varepsilon}\right| d x d s \leq 4 C \delta \int_{0}^{t} \int_{\Omega^{\varepsilon}}\left|u_{\varepsilon}\right|^{2} d x d s+\frac{C}{\delta} \int_{0}^{t} \int_{\Omega^{\varepsilon}}\left|\nabla u_{\varepsilon}\right|^{2} d x d s
$$

Choosing $\delta>0$ such that $\frac{1}{\Lambda}=\frac{C}{\delta}$, the inequality 2.7 yields:

$$
\begin{aligned}
& \Lambda^{-1}\left\|u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2}+\Lambda^{-1} \int_{0}^{t}\left\|\nabla u_{\varepsilon}(s)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2} d x d s \\
& \leq \Lambda\left\|u^{0}\right\|_{L^{2}(\Omega)}^{2}+4 C \delta \int_{0}^{t}\left\|u_{\varepsilon}(s)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}^{2} d x d s
\end{aligned}
$$

which by means of the Gronwall's inequality first leads to (2.3), then to (2.4).
As for (2.5), it follows from (1.1) that

$$
\begin{equation*}
\left\|\rho^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}\right\|_{L^{2}\left(0, T ; V_{\varepsilon}^{\prime}\right)}^{2} \leq C \int_{0}^{T}\left\|\operatorname{div} A^{\varepsilon} \nabla u_{\varepsilon}\right\|_{V_{\varepsilon}^{\prime}}^{2} d t+C \int_{0}^{T}\left\|\frac{1}{\varepsilon} g^{\varepsilon}\left(u_{\varepsilon}\right)\right\|_{V_{\varepsilon}^{\prime}}^{2} d t \tag{2.8}
\end{equation*}
$$

On the one hand, (2.4) and the boundedness of the matrix A imply

$$
\begin{equation*}
\int_{0}^{T}\left\|\operatorname{div} A^{\varepsilon} \nabla u_{\varepsilon}\right\|_{V_{\varepsilon}^{\prime}} d t \leq C \tag{2.9}
\end{equation*}
$$

On the other hand, we have

$$
\left\|\frac{1}{\varepsilon} g^{\varepsilon}\left(u_{\varepsilon}\right)\right\|_{V_{\varepsilon}^{\prime}}=\sup _{\varphi \in V_{\varepsilon},\|\varphi\|_{V_{\varepsilon}}=1}\left|\int_{\Omega^{\varepsilon}} G^{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla \varphi d x+\int_{\Omega^{\varepsilon}}\left(\partial_{r} G^{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla u_{\varepsilon}\right) \varphi d x\right|,
$$

which by means of the Poincaré's inequality and 1.2 yields

$$
\begin{aligned}
\left\|\frac{1}{\varepsilon} g^{\varepsilon}\left(u_{\varepsilon}\right)\right\|_{V_{\varepsilon}^{\prime}} & \leq C \sup _{\varphi \in V_{\varepsilon},\|\varphi\|_{V_{\varepsilon}}=1}\left(\left\|u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}+\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}\|\nabla \varphi\|_{L^{2}\left(\Omega^{\varepsilon}\right)}\right) \\
& \leq C\left(\left\|u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}+\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}\left(\Omega^{\varepsilon}\right)}\right) \quad t \in(0, T)
\end{aligned}
$$

Therefore, using $(2.3)-(2.4)$ and the Hölder's inequality we get

$$
\begin{equation*}
\int_{0}^{T}\left\|\frac{1}{\varepsilon} g^{\varepsilon}\left(u_{\varepsilon}\right)\right\|_{V_{\varepsilon}^{\prime}}^{2} d t \leq C \tag{2.10}
\end{equation*}
$$

We combine $2.8,(2.9)$ and 2.10 to get 2.5 .

The next result relies on the following classical extension property (see e.g., [1]).
Proposition 2.2. For any $\varepsilon>0$, there exists a bounded linear operator P_{ε} from V_{ε} into $H_{0}^{1}(\Omega)$ such that for any $u \in V_{\varepsilon}$ we have

$$
\begin{gather*}
P_{\varepsilon} u=u \quad \text { in } \Omega^{\varepsilon}, \tag{2.11}\\
\left\|P_{\varepsilon} u\right\|_{H_{0}^{1}(\Omega)} \leq C\|u\|_{V_{\varepsilon}}, \tag{2.12}
\end{gather*}
$$

where C is a positive constant independent of ε.
For a function $u \in L^{2}\left(0, T ; V_{\varepsilon}\right)$ we define its extension $P_{\varepsilon} u$ as follows

$$
\begin{equation*}
\left(P_{\varepsilon} u\right)(t)=P_{\varepsilon}(u(t)) \quad \text { a.e. } t \in(0, T) \tag{2.13}
\end{equation*}
$$

and $P_{\varepsilon} u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$.
Bearing this in mind and owing to Proposition 2.2 (see precisely 2.12), we have the following corollary.

Corollary 2.3. Under the hypotheses of Lemma 2.1, we have the uniform estimate

$$
\begin{equation*}
\left\|P_{\varepsilon} u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leq C \tag{2.14}
\end{equation*}
$$

where $C>0$ is a positive constant independent of ε and where P_{ε} is the extension operator defined in Proposition 2.1.

The next estimate requires some preliminaries. We define $R_{\varepsilon}: H_{0}^{1}(\Omega) \rightarrow V_{\varepsilon}$ by $R_{\varepsilon} u=\left.u\right|_{\Omega_{\varepsilon}}$ for $u \in H_{0}^{1}(\Omega)$ (where $\left.u\right|_{\Omega_{\varepsilon}}$ denotes the restriction of u to Ω_{ε}). Then, R_{ε} is continuous since

$$
\left\|R_{\varepsilon} u\right\|_{V_{\varepsilon}} \leq\|u\|_{H_{0}^{1}(\Omega)} \quad \text { for } u \in H_{0}^{1}(\Omega)
$$

We recall that the adjoint $R_{\varepsilon}^{*}: V_{\varepsilon}^{\prime} \rightarrow H^{-1}(\Omega)$ of R_{ε} satisfies, for all $v \in V_{\varepsilon}^{\prime}$ and $\psi \in H_{0}^{1}(\Omega)$,

$$
\left\langle R_{\varepsilon}^{*} v, \varphi\right\rangle=\left\langle v, R_{\varepsilon} \varphi\right\rangle,
$$

where the brackets on the left hand side denote the duality pairing between the spaces $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$ while those on the right hand side denote the duality pairing between V_{ε}^{\prime} and V_{ε}. It is straightforward that

$$
\begin{equation*}
R_{\varepsilon}^{*} u=\chi_{\Omega^{\varepsilon}} u \quad \text { for } u \in L^{2}\left(\Omega^{\varepsilon} \times(0, T)\right) . \tag{2.15}
\end{equation*}
$$

Indeed, for any $\varphi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, we have

$$
\begin{aligned}
\left\langle R_{\varepsilon}^{*} u, \varphi\right\rangle & =\left\langle u, R_{\varepsilon} \varphi\right\rangle=\int_{0}^{T} \int_{\Omega^{\varepsilon}} u\left(\left.\varphi\right|_{\Omega^{\varepsilon}}\right) d x d t \\
& =\int_{0}^{T} \int_{\Omega^{\varepsilon}} \chi_{\Omega^{\varepsilon}}(u \varphi) d x d t=\int_{0}^{T} \int_{\Omega}\left(\chi_{\Omega^{\varepsilon}} u\right) \varphi d x d t
\end{aligned}
$$

It is worth noticing that combining 2.15 and Proposition 2.2 (see precisely 2.11 therein), we have

$$
\begin{equation*}
R_{\varepsilon}^{*} u=\chi_{\Omega^{\varepsilon}}\left(P_{\varepsilon} u\right) \quad \text { for } u \in L^{2}\left(0, T ; V_{\varepsilon}\right) \tag{2.16}
\end{equation*}
$$

Likewise, one can easily check that, for any $u \in L^{2}\left(0, T ; V_{\varepsilon}\right)$ with $\frac{\partial u}{\partial t} \in L^{2}\left(0, T ; V_{\varepsilon}^{\prime}\right)$, we have

$$
\begin{equation*}
R_{\varepsilon}^{*}\left(\frac{\partial u_{\varepsilon}}{\partial t}\right)=\frac{\partial\left(R_{\varepsilon}^{*} u_{\varepsilon}\right)}{\partial t} \tag{2.17}
\end{equation*}
$$

We are now in a position to formulate another estimate.

Lemma 2.4. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|\left(\rho^{\varepsilon} \chi_{\Omega^{\varepsilon}}\right) \frac{\partial\left(P_{\varepsilon} u_{\varepsilon}\right)}{\partial t}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)} \leq C . \tag{2.18}
\end{equation*}
$$

Proof. We first prove that there exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|R_{\varepsilon}^{*}\left(\rho^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}\right)\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)} \leq C . \tag{2.19}
\end{equation*}
$$

To do this, let φ be arbitrarily fixed in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. We have

$$
\begin{aligned}
\left|\left\langle R_{\varepsilon}^{*}\left(\rho^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}\right), \varphi\right\rangle\right| & =\left|\left\langle\rho^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}, R_{\varepsilon} \varphi\right\rangle\right| \\
& =\left|\int_{0}^{T}\left\langle\rho^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}, R_{\varepsilon} \varphi\right\rangle_{V_{\varepsilon}^{\prime}, V_{\varepsilon}} d t\right| \\
& \leq\left\|\rho^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}\right\|_{L^{2}\left(0, T, V_{\varepsilon}^{\prime}\right)}\left\|R_{\varepsilon} \varphi\right\|_{L^{2}\left(0, T ; V_{\varepsilon}\right)} \\
& \left.\leq C\left\|R_{\varepsilon} \varphi\right\|_{L^{2}\left(0, T ; V_{\varepsilon}\right)} \quad \text { (see 2.5) }\right) \\
& \leq C\|\varphi\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} .
\end{aligned}
$$

Having done this, it remains to prove that

$$
\begin{equation*}
R_{\varepsilon}^{*}\left(\rho^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}\right)=\rho^{\varepsilon} \chi_{\Omega^{\varepsilon}} \frac{\partial\left(P_{\varepsilon} u_{\varepsilon}\right)}{\partial t} . \tag{2.20}
\end{equation*}
$$

But with 2.16 and 2.17 in mind, it is easy to see that

$$
R_{\varepsilon}^{*}\left(\rho^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}\right)=\rho^{\varepsilon} R_{\varepsilon}^{*}\left(\frac{\partial u_{\varepsilon}}{\partial t}\right)=\rho^{\varepsilon} \frac{\partial\left(R_{\varepsilon}^{*} u_{\varepsilon}\right)}{\partial t}=\rho^{\varepsilon} \frac{\partial\left(\chi_{\Omega^{\varepsilon}} P_{\varepsilon} u_{\varepsilon}\right)}{\partial t}=\rho^{\varepsilon} \chi_{\Omega^{\varepsilon}} \frac{\partial\left(P_{\varepsilon} u_{\varepsilon}\right)}{\partial t}
$$

and the proof is complete.
The following compactness result will be the starting point of our homogenization process.

Theorem 2.5. Assume that the sequence $\left(\rho^{\varepsilon} \chi_{\Omega^{\varepsilon}}\right)_{\varepsilon>0}$ weakly *-converges in $L^{\infty}(\Omega)$, as $\varepsilon \rightarrow 0$, to some real function that is different from zero almost everywhere in Ω. Then the sequence $\left(P_{\varepsilon} u_{\varepsilon}\right)_{\varepsilon>0}$ is relatively compact in $L^{2}\left(0, T ; L^{2}(\Omega)\right)$.

Proof. This is a direct consequence of the convergence hypothesis on the sequence $\left(\rho^{\varepsilon} \chi_{\Omega^{\varepsilon}}\right)_{\varepsilon>0}$, Corollary 2.3 and Lemma 2.4 by using 5. Theorem 2.3 and Remark 2.5].

3. Multi-Scale convergence and preliminary convergence results

We recall the definition and some compactness results of the multi-scale convergence theory [2, 21, 22]. We also introduce our functional setting and adapt some results of the multi-scale convergence method to our framework. We finally prove some preliminary convergence results needed in the homogenization process of the problem under consideration. We introduce the following notations: $\Omega_{T}=\Omega \times(0, T)$ and $\mathcal{T}=(0,1)$.

3.1. Multi-scale convergence method.

Definition 3.1. (i) A sequence $\left(u_{\varepsilon}\right)_{\varepsilon>0} \subset L^{2}\left(\Omega_{T}\right)$ is said to weakly multi-scale converge towards $u_{0} \in L^{2}\left(\Omega_{T} \times Y \times Z \times \mathcal{T}\right)$, and denoted $u_{\varepsilon} \xrightarrow{w-m s} u_{0}$ in $L^{2}\left(\Omega_{T}\right)$, if as $\varepsilon \rightarrow 0$,

$$
\begin{align*}
& \int_{\Omega_{T}} u_{\varepsilon}(x, t) \varphi\left(x, t, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \frac{t}{\varepsilon^{2}}\right) d x d t \tag{3.1}\\
& \rightarrow \iiint \int_{\Omega_{T} \times Y \times Z \times \mathcal{T}} u_{0}(x, t, y, z, \tau) \varphi(x, t, y, z, \tau) d x d t d y d z d \tau
\end{align*}
$$

for all $\varphi \in L^{2}\left(\Omega_{T} ; \mathcal{C}_{\text {per }}(Y \times Z \times \mathcal{T})\right)$.
(ii) A sequence $\left(u_{\varepsilon}\right)_{\varepsilon>0} \subset L^{2}\left(\Omega_{T}\right)$ is said to strongly multi-scale converge towards $u_{0} \in L^{2}\left(\Omega_{T} \times Y \times Z \times \mathcal{T}\right)$, and denoted $u_{\varepsilon} \xrightarrow{s-m s} u_{0}$ in $L^{2}\left(\Omega_{T}\right)$, if it multi scale converges weakly to u_{0} in $L^{2}\left(\Omega_{T} \times Y \times Z \times \mathcal{T}\right)$ and further satisfies

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{L^{2}\left(\Omega_{T}\right)} \rightarrow\left\|u_{0}\right\|_{L^{2}\left(\Omega_{T} \times Y \times Z \times \mathcal{T}\right)} \quad \text { as } \varepsilon \rightarrow 0 . \tag{3.2}
\end{equation*}
$$

Remark 3.2. (i) Let $u \in L^{2}\left(\Omega_{T} ; \mathcal{C}_{\text {per }}(Y \times Z \times \mathcal{T})\right)$ and define $u^{\varepsilon}: \Omega_{T} \rightarrow \mathbb{R}$ by $u^{\varepsilon}(x, t)=u\left(x, t, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \frac{t}{\varepsilon^{2}}\right)$, for $\varepsilon>0$ and $(x, t) \in \Omega_{T}$. Then $u^{\varepsilon} \xrightarrow{w-m s} u$ and $u^{\varepsilon} \xrightarrow{s-m s} u$ in $L^{2}\left(\Omega_{T}\right)$ as $\varepsilon \rightarrow 0$. We also have $u^{\varepsilon} \rightarrow \widetilde{u}$ in $L^{2}\left(\Omega_{T}\right)$-weak as $\varepsilon \rightarrow 0$, with

$$
\widetilde{u}(x, t)=\iiint_{Y \times Z \times \mathcal{T}} u(\cdot, \cdot, y, z, \tau) d y d z d \tau
$$

(ii) If a sequence $\left(u_{\varepsilon}\right)_{\varepsilon>0} \subset L^{2}\left(\Omega_{T}\right)$ multi-scale converges weakly in $L^{2}\left(\Omega_{T}\right)$ to some $u_{0} \in L^{2}\left(\Omega_{T} \times Y \times Z \times \mathcal{T}\right)$, in the sense of Definition 3.1, then (3.1) still holds for $\varphi \in \mathcal{C}\left(\bar{\Omega}_{T} ; L_{\mathrm{per}}^{\infty}(Y \times Z \times \mathcal{T})\right)$.
(iii) Let $u \in \mathcal{C}\left(\bar{\Omega}_{T} ; L_{\mathrm{per}}^{\infty}(Y \times Z \times \mathcal{T})\right)$ and define u^{ε} like in (i) above. Then $u^{\varepsilon} \xrightarrow{w-m s} u$ in $L^{2}\left(\Omega_{T}\right)$ as $\varepsilon \rightarrow 0$.

The following two compactness results are the cornerstones of the multi-scale convergence theory.

Theorem 3.3. Any bounded sequence in $L^{2}\left(\Omega_{T}\right)$ admits a weakly multi-scale convergent subsequence.

Let E be an ordinary sequence of real number converging to zero with ε.
Theorem 3.4. Let $\left(u_{\varepsilon}\right)_{\varepsilon \in E}$ be a bounded sequence in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. There exist a subsequence E^{\prime} of E and a triplet $\left(u_{0}, u_{1}, u_{2}\right)$ in the space

$$
L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \times L^{2}\left(\Omega_{T} ; L^{2}\left(\mathcal{T} ; H_{\mathrm{per}}^{1}(Y)\right)\right) \times L^{2}\left(\Omega_{T} ; L^{2}\left(Y \times \mathcal{T} ; H_{\mathrm{per}}^{1}(Z)\right)\right)
$$

such that, as $E^{\prime} \ni \varepsilon \rightarrow 0$,

$$
\begin{gather*}
u_{\varepsilon} \rightarrow u_{0} \quad \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)-\text { weak } \tag{3.3}\\
\frac{\partial u_{\varepsilon}}{\partial x_{i}} \xrightarrow{w-m s} \frac{\partial u_{0}}{\partial x_{i}}+\frac{\partial u_{1}}{\partial y_{i}}+\frac{\partial u_{2}}{\partial z_{i}} \quad \text { in } L^{2}\left(\Omega_{T}\right) \quad(1 \leq j \leq N) . \tag{3.4}
\end{gather*}
$$

We need to tailor Theorem 3.4 according to our needs. The functions u_{1} and u_{2} in Theorem 3.4 are unique up to additive function of variables x, t, τ and x, t, y, τ, respectively. It is crucial to fix the choice of u_{1}. We introduce the space

$$
H_{\rho}^{1}\left(Y_{m}\right)=\left\{u \in H_{\mathrm{per}}^{1}(Y): \int_{Y_{m}} \rho(y) u(y) d y=0\right\}
$$

which is a closed subspace of $H_{\text {per }}^{1}(Y)$ since it is the kernel of the bounded linear functional $u \mapsto \int_{Y_{m}} \rho(y) u(y) d y$ defined on $H_{\mathrm{per}}^{1}(Y)$. The version of Theorem 3.4 that will be used in the sequel formulates as follows.

Theorem 3.5. Let $\left(u_{\varepsilon}\right)_{\varepsilon \in E}$ be a bounded sequence in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. There exist a subsequence E^{\prime} of E and a triplet $\left(u_{0}, u_{1}, u_{2}\right)$ in the space

$$
L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \times L^{2}\left(\Omega_{T} ; L^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)\right) \times L^{2}\left(\Omega_{T} ; L^{2}\left(Y \times \mathcal{T} ; H_{\mathrm{per}}^{1}(Z)\right)\right)
$$

such that, as $E^{\prime} \ni \varepsilon \rightarrow 0$,

$$
\begin{gather*}
u_{\varepsilon} \rightarrow u_{0} \quad \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)-\text { weak } \tag{3.5}\\
\frac{\partial u_{\varepsilon}}{\partial x_{i}} \xrightarrow{w-m s} \frac{\partial u_{0}}{\partial x_{i}}+\frac{\partial u_{1}}{\partial y_{i}}+\frac{\partial u_{2}}{\partial z_{i}} \quad \text { in } L^{2}\left(\Omega_{T}\right) \quad(1 \leq j \leq N) . \tag{3.6}
\end{gather*}
$$

The proof of the above theorem is similar to that of [8, Theorem 2.5], and is omitted. The following weak-strong convergence result (see [19, Theorem 6] for its proof) and its corollary are worth recalling since they will be used in the sequel.

Theorem 3.6. Let $\left(u_{\varepsilon}\right)_{\varepsilon \in E} \subset L^{2}\left(\Omega_{T}\right)$ and $\left(v_{\varepsilon}\right)_{\varepsilon \in E} \subset L^{2}\left(\Omega_{T}\right)$ be two sequences such that $u_{\varepsilon} \xrightarrow{w-m s} u_{0}$ and $v_{\varepsilon} \xrightarrow{s-m s} v_{0}$ in $L^{2}\left(\Omega_{T}\right)$ with $u_{0}, v_{0} \in L^{2}\left(\Omega_{T} \times Y \times Z \times \mathcal{T}\right)$. Then $u_{\varepsilon} v_{\varepsilon} \xrightarrow{w-m s} u_{0} v_{0}$ in $L^{1}\left(\Omega_{T}\right)$.
Corollary 3.7. Let $\left(u_{\varepsilon}\right)_{\varepsilon \in E} \subset L^{2}\left(\Omega_{T}\right)$ and $\left(v_{\varepsilon}\right)_{\varepsilon \in E} \subset L^{2}\left(\Omega_{T}\right) \cap L^{\infty}\left(\Omega_{T}\right)$ be two sequences such that $u_{\varepsilon} \xrightarrow{w-m s} u_{0}$ and $v_{\varepsilon} \xrightarrow{s-m s} v_{0}$ in $L^{2}\left(\Omega_{T}\right)$ with $u_{0}, v_{0} \in L^{2}\left(\Omega_{T} \times\right.$ $Y \times Z \times \mathcal{T})$. Assume further that $\left(v_{\varepsilon}\right)_{\varepsilon \in E}$ is bounded in $L^{\infty}\left(\Omega_{T}\right)$. Then $u_{\varepsilon} v_{\varepsilon} \xrightarrow{w-m s}$ $u_{0} v_{0}$ in $L^{2}\left(\Omega_{T}\right)$.
3.2. Preliminary convergence results. We start this subsection by studying the limiting behavior of the sequence $\left(\chi_{\Omega^{\varepsilon}}\right)_{\varepsilon>0}$ as $\varepsilon \rightarrow 0$. To do this, we first express the characteristic function of Ω^{ε} in Ω, in terms of those of Y_{m} and Z_{s}. Denoting by χ_{c}^{ε} and χ_{p}^{ε} the characteristic functions of Ω_{c}^{ε} and Ω_{p}^{ε}, respectively, it appears that

$$
\begin{aligned}
& \chi_{c}^{\varepsilon}(x)=\chi_{G_{c}}\left(\frac{x}{\varepsilon}\right)=\chi_{Y_{c}}\left(\frac{x}{\varepsilon}\right) \quad \text { (by } Y \text {-periodicity) } \\
& \chi_{p}^{\varepsilon}(x)=\left(1-\chi_{G_{c}}\left(\frac{x}{\varepsilon}\right)\right) \chi_{G_{p}}\left(\frac{x}{\varepsilon^{2}}\right) \\
&=\left(1-\chi_{Y_{c}}\left(\frac{x}{\varepsilon}\right)\right) \chi_{Z_{p}}\left(\frac{x}{\varepsilon^{2}}\right) \quad \text { (by } Y \text { and } Z \text {-periodicity). }
\end{aligned}
$$

Hence

$$
\begin{aligned}
\chi_{\Omega^{\varepsilon}}(x) & =1-\left(\chi_{c}^{\varepsilon}(x)+\chi_{p}^{\varepsilon}(x)\right) \quad(x \in \Omega) \\
& =1-\left[\chi_{Y_{c}}\left(\frac{x}{\varepsilon}\right)+\left(1-\chi_{Y_{c}}\left(\frac{x}{\varepsilon}\right)\right) \chi_{Z_{p}}\left(\frac{x}{\varepsilon^{2}}\right)\right] \\
& =\left(1-\chi_{Y_{c}}\left(\frac{x}{\varepsilon}\right)\right)\left(1-\chi_{Z_{p}}\left(\frac{x}{\varepsilon^{2}}\right)\right) \\
& =\chi_{Y_{m}}\left(\frac{x}{\varepsilon}\right) \chi_{Z_{s}}\left(\frac{x}{\varepsilon^{2}}\right) .
\end{aligned}
$$

But, $\chi_{Y_{m}}(\cdot) \otimes \chi_{Z_{s}}(\cdot) \in L_{\text {per }}^{\infty}(Y \times Z)$ so that according to (iii) of Remark 3.2.

$$
\chi_{\Omega^{\varepsilon}} \xrightarrow{w-m s} \chi_{Y_{m}} \otimes \chi_{Z_{s}} \quad \text { in } \quad L^{2}\left(\Omega_{T}\right),
$$

where the tensor product $\chi_{Y_{m}} \otimes \chi_{Z_{s}}$ is $\left(\chi_{Y_{m}} \otimes \chi_{Z_{s}}\right)(y, z)=\chi_{Y_{m}}(y) \chi_{Z_{s}}(z),((y, z) \in$ $\left.\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$. We have proved the following result.

Proposition 3.8. As $\varepsilon \rightarrow 0$, the characteristic function $\chi_{\Omega^{\varepsilon}}$ of Ω^{ε} multi-scale converges weakly in $L^{2}\left(\Omega_{T}\right)$ to $\chi_{Y_{m}} \otimes \chi_{Z_{p}}$.

We now recall properties of some functional spaces that we will use. The topological dual of $H_{\rho}^{1}\left(Y_{m}\right)$ is denoted in the sequel by $\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}$ while $L_{\rho}^{2}\left(Y_{m}\right)$ stands for the space of functions $u \in L_{\text {per }}^{2}(Y)$ satisfying $\int_{Y_{m}} \rho(y) u(y) d y=0$. We first recall that, since the space $H_{\rho}^{1}\left(Y_{m}\right)$ is densely embedded in $L_{\rho}^{2}\left(Y_{m}\right)$, the following continuous embeddings hold:

$$
H_{\rho}^{1}\left(Y_{m}\right) \subset L_{\rho}^{2}\left(Y_{m}\right) \subset\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}
$$

We also recall that the topological dual of $L^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)$ is $L^{2}\left(\mathcal{T} ;\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}\right)$. This readily follows from the reflexiveness of the space $H_{\rho}^{1}\left(Y_{m}\right)$. We denote the duality pairing between $H_{\rho}^{1}\left(Y_{m}\right)$ and $\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}$ by (\cdot, \cdot), and that of $L^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)$ and $L^{2}\left(\mathcal{T} ;\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}\right)$ by $[\cdot, \cdot]$. Thus, we have

$$
(u, v)=\int_{Y} u(y) v(y) d y
$$

for $u \in L_{\rho}^{2}\left(Y_{m}\right)$ and $v \in H_{\rho}^{1}\left(Y_{m}\right)$, and

$$
[u, v]=\int_{0}^{1}(u(\tau), v(\tau)) d \tau=\int_{0}^{1} \int_{Y} u(y, \tau) v(y, \tau) d y d \tau
$$

for $u \in L^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)$ and $v \in L^{2}\left(\mathcal{T} ;\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}\right)$. Furthermore, let $\mathcal{D}_{\rho}\left(Y_{m}\right)$ stands for the space of functions $u \in \mathcal{D}_{\text {per }}(Y)$ with $\int_{Y_{m}} \rho(y) u(y) d y=0$. Owing to the fact that the space $\mathcal{D}_{\rho}\left(Y_{m}\right)$ is dense in $H_{\rho}^{1}\left(Y_{m}\right)$ the following result holds (see e.g. [20, Lemma 2 and Lemma 3]).

Theorem 3.9. Let $u \in \mathcal{D}_{\text {per }}^{\prime}(Y \times \mathcal{T})$ and assume that u is continuous on $\mathcal{D}_{\rho}\left(Y_{m}\right) \otimes$ $\mathcal{D}_{\mathrm{per}}(\mathcal{T})$ endowed with the $L_{\mathrm{per}}^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)$-norm. Then $u \in L_{\mathrm{per}}^{2}\left(\mathcal{T} ;\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}\right)$, and further

$$
\langle u, \varphi\rangle=\int_{0}^{1}(u(\tau), \varphi(\cdot, \tau)) d \tau
$$

for all $\varphi \in \mathcal{D}_{\rho}\left(Y_{m}\right) \otimes \mathcal{D}_{\text {per }}(\mathcal{T})$, where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between $\mathcal{D}_{\text {per }}^{\prime}(Y \times \mathcal{T})$ and $\mathcal{D}_{\text {per }}(Y \times \mathcal{T})$, whereas the right-hand side is the product of u and φ in the duality between $L_{\text {per }}^{2}\left(\mathcal{T} ;\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}\right)$ and $L_{\text {per }}^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)$.

We now define an operator

$$
\begin{align*}
R: L_{\mathrm{per}}^{2}(Y) & \rightarrow L_{\mathrm{per}}^{2}(Y) \tag{3.7}\\
u & \mapsto \chi_{Y_{m}} \rho u .
\end{align*}
$$

It is clear that R is a non-negative and linear bounded self-adjoint operator. Using the positivity of the weight ρ we prove that the kernel of R is defined by:

$$
\operatorname{ker}(R)=\left\{u \in L_{\mathrm{per}}^{2}(Y): u=0 \text { a.e. in } Y_{m}\right\}
$$

We denote by $\operatorname{ker}(R)^{\perp}$ the orthogonal of the kernel of R in $L_{\text {per }}^{2}(Y)$ while $L_{0}^{2}\left(Y_{m}\right)$ stands for the completion of $\operatorname{ker}(R)^{\perp}$ with respect to the norm

$$
\|u\|_{+}=\left\|\chi_{Y_{m}} \rho^{\frac{1}{2}} u\right\|_{L_{\text {per }}^{2}(Y)} \quad\left(u \in \operatorname{ker}(R)^{\perp}\right)
$$

We denote by P the orthogonal projection from $L_{\text {per }}^{2}(Y)$ onto $L_{0}^{2}\left(Y_{m}\right)$. We recall that for $u \in L_{\text {per }}^{2}\left(\mathcal{T} ; L_{\text {per }}^{2}(Y)\right)$ we define $R u$ and $P u$ by

$$
(R u)(\tau)=R(u(\tau)) \quad \text { and } \quad(P u)(\tau)=P(u(\tau)) \quad \text { for a.e. } \tau \in(0,1)
$$

Considered as an unbounded operator on $L_{\text {per }}^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)$, the domain of $R^{\prime} \equiv$ $\chi_{Y_{m}} \rho \frac{\partial}{\partial \tau}$ is

$$
\mathcal{W}=\left\{u \in L_{\mathrm{per}}^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right): \chi_{Y_{m}} \rho \frac{\partial u}{\partial \tau} \in L_{\mathrm{per}}^{2}\left(\mathcal{T} ;\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}\right)\right\}
$$

We endow \mathcal{W} with its natural norm

$$
\|u\|_{\mathcal{W}}=\|u\|_{L_{\mathrm{per}}^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)}+\left\|\chi_{Y_{m}} \rho \frac{\partial u}{\partial \tau}\right\|_{L_{\mathrm{per}}^{2}\left(\mathcal{T} ;\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}\right)} \quad(u \in \mathcal{W})
$$

and recall an important result (see e.g., [16, 17]) we will use in the sequel.
Proposition 3.10. The operator P maps continuously \mathcal{W} into $\mathcal{C}\left([0,1] ; L_{0}^{2}\left(Y_{m}\right)\right)$, i.e., there exists a constant $c>0$ such that

$$
\|P u\|_{\mathcal{C}\left([0,1] ; L_{0}^{2}\left(Y_{m}\right)\right)}=\sup _{0 \leq \tau \leq 1}\left\|\chi_{Y_{m}} \rho^{1 / 2} u(\tau)\right\|_{L^{2}(Y)} \leq c\|u\|_{\mathcal{W}} \quad \text { for all } u \in \mathcal{W}
$$

Moreover,

$$
\begin{equation*}
\left[\chi_{Y_{m}} \rho \frac{\partial u}{\partial \tau}, v\right]=-\left[\chi_{Y_{m}} \rho \frac{\partial v}{\partial \tau}, u\right] \quad \text { for all } u, v \in \mathcal{W} \tag{3.8}
\end{equation*}
$$

We will also use the following convergence results in the forthcoming homogenization process.

Proposition 3.11. Let $\varphi \in \mathcal{C}_{0}^{\infty}\left(Q_{T}\right) \otimes \mathcal{D}_{\text {per }}(\mathcal{T}) \otimes \mathcal{D}_{\rho}\left(Y_{m}\right)$. Let $E^{\prime},\left(u_{\varepsilon}\right)_{\varepsilon \in E}$ and $\left(u_{0}, u_{1}\right) \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \times L^{2}\left(\Omega_{T} ; L^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)\right)$ be as in Theorem 3.5. Then
$\lim _{E \ni \varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{Q_{T}^{\varepsilon}} u_{\varepsilon}(x, t) \rho\left(\frac{x}{\varepsilon}\right) \varphi\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) d x d t=\left|Z_{s}\right| \int_{Q_{T}}\left[\chi_{Y_{m}} \rho u_{1}(x, t), \varphi(x, t)\right] d x d t$, where $0<\left|Z_{s}\right|<1$ denotes the Lebesgue measure of the set Z_{s}.

Proof. We have

$$
\begin{aligned}
& \frac{1}{\varepsilon} \int_{Q_{T}^{\varepsilon}} u_{\varepsilon}(x, t) \rho\left(\frac{x}{\varepsilon}\right) \varphi\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) d x d t \\
& =\frac{1}{\varepsilon} \int_{Q_{T}} u_{\varepsilon}(x, t) \chi_{\Omega^{\varepsilon}}(x) \rho\left(\frac{x}{\varepsilon}\right) \varphi\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) d x d t \\
& =\frac{1}{\varepsilon} \int_{Q_{T}} u_{\varepsilon}(x, t) \chi_{Y_{m}}\left(\frac{x}{\varepsilon}\right) \chi_{Z_{s}}\left(\frac{x}{\varepsilon^{2}}\right) \rho\left(\frac{x}{\varepsilon}\right) \varphi\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) d x d t
\end{aligned}
$$

Bearing in mind that

$$
\left.\int_{Y} \chi_{Y_{m}}(y) \rho(y) \varphi(x, t, y, \tau) d y=0 \quad \text { for all }(x, t, \tau) \in \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}\right)
$$

the same line of reasoning as in the proof of [8, Theorem 2.3] yields, as $E \ni \varepsilon \rightarrow 0$,

$$
\begin{aligned}
& \frac{1}{\varepsilon} \int_{Q_{T}} u_{\varepsilon}(x, t) \chi_{Y_{m}}\left(\frac{x}{\varepsilon}\right) \chi_{Z_{s}}\left(\frac{x}{\varepsilon^{2}}\right) \rho\left(\frac{x}{\varepsilon}\right) \varphi\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) d x d t \\
& \rightarrow \int_{Q_{T} \times Y \times Z \times \mathcal{T}} \chi_{Y_{m}} \chi_{Z_{s}} \rho u_{1} \varphi d x d t d y d z d \tau
\end{aligned}
$$

which concludes the proof.

We finally introduce the following notation-definition
$\mathbb{F}_{0}^{1}=L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \times L^{2}\left(\Omega_{T} ; L_{\mathrm{per}}^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)\right) \times L^{2}\left(\Omega_{T} ; L_{\mathrm{per}}^{2}\left(Y \times \mathcal{T} ; H_{\mathrm{per}}^{1}\left(Z_{s}\right)\right)\right)$,
where $H_{\mathrm{per}}^{1}\left(Z_{s}\right)$ stands for the space of functions $u \in H_{\mathrm{per}}^{1}(Z)$ with $\int_{Z_{s}} u(z) d z=0$. We similarly define $\mathcal{D}_{\text {per }}\left(Z_{s}\right)$ and remark that the space \mathbb{F}_{0}^{1} admits the following dense subspace

$$
\begin{aligned}
\mathfrak{F}_{0}^{\infty} & =\mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right) \times\left(\mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right) \otimes \mathcal{D}_{\mathrm{per}}(\mathcal{T}) \otimes \mathcal{D}_{\rho}\left(Y_{m}\right)\right) \times\left(\mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right) \otimes \mathcal{D}_{\mathrm{per}}(Y \times \mathcal{T})\right. \\
& \left.\otimes \mathcal{D}_{\mathrm{per}}\left(Z_{s}\right)\right)
\end{aligned}
$$

Moreover, \mathbb{F}_{0}^{1} is a Banach space under the norm

$$
\begin{aligned}
& \left\|\left(u_{0}, u_{1}, u_{2}\right)\right\|_{\mathbb{F}_{0}^{1}} \\
& =\left\|u_{0}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}+\left\|u_{1}\right\|_{L^{2}\left(\Omega_{T} ; L^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)\right)}+\left\|u_{2}\right\|_{L^{2}\left(\Omega_{T} ; L^{2}\left(Y \times \mathcal{T} ; H_{\mathrm{per}}^{1}(Z)\right)\right)} .
\end{aligned}
$$

4. Homogenization process and main results

Let E be an ordinary sequence of real numbers ε converging to zero with ε.
4.1. Derivation of the global limit problem. By Corollary 2.3 and Theorem 3.5. there exist

$$
\begin{equation*}
\left(u_{0}, u_{1}, u_{2}\right) \in \mathbb{F}_{0}^{1} \tag{4.1}
\end{equation*}
$$

and a subsequence E^{\prime} of E such that, as $E^{\prime} \ni \varepsilon \rightarrow 0$,

$$
\begin{gathered}
P_{\varepsilon} u_{\varepsilon} \rightarrow u_{0} \quad \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \text {-weak, } \\
\frac{\partial\left(P_{\varepsilon} u_{\varepsilon}\right)}{\partial x_{i}} \xrightarrow{w-m s} \frac{\partial u_{0}}{\partial x_{i}}+\frac{\partial u_{1}}{\partial y_{i}}+\frac{\partial u_{2}}{\partial z_{i}} \quad \text { in } L^{2}\left(\Omega_{T}\right)(1 \leq j \leq N) .
\end{gathered}
$$

Moreover, as $E^{\prime} \ni \varepsilon \rightarrow 0$ we have

$$
\rho^{\varepsilon} \chi_{\Omega^{\varepsilon}} \rightarrow \rho \chi_{Y_{m}} \otimes \chi_{Z_{s}} \quad \text { in } L^{\infty}(\Omega) \text { weak-* }
$$

so that Theorem 2.5 yields

$$
\begin{equation*}
P_{\varepsilon} u_{\varepsilon} \rightarrow u_{0} \quad \text { in } L^{2}\left(0, T ; L^{2}(\Omega)\right) . \tag{4.2}
\end{equation*}
$$

We are now in a position to formulate the first homogenization result.

Theorem 4.1. The triple $\left(u_{0}, u_{1}, u_{2}\right) \in \mathbb{F}_{0}^{1}$ determined above by 4.1) is a solution to the variational problem

$$
\begin{align*}
& \left(u_{0}, u_{1}, u_{2}\right) \in \mathbb{F}_{0}^{1}, \\
& \left(\int_{Y_{m}} \rho(y) d y\right) \int_{\Omega_{T}} \frac{\partial u_{0}}{\partial t} \psi_{0} d x d t-\int_{\Omega_{T}}\left[\rho \chi_{Y_{m}} u_{1}(x, t), \frac{\partial \psi_{1}}{\partial \tau}(x, t)\right] d x d t \\
& =-\iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} G\left(y, \tau, u_{0}\right) \cdot \nabla \psi_{0} d x d t d y d \tau \\
& \quad+\iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} g\left(y, \tau, u_{0}\right) \psi_{1} d x d t d y d \tau \\
& \quad-\frac{1}{\left|Z_{s}\right|} \iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right) \tag{4.3}\\
& \quad \cdot\left(\nabla_{x} \psi_{0}+\nabla_{y} \psi_{1}+\nabla_{z} \psi_{2}\right) d x d t d y d z d \tau \\
& \quad-\frac{1}{\left|Z_{s}\right|} \iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}}\left(\partial_{r} G\left(y, \tau, u_{0}\right)\right. \\
& \left.\quad \cdot\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right)\right) \psi_{0} d x d t d y d z d \tau \\
& \quad \text { for all }\left(\psi_{0}, \psi_{1}, \psi_{2}\right) \in \mathfrak{F}_{0}^{\infty} .
\end{align*}
$$

Proof. Let $\varepsilon>0$ and let $\left(\psi_{0}, \psi_{1}, \psi_{2}\right) \in \mathfrak{F}_{0}^{\infty}$. The appropriate oscillating test function for our problem is defined as follows:

$$
\begin{equation*}
\psi_{\varepsilon}(x, t)=\psi_{0}(x, t)+\varepsilon \psi_{1}\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right)+\varepsilon^{2} \psi_{2}\left(x, t, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \frac{t}{\varepsilon^{2}}\right) \tag{4.4}
\end{equation*}
$$

for $(x, t) \in \Omega \times(0, T)$. Multiplying all terms in the main equation of 1.1 by $\psi_{\varepsilon}(x, t)$ and integrating over $\Omega^{\varepsilon} \times(0, T)$ leads to
$\int_{\Omega_{T}^{\varepsilon}} \rho\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{\varepsilon}}{\partial t} \psi_{\varepsilon} d x d t=-\int_{\Omega_{T}^{\varepsilon}} A\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) \nabla u_{\varepsilon} \cdot \nabla \psi_{\varepsilon} d x d t+\frac{1}{\varepsilon} \int_{\Omega_{T}^{\varepsilon}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, u_{\varepsilon}\right) \psi^{\varepsilon} d x d t$, or equivalently to

$$
\begin{align*}
& \int_{\Omega_{T}} \rho\left(\frac{x}{\varepsilon}\right) \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) \frac{\partial\left(P_{\varepsilon} u_{\varepsilon}\right)}{\partial t} \psi_{\varepsilon} d x d t \\
& =\int_{\Omega_{T}} \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) A\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) \nabla\left(P_{\varepsilon} u_{\varepsilon}\right) \cdot \nabla \psi_{\varepsilon} d x d t \tag{4.5}\\
& \quad+\frac{1}{\varepsilon} \int_{\Omega_{T}} \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \psi^{\varepsilon} d x d t .
\end{align*}
$$

We now pass to the limit in 4.5 as $E^{\prime} \ni \varepsilon \rightarrow 0$. We start with the term in the left hand side. We have

$$
\begin{equation*}
\int_{\Omega_{T}} \rho\left(\frac{x}{\varepsilon}\right) \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) \frac{\partial\left(P_{\varepsilon} u_{\varepsilon}\right)}{\partial t} \psi_{\varepsilon} d x d t=-\int_{\Omega_{T}} \rho\left(\frac{x}{\varepsilon}\right) \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) P_{\varepsilon} u_{\varepsilon} \frac{\partial \psi_{\varepsilon}}{\partial t} d x d t \tag{4.6}
\end{equation*}
$$

and we recall that

$$
\begin{aligned}
\frac{\partial \psi_{\varepsilon}}{\partial t}(x, t)= & \frac{\partial \psi_{0}}{\partial t}(x, t)+\varepsilon \frac{\partial \psi_{1}}{\partial t}\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right)+\frac{1}{\varepsilon} \frac{\partial \psi_{1}}{\partial \tau}\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) \\
& +\varepsilon^{2} \frac{\partial \psi_{2}}{\partial t}\left(x, t, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \frac{t}{\varepsilon^{2}}\right)+\frac{\partial \psi_{2}}{\partial \tau}\left(x, t, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \frac{t}{\varepsilon^{2}}\right)
\end{aligned}
$$

It follows from 4.2 that

$$
\begin{align*}
& \lim _{E^{\prime} \ni \varepsilon \rightarrow 0} \int_{\Omega_{T}} \rho\left(\frac{x}{\varepsilon}\right) \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) P_{\varepsilon} u_{\varepsilon} \frac{\partial \psi_{0}}{\partial t} d x d t \\
& =\iiint_{\Omega_{T} \times Y \times Z} \rho(y) \chi_{Y_{m}}(y) \chi_{Z_{s}}(z) u_{0}(x, t) \frac{\partial \psi_{0}}{\partial t}(x, t) d x d t d y d z \tag{4.7}\\
& =-\left|Z_{s}\right|\left(\int_{Y_{m}} \rho(y) d y\right) \int_{\Omega_{T}} \frac{\partial u_{0}}{\partial t} \psi_{0} d x d t .
\end{align*}
$$

By means of Proposition 3.11 we have

$$
\begin{align*}
& \lim _{E^{\prime} \ni \varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{\Omega_{T}} \rho\left(\frac{x}{\varepsilon}\right) \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) P_{\varepsilon} u_{\varepsilon} \frac{\partial \psi_{1}}{\partial \tau}\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) \\
& =\iiint_{\Omega_{T} \times Y \times Z \times \mathcal{T}} \rho(y) \chi_{Y_{m}}(y) \chi_{Z_{s}}(z) u_{1} \frac{\partial \psi_{1}}{\partial \tau} d x d t d y d z d \tau \tag{4.8}\\
& =\left|Z_{s}\right| \int_{\Omega_{T}}\left[\rho \chi_{Y_{m}} u_{1}(x, t), \frac{\partial \psi_{1}}{\partial \tau}(x, t)\right] d x d t
\end{align*}
$$

The following limits hold:

$$
\begin{align*}
& \lim _{E^{\prime} \ni \varepsilon \rightarrow 0} \varepsilon \int_{\Omega_{T}} \rho\left(\frac{x}{\varepsilon}\right) \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) P_{\varepsilon} u_{\varepsilon} \frac{\partial \psi_{1}}{\partial t}\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) d x d t=0, \tag{4.9}\\
& \lim _{E^{\prime} \ni \varepsilon \rightarrow 0} \varepsilon^{2} \int_{\Omega_{T}} \rho\left(\frac{x}{\varepsilon}\right) \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) P_{\varepsilon} u_{\varepsilon} \frac{\partial \psi_{2}}{\partial t}\left(x, t, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \frac{t}{\varepsilon^{2}}\right) d x d t=0, \tag{4.10}\\
& \lim _{E^{\prime} \ni \varepsilon \rightarrow 0} \int_{\Omega_{T}} \rho\left(\frac{x}{\varepsilon}\right) \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) P_{\varepsilon} u_{\varepsilon} \frac{\partial \psi_{2}}{\partial \tau}\left(x, t, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \frac{t}{\varepsilon^{2}}\right) d x d t=0 . \tag{4.11}
\end{align*}
$$

After the passage to the limit in the left hand side of 4.11), we used the formula $\int_{\mathcal{T}} \frac{\partial \psi_{2}}{\partial \tau} d \tau=0$. Similar trivial arguments work for 4.9) and 4.10. Thus as $E^{\prime} \ni$ $\varepsilon \rightarrow 0$, we have

$$
\begin{align*}
\int_{\Omega_{T}^{\varepsilon}} \rho\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{\varepsilon}}{\partial t} \psi_{\varepsilon} d x d t & \rightarrow\left|Z_{s}\right|\left(\int_{Y_{m}} \rho(y) d y\right) \int_{\Omega_{T}} \frac{\partial u_{0}}{\partial t} \psi_{0} d x d t \tag{4.12}\\
& -\left|Z_{s}\right| \int_{\Omega_{T}}\left[\rho \chi_{Y_{m}} u_{1}(x, t), \frac{\partial \psi_{1}}{\partial \tau}(x, t)\right] d x d t
\end{align*}
$$

As regards the first term in the right hand side of 4.5), it is classical that, as $E^{\prime} \ni \varepsilon \rightarrow 0$, we have

$$
\begin{align*}
& \int_{\Omega_{T}^{\varepsilon}} A\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) \nabla\left(P_{\varepsilon} u_{\varepsilon}\right) \cdot \nabla \psi_{\varepsilon} d x d t \\
& =\int_{\Omega_{T}} \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) A\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) \nabla\left(P_{\varepsilon} u_{\varepsilon}\right) \cdot \nabla \psi_{\varepsilon} d x d t \tag{4.13}\\
& \rightarrow \iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right)\left(\nabla_{x} \psi_{0}\right. \\
& \left.\quad+\nabla_{y} \psi_{1}+\nabla_{z} \psi_{2}\right) d x d t d y d z d \tau
\end{align*}
$$

Concerning the second term in the right hand side of 4.5), we first rewrite it as follows:

$$
\begin{align*}
& \frac{1}{\varepsilon} \int_{\Omega_{T}^{\varepsilon}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \psi_{\varepsilon} d x d t \\
& =\frac{1}{\varepsilon} \int_{\Omega_{T}^{\varepsilon}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \psi_{0} d x d t+\int_{\Omega_{T}^{\varepsilon}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \psi_{1}\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) d x d t \tag{4.14}\\
& \quad+\varepsilon \int_{\Omega_{T}^{\varepsilon}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \psi_{2}\left(x, t, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \frac{t}{\varepsilon^{2}}\right) d x d t .
\end{align*}
$$

It is straightforward from [20, Lemma 5] that

$$
\begin{align*}
& \int_{\Omega_{T}^{\varepsilon}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \psi_{1}\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) d x d t \\
& =\int_{\Omega_{T}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \chi_{\Omega^{\varepsilon}}\left(\frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}\right) \psi_{1}\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}\right) d x d t \tag{4.15}\\
& \rightarrow\left|Z_{s}\right| \iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} g\left(y, \tau, u_{0}\right) \psi_{1}(x, t, y, \tau) d x d t d y d \tau
\end{align*}
$$

as $E^{\prime} \ni \varepsilon \rightarrow 0$. Likewise, it holds that

$$
\begin{equation*}
\lim _{E^{\prime} \ni \varepsilon \rightarrow 0} \varepsilon \int_{\Omega_{T}^{\varepsilon}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \psi_{2}\left(x, t, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \frac{t}{\varepsilon^{2}}\right) d x d t=0 \tag{4.16}
\end{equation*}
$$

It then remains to deal with the first term in the right hand side of 4.14. We have

$$
\begin{align*}
& \frac{1}{\varepsilon} \int_{\Omega_{T}^{\varepsilon}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \psi_{0} d x d t \\
& =-\int_{\Omega_{T}^{\varepsilon}} G\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \cdot \nabla_{x} \psi_{0} d x d t \tag{4.17}\\
& \quad-\int_{\Omega_{T}^{\varepsilon}}\left(\partial_{r} G\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \cdot \nabla_{x} u_{\varepsilon}\right) \psi_{0} d x d t .
\end{align*}
$$

It follows from [20, Lemma 5 - Remark 2] that as $E^{\prime} \ni \varepsilon \rightarrow 0$,

$$
\begin{align*}
& \int_{\Omega_{T}^{\varepsilon}}\left(\partial_{r} G\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \cdot \nabla_{x} u_{\varepsilon}\right) \psi_{0} d x d t \\
& =\iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}}\left(\partial_{r} G\left(y, \tau, u_{0}\right) \cdot\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right)\right) \psi_{0} d x d t d y d z d \tau \tag{4.18}
\end{align*}
$$

Likewise,

$$
\begin{align*}
& \lim _{E^{\prime} \ni \varepsilon \rightarrow 0} \int_{\Omega_{T}^{\varepsilon}} G\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \cdot \nabla_{x} \psi_{0} d x d t \\
& =\left|Z_{s}\right| \iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} G\left(y, \tau, u_{0}\right) \cdot \nabla_{x} \psi_{0} d x d t d y d \tau . \tag{4.19}
\end{align*}
$$

Thus, as $E^{\prime} \ni \varepsilon \rightarrow 0$, we have

$$
\begin{align*}
& \frac{1}{\varepsilon} \int_{\Omega_{T}^{\varepsilon}} g\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}, P_{\varepsilon} u_{\varepsilon}\right) \psi_{\varepsilon} d x d t \\
& \rightarrow-\iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}}\left(\partial_{r} G\left(y, \tau, u_{0}\right) \cdot\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right)\right) \psi_{0} d x d t d y d z d \tau \\
& \quad-\left|Z_{s}\right| \iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} G\left(y, \tau, u_{0}\right) \cdot \nabla_{x} \psi_{0} d x d t d y d \tau \\
& \quad+\left|Z_{s}\right| \iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} g\left(y, \tau, u_{0}\right) \psi_{1}(x, t, y, \tau) d x d t d y d \tau \tag{4.20}
\end{align*}
$$

which combined with $4.12-4.13$ concludes the proof.

The second term on the left hand side of 4.3) needs further investigations. In fact, for further needs, we would like to rewrite it using formula 3.8 of Proposition 3.10 as follows

$$
-\int_{\Omega_{T}}\left[\rho \chi_{Y_{m}} u_{1}(x, t), \frac{\partial \psi_{1}}{\partial \tau}(x, t)\right] d x d t=\int_{\Omega_{T}}\left[\rho \chi_{Y_{m}} \frac{\partial u_{1}}{\partial \tau}(x, t), \psi_{1}(x, t)\right] d x d t
$$

but this requires that $u_{1} \in \mathcal{W}$.
Proposition 4.2. The function $u_{1} \in L_{\mathrm{per}}^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)$ defined by 4.1) and Theorem 4.1 belongs to \mathcal{W}.

Proof. Let $\psi_{0}=\psi_{2}=0$ and $\psi_{1}=\varphi \otimes \psi$ in (4.3 , where $\varphi \in \mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right)$ and $\psi \in \mathcal{D}_{\text {per }}(\mathcal{T}) \otimes \mathcal{D}_{\rho}\left(Y_{m}\right)$. Using the arbitrariness of φ, we are led to

$$
\begin{aligned}
& -\left[\rho \chi_{Y_{m}} u_{1}(x, t), \frac{\partial \psi}{\partial \tau}(x, t)\right] d x d t=\iint_{Y \times \mathcal{T}} \chi_{Y_{m}} \rho \frac{\partial u_{1}}{\partial \tau} \psi d y d \tau \\
& =\iint_{Y \times \mathcal{T}} g\left(y, \tau, u_{0}\right) \psi d y d \tau \\
& \quad-\frac{1}{\left|Z_{s}\right|} \iiint_{Y_{m} \times Z_{s} \times \mathcal{T}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right) \nabla_{y} \psi d y d z d \tau
\end{aligned}
$$

But $g=\operatorname{div}_{y} G$, and the boundedness of the matrix A implies that the linear functional

$$
\begin{aligned}
\psi \mapsto & \iint_{Y \times \mathcal{T}} g\left(y, \tau, u_{0}\right) \psi d y d \tau \\
& -\frac{1}{\left|Z_{s}\right|} \iiint_{Y_{m} \times Z_{s} \times \mathcal{T}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right) \nabla_{y} \psi d y d z d \tau
\end{aligned}
$$

is continuous on $\mathcal{D}_{\text {per }}(\mathcal{T}) \otimes \mathcal{D}_{\rho}\left(Y_{m}\right)$ with the $L_{\text {per }}^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)$-norm. Thus can be extended to and element of $L_{\mathrm{per}}^{2}\left(\mathcal{T} ;\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}\right)$. In other words, $\chi_{Y_{m}} \rho \frac{\partial u_{1}}{\partial \tau} \in$ $L_{\text {per }}^{2}\left(\mathcal{T} ;\left(H_{\rho}^{1}\left(Y_{m}\right)\right)^{\prime}\right)$ and the proof is complete.

Therefore the global homogenized problem of 1.1 reads

$$
\begin{align*}
& \left(u_{0}, u_{1}, u_{2}\right) \in \mathbb{F}_{0}^{1}, \\
& \left(\int_{Y_{m}} \rho(y) d y\right) \int_{\Omega_{T}} \frac{\partial u_{0}}{\partial t} \psi_{0} d x d t+\int_{\Omega_{T}}\left[\rho \chi_{Y_{m}} \frac{\partial u_{1}}{\partial \tau}(x, t), \psi_{1}(x, t)\right] d x d t \\
& =-\iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} G\left(y, \tau, u_{0}\right) \cdot \nabla \psi_{0} d x d t d y d \tau \\
& \quad+\iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} g\left(y, \tau, u_{0}\right) \psi_{1} d x d t d y d \tau \tag{4.21}\\
& \quad-\frac{1}{\left|Z_{s}\right|} \iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right) \cdot\left(\nabla_{x} \psi_{0}\right. \\
& \left.\quad+\nabla_{y} \psi_{1}+\nabla_{z} \psi_{2}\right) d x d t d y d z d \tau \\
& \quad-\frac{1}{\left|Z_{s}\right|} \iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}}\left(\partial _ { r } G (y , \tau , u _ { 0 }) \cdot \left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right.\right. \\
& \left.\left.\quad+\nabla_{z} u_{2}\right)\right) \psi_{0} d x d t d y d z d \tau \quad \text { for all }\left(\psi_{0}, \psi_{1}, \psi_{2}\right) \in \mathfrak{F}_{0}^{\infty} .
\end{align*}
$$

The variational problem 4.21 is termed global since it contains the macroscopic homogenized problem and the local problem.
4.2. The macroscopic problem. We are now in a position to derive the equation describing the macroscopic behavior of the ε-problem (1.1). The variational problem 4.21 is equivalent to the system

$$
\begin{align*}
& \left(\int_{Y_{m}} \rho(y) d y\right) \int_{\Omega_{T}} \frac{\partial u_{0}}{\partial t} \psi_{0} d x d t \\
& =-\iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} G\left(y, \tau, u_{0}\right) \cdot \nabla \psi_{0} d x d t d y d \tau \\
& -\frac{1}{\left|Z_{s}\right|} \iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right. \tag{4.22}\\
& \left.+\nabla_{z} u_{2}\right) \cdot\left(\nabla_{x} \psi_{0}\right) d x d t d y d z d \tau \\
& -\frac{1}{\left|Z_{s}\right|} \iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}}\left(\partial _ { r } G (y , \tau , u _ { 0 }) \cdot \left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right.\right. \\
& \left.\left.+\nabla_{z} u_{2}\right)\right) \psi_{0} d x d t d y d z d \tau \quad \text { for all } \psi_{0} \in \mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right), \\
& \quad \int_{\Omega_{T}}\left[\rho \chi_{Y_{m}} \frac{\partial u_{1}}{\partial \tau}(x, t), \psi_{1}(x, t)\right] d x d t \\
& =\iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} g\left(y, \tau, u_{0}\right) \psi_{1} d x d t d y d \tau \\
& \quad-\frac{1}{\left|Z_{s}\right|} \iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right. \tag{4.23}\\
& \left.\quad+\nabla_{z} u_{2}\right) \cdot\left(\nabla_{y} \psi_{1}\right) d x d t d y d z d \tau \\
& \quad \text { for all } \psi_{1} \in \mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right) \otimes \mathcal{D}_{\text {per }}(\mathcal{T}) \otimes \mathcal{D}_{\rho}\left(Y_{m}\right),
\end{align*}
$$

and

$$
\begin{align*}
& \iiint \int_{\Omega_{T} \times Y_{m} \times Z_{s} \times \mathcal{T}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right) \cdot\left(\nabla_{z} \psi_{2}\right) d x d t d y d z d \tau=0 \\
& \quad \text { for all } \psi_{2} \in \mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right) \otimes \mathcal{D}_{\mathrm{per}}(\mathcal{T}) \otimes \mathcal{D}_{\mathrm{per}}\left(Y_{m}\right) \otimes \mathcal{D}_{\mathrm{per}}(Z) \tag{4.24}
\end{align*}
$$

We first study 4.24). We start with a few preliminaries. We define $H_{\#}^{1}\left(Z_{s}\right)$ to be the space of functions in $H^{1}\left(Z_{s}\right)$ assuming same values on the opposites faces of Z, and satisfying $\int_{Z_{s}} u(z) d z=0$. We remark that if $u \in H_{\mathrm{per}}^{1}(Z)$ with $\int_{Z_{s}} u(z) d z=0$ then its restriction to Z_{s} (which is still denoted by u in the sequel) belongs to $H_{\#}^{1}\left(Z_{s}\right)$. Vice-versa, the extension of a function $u \in H_{\#}^{1}\left(Z_{s}\right)$ belongs to $H_{\mathrm{per}}^{1}(Z)$ with $\int_{Z_{s}} u(z) d z=0$. We have the following result whose proof is obvious and therefore omitted.

Proposition 4.3. Let $1 \leq j \leq N$ and let $(y, \tau) \in \mathbb{R}^{N} \times \mathbb{R}$ be fixed. The following microscopic local problem admits a solution which is uniquely defined almost everywhere in Z_{s}.

$$
\begin{gather*}
\chi^{j}(y, \tau) \in H_{\#}^{1}\left(Z_{s}\right): \\
\int_{Z_{s}} A(y, \tau) \nabla_{z} \chi^{j} \cdot \nabla_{z} \omega d z=-\sum_{k=1}^{N} a_{k j} \int_{Z_{s}} \frac{\partial \omega}{\partial z_{k}} d z \tag{4.25}\\
\text { for all } \omega \in H_{\#}^{1}\left(Z_{s}\right)
\end{gather*}
$$

Back to 4.24, let $\psi_{2}=\varphi \otimes \omega$ with $\varphi \in \mathcal{D}\left(\Omega_{T}\right) \otimes \mathcal{D}_{\text {per }}(\mathcal{T}) \otimes \mathcal{D}_{\rho}\left(Y_{m}\right)$ and $\omega \in \mathcal{D}_{\text {per }}\left(Z_{s}\right)$. We get

$$
\iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} \varphi(x, t, y, \tau) d x d t\left[\int_{Z_{s}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}+\nabla_{z} u_{2}\right) \cdot \nabla_{z} \omega d z\right]=0
$$

which by the arbitrariness of φ gives, for fixed $(x, t) \in \Omega_{T}$ and fixed $(y, \tau) \in \mathbb{R}^{N} \times \mathbb{R}$,

$$
\begin{equation*}
\int_{Z_{s}} A(y, \tau) \nabla_{z} u_{2} \cdot \nabla_{z} \omega d z=-\int_{Z_{s}} A(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right) \cdot \nabla_{z} \omega d z \tag{4.26}
\end{equation*}
$$

By inspection of the microscopic problems 4.25 and 4.26 it appears by the uniqueness of the solution to 4.25 that for almost all (x, t, y, τ) fixed in $\Omega_{T} \times \mathbb{R}^{N} \times \mathbb{R}$

$$
\begin{equation*}
u_{2}(x, t, y, \tau)=\sum_{j=1}^{N}\left(\frac{\partial u_{0}}{\partial x_{j}}(x, t)+\frac{\partial u_{1}}{\partial y_{j}}(x, t, y, \tau)\right) \chi^{j}(y, \tau) \quad \text { a.e., in } Z_{s} . \tag{4.27}
\end{equation*}
$$

For further needs, we introduce a notation. We define the matrix $\nabla_{z} \chi$ by

$$
\left(\nabla_{z} \chi\right)_{i j}=\frac{\partial \chi^{i}}{\partial z_{j}} \quad(1 \leq i, j \leq N)
$$

Then we can write in short for almost all $(x, t, y, \tau, z) \in \Omega_{T} \times \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}^{N}$,

$$
\begin{equation*}
\nabla_{z} u_{2}=\nabla_{z} \chi \cdot\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right) \tag{4.28}
\end{equation*}
$$

We can now look at the mesoscopic scale. Let $(x, t) \in \Omega_{T}$ and $(r, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$ be freely fixed and let $\pi(x, t, r, \xi)$ be defined by the mesoscopic cell problem:

$$
\begin{align*}
& \pi_{1}(x, t, r, \xi) \in \mathcal{W} \\
& {\left[\rho \chi_{Y_{m}} \frac{\partial \pi_{1}}{\partial \tau}, \psi_{1}\right] d x d t-\frac{1}{\left|Z_{s}\right|} \iiint_{Y_{m} \times Z_{s} \times \mathcal{T}}\left[A\left(I+\nabla_{z} \chi\right)\right]\left(\xi+\nabla_{y} \pi_{1}\right) \cdot\left(\nabla_{y} \psi_{1}\right) d y d z d \tau} \\
& =\iint_{Y_{m} \times \mathcal{T}} g(y, \tau, r) \psi_{1} d y d \tau \quad \text { for all } \psi_{1} \in \mathcal{W} \tag{4.29}
\end{align*}
$$

Where I stands for the identity matrix. For the sake of simplicity, we put $\tilde{A}=$ $\int_{Z_{s}} A\left(I+\nabla_{z} \chi\right) d z$. The following Proposition addresses the question of existence and uniqueness of the solution to the variational problem 4.29).

Proposition 4.4. The following local variational problem admits a solution which is uniquely defined on $Y_{m} \times \tau$:

$$
\begin{gather*}
\pi_{1}(x, t, r, \xi) \in \mathcal{W} \\
{\left[\rho \chi_{Y_{m}} \frac{\partial \pi_{1}}{\partial \tau}, \psi_{1}\right]-\frac{1}{\left|Z_{s}\right|} \iint_{Y_{m} \times \mathcal{T}} \tilde{A}(y, \tau) \nabla_{y} \pi_{1} \cdot \nabla_{y} \psi_{1} d y d \tau} \\
=\iint_{Y_{m} \times \mathcal{T}} g(y, \tau, r) \psi_{1} d y d \tau+\frac{1}{\left|Z_{s}\right|} \iint_{Y_{m} \times \mathcal{T}} \tilde{A}(y, \tau) \xi \cdot \nabla_{y} \psi_{1} d y d \tau \tag{4.30}\\
\text { for all } \psi_{1} \in \mathcal{W} .
\end{gather*}
$$

Proof. It is clear from the boundedness of the bilinear form on the left hand side, and the boundedness of the linear form on the right hand side of 4.30 that 4.30 admits at least one solution in \mathcal{W}. As for the question of uniqueness, let π_{1}, θ_{1} be two solutions to 4.30 . Then $\zeta_{1}=\pi_{1}-\theta_{1}$ solves 4.30 with zero right hand side. This yields

$$
\left[\rho \chi_{Y_{m}} \frac{\partial \zeta_{1}}{\partial \tau}, \zeta_{1}\right]-\frac{1}{\left|Z_{s}\right|} \iint_{Y_{m} \times \mathcal{T}} \tilde{A}(y, \tau) \nabla_{y} \zeta_{1} \cdot \nabla_{y} \zeta_{1} d y d \tau=0
$$

But formula (3.8) of Proposition 3.10 implies

$$
\left[\rho \chi_{Y_{m}} \frac{\partial \zeta_{1}}{\partial \tau}, \zeta_{1}\right]=0
$$

We are left with

$$
\iint_{Y_{m} \times \mathcal{T}} \tilde{A}(y, \tau) \nabla_{y} \zeta_{1} \cdot \nabla_{y} \zeta_{1} d y d \tau=0
$$

which by the uniform ellipticity of the homogenized matrix \tilde{A} yields $\nabla_{y} \zeta_{1}=$ 0 a.e. in $Y_{m} \times \mathcal{T}$. Therefore there exists a function h depending only on τ such that $\xi_{1}(y, \tau)=h(\tau)$ for almost every $(y, \tau) \in Y_{m} \times \mathcal{T}$. But, since $\xi_{1} \in L_{\text {per }}^{2}\left(\mathcal{T} ; H_{\rho}^{1}\left(Y_{m}\right)\right)$, we have

$$
\begin{equation*}
0=\int_{Y_{m}} \rho(y) \xi_{1}(y, \tau) d y=h(\tau) \int_{Y_{m}} \rho(y) d y \quad \text { a.e. in } \mathcal{T} \tag{4.31}
\end{equation*}
$$

Thus $h=0$ since $\int_{Y_{m}} \rho(y) d y \neq 0$. Therefore $\xi_{1}=0$ almost every where in $Y_{m} \times$ \mathcal{T}.

In particular taking $r=u_{0}(x, t)$ and $\xi=\nabla u_{0}(x, t)$ with (x, t) arbitrarily chosen in Ω_{T} and then choosing in 4.29) the particular test functions $\psi_{1}=\varphi(x, t) v_{1}$, with $\varphi \in \mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right)$ and $v_{1} \in\left(\mathcal{D}_{\text {per }}(\mathcal{T}) \otimes \mathcal{D}_{\rho}\left(Y_{m}\right)\right)$, and finally comparing the resulting
equation with 4.23), it follows by means of Proposition 4.2 (bear in mind that $\mathcal{D}_{\text {per }}(\mathcal{T}) \otimes \mathcal{D}_{\rho}\left(Y_{m}\right)$ is dense in $\left.\mathcal{W}\right)$, that for almost every $(x, t) \in \Omega_{T}$ we have

$$
\begin{equation*}
u_{1}(x, t)=\pi_{1}\left(x, t, u_{0}(x, t), \nabla_{x} u_{0}(x, t)\right) \tag{4.32}
\end{equation*}
$$

almost everywhere on $Y_{m} \times \mathcal{T}$. The linearity of the problem 4.30 suggests a more flexible expression of its solution π_{1}. We formulate the following variational problems

$$
\left[\rho \chi_{Y_{m}} \frac{\partial \omega_{1}}{\partial \tau}, \psi\right]-\frac{1}{\left|\omega_{s}\right|} \iint_{Y_{m} \times \mathcal{T}} \tilde{A}(y, t, r) \in \mathcal{W} \nabla_{y} \omega_{1} \cdot \nabla_{y} \psi d y d \tau=\iint_{Y_{m} \times \mathcal{T}} g(y, \tau, r) \psi d y d \tau
$$

and

$$
\begin{gather*}
\theta(x, t)=\left(\theta_{i}(x, t)\right)_{1 \leq i \leq N} \in(\mathcal{W})^{N} \\
{\left[\rho \chi_{Y_{m}} \frac{\partial \theta_{i}}{\partial \tau}, \psi\right]-\frac{1}{\left|Z_{s}\right|} \iint_{Y_{m} \times \mathcal{T}} \tilde{A}(y, \tau) \nabla_{y} \theta_{i} \cdot \nabla_{y} \psi d y d \tau} \tag{4.34}\\
=\frac{1}{\left|Z_{s}\right|} \sum_{k=1}^{N} \iint_{Y_{m} \times \mathcal{T}} \tilde{A}_{i k}(y, \tau) \frac{\partial \psi}{\partial y_{k}} d y d \tau \quad \text { for all } \psi \in \mathcal{W}
\end{gather*}
$$

and leave to the reader to check that they admits solutions that are uniquely defined on $Y_{m} \times \tau$ and satisfy

$$
\begin{equation*}
\pi_{1}(x, t, r, \xi)(y, \tau)=\theta(x, t, y, \tau) \cdot \xi+\omega_{1}(x, t, y, \tau, r) \tag{4.35}
\end{equation*}
$$

Hence, the same lines of reasoning as above yields

$$
\begin{equation*}
u_{1}(x, t, y, \tau)=\theta(x, t, y, \tau) \cdot \nabla_{x} u_{0}(x, t)+\omega_{1}\left(x, t, y, \tau, u_{0}(x, t)\right) \tag{4.36}
\end{equation*}
$$

We are now in a position to formulate the strong form of the macroscopic variational problem 4.22 . Substituting in 4.22 the expression of $\nabla_{z} u_{2}$ obtained in (4.28), we have:

$$
\begin{align*}
& \left(\int_{Y_{m}} \rho(y) d y\right) \int_{\Omega_{T}} \frac{\partial u_{0}}{\partial t} \psi_{0} d x d t \\
& =-\iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} G\left(y, \tau, u_{0}\right) \cdot \nabla \psi_{0} d x d t d y d \tau \\
& \quad-\frac{1}{\left|Z_{s}\right|} \iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}} \tilde{A}(y, \tau)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right) \cdot\left(\nabla_{x} \psi_{0}\right) d x d t d y d \tau \tag{4.37}\\
& \quad-\frac{1}{\left|Z_{s}\right|} \iiint_{\Omega_{T} \times Y_{m} \times \mathcal{T}}\left[\partial _ { r } G (y , \tau , u _ { 0 }) \cdot \left((\int _ { Z _ { s } } (I + \nabla _ { z } \chi) d z) \cdot \left(\nabla_{x} u_{0}\right.\right.\right. \\
& \left.\left.\left.\quad+\nabla_{y} u_{1}\right)\right)\right] \psi_{0} d x d t d y d \tau \quad \text { for all } \psi_{0} \in \mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right)
\end{align*}
$$

We put $\tilde{B}(y, \tau)=\int_{Z_{s}}\left(I+\nabla_{z} \chi(y, \tau, z)\right) d z\left((y, \tau) \in \mathbb{R}^{N} \times \mathbb{R}\right)$ and use 4.36 to get

$$
\begin{aligned}
& \left(\int_{Y_{m}} \rho(y) d y\right) \int_{\Omega_{T}} \frac{\partial u_{0}}{\partial t} \psi_{0} d x d t \\
& =-\int_{\Omega_{T}}\left(\iint_{Y_{m} \times \mathcal{T}} \partial_{r} G\left(y, \tau, u_{0}\right) \cdot \nabla_{x} u_{0}\right) \psi_{0} d x d t d y d \tau \\
& \quad-\frac{1}{\left|Z_{s}\right|} \int_{\Omega_{T}} \hat{A} \nabla_{x} u_{0} \cdot \nabla_{x} \psi_{0} d x d t \\
& \quad-\frac{1}{\left|Z_{s}\right|} \int_{\Omega_{T}}\left(\iint_{Y_{m} \times \mathcal{T}} \tilde{A}(y, \tau) \nabla_{y} \omega_{1} d y d \tau\right) \cdot \nabla_{x} \psi_{0} d x d t \\
& \quad-\frac{1}{\left|Z_{s}\right|} \int_{\Omega_{T}}\left\{\left(\iint_{Y_{m} \times \mathcal{T}} \partial_{r} G\left(y, \tau, u_{0}\right)\left(\tilde{B}(y, \tau)\left(I+\nabla_{y} \theta\right)\right) d y d \tau\right)\right. \\
& \left.\quad \cdot \nabla_{x} u_{0}\right\} \psi_{0} d x d t \\
& \quad-\frac{1}{\left|Z_{s}\right|} \int_{\Omega_{T}}\left(\iint_{Y_{m} \times \mathcal{T}} \partial_{r} G\left(y, \tau, u_{0}\right)\left(\tilde{B}(y, \tau)\left(I+\nabla_{y} \theta\right) \cdot \nabla_{y} \omega_{1}\right) d y d \tau\right) \\
& \quad \cdot \psi_{0} d x d t \text { for all } \psi_{0} \in \mathcal{C}_{0}^{\infty}\left(\Omega_{T}\right)
\end{aligned}
$$

where

$$
\hat{A}(x, t)=\iint_{Y_{m} \times \mathcal{T}} \tilde{A}(y, \tau)\left(I+\nabla_{y} \theta(x, t, y, \tau)\right) d y d \tau \quad\left((x, t) \in \Omega_{T}\right)
$$

Setting

$$
\begin{aligned}
& L_{1}(x, t, r)=\iint_{Y_{m} \times \mathcal{T}} \tilde{A}(y, \tau) \nabla_{y} \omega_{1}(x, t, y, \tau, r) d y d \tau \\
& L_{2}(x, t, r) \\
& =\iint_{Y_{m} \times \mathcal{T}}\left[\left|Z_{s}\right| \partial_{r} G(y, \tau, r)+\partial_{r} G(y, \tau, r)\left(\tilde{B}(y, \tau)\left(I+\nabla_{y} \theta(x, t, y, \tau)\right)\right)\right] d y d \tau \\
& L_{3}(x, t, r) \\
& =\iint_{Y_{m} \times \mathcal{T}} \partial_{r} G(y, \tau, r)\left(\tilde{B}(y, \tau)\left(I+\nabla_{y} \theta(x, t, y, \tau)\right) \cdot \nabla_{y} \omega_{1}(x, t, y, \tau, r)\right) d y d \tau
\end{aligned}
$$

We are led to the following result.
Theorem 4.5. The function u_{0} determined by 4.1) and solution to the variational problem 4.22, is the unique solution to the boundary value problem

$$
\begin{align*}
&\left|Z_{s}\right|\left(\int_{Y_{m}} \rho(y) d y\right) \frac{\partial u_{0}}{\partial t}=\operatorname{div}\left(\hat{A}(x, t) \nabla u_{0}\right)+\operatorname{div} L_{1}\left(x, t, u_{0}\right) \\
& \quad-L_{2}\left(x, t, u_{0}\right) \cdot \nabla u_{0}-L_{3}\left(x, t, u_{0}\right) \quad \text { in } \Omega_{T} \tag{4.39}\\
& u_{0}=0 \quad \text { on } \partial \Omega \times(0, T) \\
& u_{0}(x, 0)=u^{0}(x) \quad \text { in } \Omega
\end{align*}
$$

Proof. The claim that u_{0} solves the problem 4.39 has been proved above and the uniqueness of the solution to 4.39) follows from the fact that the functions $L_{i}(x, t, \cdot)(1 \leq i \leq N)$ are Lipschitz. This can be proved by mimicking the reasoning in (3).

We can now formulate the homogenization result for problem 1.1).

Theorem 4.6. Assuming that the hypotheses (A1)-(A4) are in place and letting $u_{\varepsilon}(\varepsilon>0)$ be the unique solution to 1.1), we have, as $\varepsilon \rightarrow 0$,

$$
u_{\varepsilon} \rightarrow u_{0} \quad \text { in } L^{2}\left(\Omega_{T}\right)
$$

where $u_{0} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ is the unique solution to 4.39).

References

[1] E. Acerbi, V. Chiadò Piat, G. Dal Maso, D. Percivale; An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal. 18 (1992) 481-496.
[2] G. Allaire, M. Briane; Multiscale convergence and reiterated homogenization, Proc. R. Soc. Edingurgh Sect. A 126 (1996), 297-342.
[3] G. Allaire, A. Piatnitski; Homogenization of nonlinear reaction-diffusion equation with large reaction term. Ann. Univ. Ferrara 56 (2010), 141-161.
[4] H. W. Alt, S. Luckhaus; Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311-341.
[5] M. Amar, A DallAglio, F. Paronetto; Homogenization of forward -backward parabolic equations, Asymptot. Anal., 42 (2005), 123-132.
[6] B. Amaziane, M. Goncharenko, L. Pankratov; Homogenization of a convection-diffusion equation in perforated domains with a weak adsorption, Z. angew. Math. Phys., 58 (2007), 592-611.
[7] P. Donato, A. Nabil; Homogenization of semilinear parabolic equations in perforated domains, Chinese Ann. Math. Ser. B, 25 (2004), 143-156.
[8] H. Douanla; Two-scale convergence of elliptic spectral problems with indefinite density function in perforated domains, Asymptot. Anal., 81 (2013), 251-272.
[9] H. Douanla, G. Nguetseng, J. L. Woukeng; Incompressible viscous Newtonian flow in a fissured medium of general deterministic type, J. Math. Sci. N. Y. 191 (2013), 214-242.
[10] U. Hornung R. E. Showalter; Diffusion models for fractured media, J. Math. Anal. Appl. 147 (1990), 69-80.
[11] M. E. Jaroudi; Homogenization of an incompressible viscous flow in a porous medium with double porosity, Z. Angew. Math. Phys., 61 (2010), 1053-1083.
[12] W. Jäger, M. Neuss-Radu, T. A. Shaposhnikova; Homogenization limit for the diffusion equation with nonlinear flux condition on the boundary of very thin holes periodically distributed in a domain, in case of a critical size, Doklady Mathematics, 82 (2010), 736-740.
[13] A. K. Nandakumaran, M. Rajesh; Homogenization of a parabolic equation in perforated domain with Dirichlet boundary condition, Proc. Indian Acad. Sci. (Math. Sci.), 112 (2002) ,425-439.
[14] A. K. Nandakumaran, M. Rajesh; Homogenization of a parabolic equation in perforated domain with Neumann boundary condition, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 195-207.
[15] G. Nguetseng J. L. Woukeng; Σ-convergence of nonlinear parabolic operators, Nonlin. Anal. TMA, 66 (2007), 968-1004.
[16] A. Pankov, T. E. Pankova; Nonlinear Evolution equations with non-invertible operator coefficient at the derivative, Dokl. Akad. Nauk Ukrainy, 9 (1993), 18-20 (in Russian).
[17] F. Paronetto; Homogenization of degenerate elliptic-parabolic equations, Asymptot. Anal., 37 (2004), 21-56.
[18] A. Piatnitski, V. Rybalko; Homogenization of boundary value problems for monotone operators in perforated domains with rapidly oscillating boundary conditions of fourier type, J. Math. Sci., 177 (2011), 109-140.
[19] M. Sango J. L. Woukeng; Stochastic Sigma-convergence and applications. Dyn. PDE, 8 (2011), 261-310.
[20] N. Svanstedt, J. L. Woukeng; Periodic homogenization of strongly nonlinear reactiondiffusion equations with large reaction terms, Appl. Anal., 92 (2013), 1357-1378.
[21] J. L. Woukeng; Reiterated homogenization of nonlinear pseudo monotone degenerate parabolic operators, Commun. Math. Anal., 9 (2010), 98-129.
[22] J. L. Woukeng; Σ-convergence and reiterated homogenization of nonlinear parabolic operators, Commun. Pure Appl. Anal., 9 (2010), 1753-1789.
[23] J. L. Woukeng; Multiscale nonlocal flow in a fractured porous medium, Ann Univ Ferrara, 61 (2015), 173-200.

Hermann Douanla
Department of Mathematics, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
E-mail address: hdouanla@gmail.com
Jean Louis Woukeng
Department of Mathematics and Computer Science, University of Dschang, P.O. Box
67, Dschang, Cameroon
E-mail address: jwoukeng@yahoo.fr

[^0]: 2010 Mathematics Subject Classification. 35B27, 76M50.
 Key words and phrases. Fractured porous medium; homogenization; multi-scale convergence; reaction-diffusion equation with large reaction term.
 (C) 2015 Texas State University - San Marcos.

 Submitted June 5, 2015. Published September 29, 2015.

