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HOMOGENIZATION OF REACTION-DIFFUSION EQUATIONS
IN FRACTURED POROUS MEDIA

HERMANN DOUANLA, JEAN LOUIS WOUKENG

Abstract. The article studies the homogenization of reaction-diffusion equa-
tions with large reaction terms in a multi-scale porous medium. We assume

that the fractures and pores are equidistributed and that the coefficients of the

equations are periodic. Using the multi-scale convergence method, we derive
a homogenization result whose limit problem is defined on a fixed domain and

is of convection-diffusion-reaction type.

1. Introduction

Our aim is to investigate, by means of mathematical homogenization techniques,
the diffusion phenomenon in a multi-scale porous medium. The medium consists
of a connected network made of pores and fractures which are equidistributed, and
the diffusion process is modelled by a semilinear reaction-diffusion equation with a
large reaction term. To be more precise, we consider a diffusion process modelled
by the boundary-value problem
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in QεT = Ωε × (0, T ),

A
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)
∇uε · ν = 0 on (∂Ωε \ ∂Ω)× (0, T ),

uε = 0 on (∂Ωε ∩ ∂Ω)× (0, T ),

uε(x, 0) = u0(x) in Ωε,

(1.1)

where T > 0 is a fixed real number representing the final time of the process, Ωε

is a fractured porous domain in which the process occurred and whose structure
follows in the lines below (see [23]).

Let Ω be a bounded domain in RN (N ≥ 3) locally located on one side of its
Lipschitz continuous boundary ∂Ω. Let Y = (0, 1)N be the unit cell in RN and put
Y = Y c ∪ Ym where Ym and Yc are two disjoint open connected sets representing
the local structure of the porous matrix and the cracks (fissures), respectively. We
assume that a periodic repetition of Ym in RN is connected and has a Lipschitz
continuous boundary. Next, we set Ym = Zs∪Zp where Zp and Zs are two disjoint
open connected sets representing the local structure of the solid part of the porous
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matrix and the pores, respectively. We assume that Zp and Zs have strictly positive
Lebesgue measures and that Zs has a Lipschitz continuous boundary. The fractured
porous medium Ωε is defined as follows. For ε > 0, we set

Gm = ∪k∈ZN (k + Ym) and Gc = RN \Gm,
and

Gs = ∪k∈ZN (k + Zs) and Gp = Gm \Gs,
and we define the pores space Ωεp = Ω ∩ ε2Gp (this include the pores crossing
∂Ω), the cracks space Ωεc = Ω ∩ εGc (this includes the cracks crossing ∂Ω) and the
fractured porous medium as

Ωε = Ω \ (Ωεp ∪ Ωεc).

We assume that both Ωε and Ωεp ∪ Ωεc are connected.
This being so, the ε-problem (1.1) is constrained as follows:
(A1) (Uniform ellipticity) The matrix A(y, τ) = (aij(y, τ))1≤i,j≤N in the space

(L∞(RN+1))N×N is real, symmetric, positive definite, i.e, there exists Λ > 0
such that

‖aij‖L∞(RN+1) ≤ Λ, 1 ≤ i, j ≤ N,
N∑
ij=1

aij(y, τ)ζiζj ≥ Λ−1|ζ|2 ∀(y, τ) ∈ RN+1, ζ ∈ RN .

(A2) (Lipschitz continuity) The function g : RN × R × R → R satisfies the
following hypotheses. There exists C > 0 such that for any (y, τ) ∈ RN+1

and u ∈ R,

|∂ug(y, τ, u)| ≤ C
|∂ug(y, τ, u1)− ∂ug(y, τ, u2)| ≤ C|u1 − u2|(1 + |u1|+ |u2|)−1.

(A3) g(y, τ, 0) = 0 for any (y, τ) ∈ RN+1.
(A4) (Periodicity) We assume that:

(i) g(·, ·, u) ∈ Cper(Y×T ) (T = (0, 1)) for any u ∈ R with
∫
Y
g(y, τ, u) dy =

0 for all (τ, u) ∈ T × R;
(ii) the functions aij lie in L2

per(Y × T ) for all 1 ≤ i, j ≤ N ;
(iii) the density function ρ belongs to Cper(Y ) and satisfies Λ−1 ≤ ρ(y) ≤ Λ

for all y ∈ RN .

Remark 1.1. As a direct consequence of the periodicity and the zero mean value
hypothesis for the function g (see precisely the first item of the hypothesis (A4)
above), there exists a unique R(·, ·, u) ∈ Cper(Y ×T ) such that ∆yR(·, ·, u) = g(·, ·, u)
and

∫
Y
R(y, τ, u) dy = 0 for all τ , u ∈ R. Moreover R(·, ·, u) is at least twice

differentiable with respect to y. Furthermore, on letting G = ∇yR it follows from
A2 and (A3) that

|G(y, τ, u)| ≤ C|u|, |∂uG(y, τ, u)| ≤ C, (1.2)

|∂uG(y, τ, u1)− ∂uG(y, τ, u2)| ≤ C|u1 − u2|(1 + |u1|+ |u2|)−1. (1.3)

The motivation for problem (1.1) arises from its applicability in the area of
modeling of flow and transport in fractured porous media related to environmental
and energy problems. In order to overcome difficulties encountered in numerical
simulations in multi-scale porous media, we need to upscale such models, that is to
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find equivalent models by letting ε → 0. This leads to model problems posed on
a fixed domain Q = Ω× (0, T ) with suitable boundary conditions, hence relatively
easy to handle numerically.

Problem (1.1) can also be viewed as modelling the flow of a single phase com-
pressible fluid in a fractured porous medium that obey nonlinear Darcy law. In that
case, uε is the density of the fluid, ρ(y) is the porosity of the medium while A(y, τ)
is the permeability of the medium. As the scale (size) of the fractures and that
of the pores are separated (ratio of order ε), we use the multi-scale (or reiterated
two-scale) convergence method in the framework introduced in [20] to upscale the
ε-problem.

The homogenization of parabolic equations in perforated has been widely in-
vestigated in the literature. We quote some works similar to ours. In [18] the
homogenization of parabolic monotone operator in periodically perforated domain
is considered. The problem they consider is degenerate and they use the two-scale
convergence method. In [13, 14], the authors study the homogenization of a family
of parabolic equations

∂

∂t
b
(x
ε
, uε

)
− div a(uε,∇uε) = f

in periodically perforated domain Ωε with Dirichlet boundary conditions and Neu-
man boundary conditions, respectively. In [6] is considered the upscaling of a
convection-diffusion equation in a perforated domain made of holes periodically
distributed. The homogenization limit for the diffusion equation with nonlinear
flux condition on the boundary of a periodically perforated domain is studied in
[12]. In [7] the homogenization of a semilinear parabolic equation in a periodi-
cally perforated domain is considered. In [10] the authors describe some diffusion
models for fractured media. We also mention [11] where the author used the Γ-
convergence method associated with multi-scale convergence notions to get a limit
law of an incompressible viscous flow in a porous medium with double porosity.

Taking into account the preceding review which is far from being exhaustive, we
observe that the study of a problem like (1.1) is relevant due to many reasons. For
example, contrarily to the problems studied in [7, 13, 14] where the perforations
are on one scale with time independent coefficients, our problem is set up in a
fractured porous media (perforation on two scale) and deals with time dependent
coefficients with the time variable oscillating at a different speed from the space
variable. The perforation on two scale and the oscillations at different speeds drive
our problem into a non-standard framework of reiterated homogenization, which,
combined with the large nonlinear oscillating reaction term makes the proofs in
this paper quite involved. When passing to the limit (as ε→ 0), the large reaction
term in the ε-problem generates a convection term and we get a limit problem of
convection-diffusion-reaction type. The main result of the paper states as follows.

Theorem 1.2. Assume that the hypotheses (A1)–(A4) are satisfied and let uε (ε >
0) be the unique solution to (1.1). Then as ε→ 0 we have

uε → u0 in L2(ΩT ),
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where u0 ∈ L2(0, T ;H1
0 (Ω)) is the unique solution to

|Zs|
(∫

Ym

ρ(y) dy
)∂u0

∂t
= div

(
Â(x, t)∇u0

)
+ div L1(x, t, u0)

− L2(x, t, u0) · ∇u0 − L3(x, t, u0) in ΩT
u0 = 0 on ∂Ω× (0, T )

u0(x, 0) = u0(x) in Ω.

The coefficients and operators in the theorem above are defined in Section 4.
This article is organized as follows. A priori estimates and compactness results are
formulated and proved in Section 2. In Section 3, we recall the concept of multi-
scale convergence and prove some preliminary results. Finally, Section 4 deals with
the passage to the limit and the derivation of the macroscopic model for problem
(1.1).

2. A priori estimates and compactness result

Throughout, C denotes a generic constant independent of ε that can change
from one line to the next, the centered dot stands for the Euclidean scalar product
in RN while the absolute value or modulus is denoted by | · |.

With the connectedness of Ωε in mind, the space

Vε = {u ∈ H1(Ωε) : u = 0 on ∂Ω ∩ ∂Ωε} (2.1)

is Hilbertian when endowed with the gradient norm,

‖u‖Vε = ‖∇u‖L2(Ωε) (u ∈ Vε). (2.2)

Therefore, the Lipschitzity of the function g(y, τ, ·) and the positivity assumption
on the density function ρ readily imply (see e.g., [4, 17]) the existence of a unique
solution uε ∈ L2(0, T ;Vε) ∩ C(0, T ;L2(Ωε)) to the problem (1.1). Moreover the
following uniform estimates hold.

Lemma 2.1. Assume that the hypotheses (A1)–(A4) are satisfied. Then the fol-
lowing estimates hold:

sup
0≤t≤T

‖uε(t)‖2L2(Ωε) ≤ C, (2.3)∫ T

0

‖∇uε(t)‖2L2(Ωε) dt ≤ C, (2.4)

‖ρε ∂uε
∂t
‖L2(0,T ;V ′ε ) ≤ C, (2.5)

where C is a positive constant which does not depend on ε.

Proof. Let t ∈ (0, T ]. Multiplying the first equation in (1.1) by uε and integrating
over Ωε × (0, t) yields:

‖(ρε)1/2uε(t)‖2L2(Ωε) − ‖(ρ
ε)

1
2u0‖2L2(Ωε) + 2

∫ t

0

∫
Ωε
Aε|∇uε(s)|2 dx ds

= 2
∫ t

0

∫
Ωε

1
ε
gε(uε(s))uε(s) dx ds.

(2.6)

But Remark 1.1 readily implies
1
ε
g
(x
ε
,
t

ε2
, uε
)

= divG
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t
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, uε
)
− ∂rG

(x
ε
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t

ε2
, uε
)
· ∇uε,
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which combined with (2.6) leads to

‖(ρε)1/2uε(t)‖2L2(Ωε) + 2
∫ t

0

∫
Ωε
Aε|∇uε(s)|2 dx ds

≤ ‖(ρε)1/2u0‖2L2(Ωε) − 2
∫ t

0

∫
Ωε
Gε(uε) · ∇uε dx ds

− 2
∫ t

0

∫
Ωε

(∂rGε(uε) · ∇uε)uε dx ds,

where Gε(uε) = G
(
x
ε ,

t
ε2 , uε

)
and ∂rG

ε(uε) = ∂
∂r
G
(
x
ε ,

t
ε2 , uε

)
. Using (1.2), the

ellipticity of the matrix A and the boundedness of the function ρ, we have

Λ−1‖uε(t)‖2L2(Ωε) + 2Λ−1

∫ t

0

∫
Ωε
|∇uε(s)|2 dx ds

≤ Λ‖u0‖2L2(Ω) + 4C
∫ t

0

∫
Ωε
|uε||∇uε| dx ds.

(2.7)

For any real number δ > 0, we have by Young’s inequality,

4C
∫ t

0

∫
Ωε
|uε||∇uε| dx ds ≤ 4Cδ

∫ t

0

∫
Ωε
|uε|2 dx ds+

C

δ

∫ t

0

∫
Ωε
|∇uε|2 dx ds.

Choosing δ > 0 such that 1
Λ = C

δ , the inequality (2.7) yields:

Λ−1‖uε(t)‖2L2(Ωε) + Λ−1

∫ t

0

‖∇uε(s)‖2L2(Ωε) dx ds

≤ Λ‖u0‖2L2(Ω) + 4Cδ
∫ t

0

‖uε(s)‖2L2(Ωε) dx ds,

which by means of the Gronwall’s inequality first leads to (2.3), then to (2.4).
As for (2.5), it follows from (1.1) that

‖ρε ∂uε
∂t
‖2L2(0,T ;V ′ε ) ≤ C

∫ T

0

‖ div Aε∇uε‖2V ′ε dt+ C

∫ T

0

‖1
ε
gε(uε)‖2V ′ε dt. (2.8)

On the one hand, (2.4) and the boundedness of the matrix A imply∫ T

0

‖ div Aε∇uε‖V ′ε dt ≤ C. (2.9)

On the other hand, we have

‖1
ε
gε(uε)‖V ′ε = sup

ϕ∈Vε,‖ϕ‖Vε=1

∣∣ ∫
Ωε
Gε(uε) · ∇ϕdx+

∫
Ωε

(∂rGε(uε) · ∇uε)ϕdx
∣∣,

which by means of the Poincaré’s inequality and (1.2) yields

‖1
ε
gε(uε)‖V ′ε ≤ C sup

ϕ∈Vε,‖ϕ‖Vε=1

(
‖uε(t)‖L2(Ωε) + ‖∇uε(t)‖L2(Ωε)‖∇ϕ‖L2(Ωε)

)
≤ C

(
‖uε(t)‖L2(Ωε) + ‖∇uε(t)‖L2(Ωε)

)
t ∈ (0, T ).

Therefore, using (2.3)-(2.4) and the Hölder’s inequality we get∫ T

0

‖1
ε
gε(uε)‖2V ′εdt ≤ C. (2.10)

We combine (2.8), (2.9) and (2.10) to get (2.5). �
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The next result relies on the following classical extension property (see e.g., [1]).

Proposition 2.2. For any ε > 0, there exists a bounded linear operator Pε from
Vε into H1

0 (Ω) such that for any u ∈ Vε we have

Pεu = u in Ωε, (2.11)

‖Pεu‖H1
0 (Ω) ≤ C‖u‖Vε , (2.12)

where C is a positive constant independent of ε.

For a function u ∈ L2(0, T ;Vε) we define its extension Pεu as follows

(Pεu)(t) = Pε(u(t)) a.e. t ∈ (0, T ), (2.13)

and Pεu ∈ L2(0, T ;H1
0 (Ω)).

Bearing this in mind and owing to Proposition 2.2 (see precisely (2.12)), we have
the following corollary.

Corollary 2.3. Under the hypotheses of Lemma 2.1, we have the uniform estimate

‖Pεuε‖L2(0,T ;H1
0 (Ω)) ≤ C (2.14)

where C > 0 is a positive constant independent of ε and where Pε is the extension
operator defined in Proposition 2.1.

The next estimate requires some preliminaries. We define Rε : H1
0 (Ω) → Vε by

Rεu = u|Ωε for u ∈ H1
0 (Ω) (where u|Ωε denotes the restriction of u to Ωε). Then,

Rε is continuous since

‖Rεu‖Vε ≤ ‖u‖H1
0 (Ω) for u ∈ H1

0 (Ω).

We recall that the adjoint R∗ε : V ′ε → H−1(Ω) of Rε satisfies, for all v ∈ V ′ε and
ψ ∈ H1

0 (Ω),
〈R∗εv, ϕ〉 = 〈v,Rεϕ〉,

where the brackets on the left hand side denote the duality pairing between the
spaces H−1(Ω) and H1

0 (Ω) while those on the right hand side denote the duality
pairing between V ′ε and Vε. It is straightforward that

R∗εu = χΩεu for u ∈ L2(Ωε × (0, T )). (2.15)

Indeed, for any ϕ ∈ L2(0, T ;H1
0 (Ω)), we have

〈R∗εu, ϕ〉 = 〈u,Rεϕ〉 =
∫ T

0

∫
Ωε
u (ϕ|Ωε)dx dt

=
∫ T

0

∫
Ω

χΩε(uϕ)dx dt =
∫ T

0

∫
Ω

(χΩε u)ϕdx dt.

It is worth noticing that combining (2.15) and Proposition 2.2 (see precisely (2.11)
therein), we have

R∗εu = χΩε(Pεu) for u ∈ L2(0, T ;Vε). (2.16)

Likewise, one can easily check that, for any u ∈ L2(0, T ;Vε) with ∂u
∂t ∈ L

2(0, T ;V ′ε ),
we have

R∗ε
(∂uε
∂t

)
=
∂(R∗εuε)

∂t
. (2.17)

We are now in a position to formulate another estimate.
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Lemma 2.4. There exists a constant C independent of ε such that

‖(ρεχΩε)
∂(Pεuε)
∂t

‖L2(0,T ;H−1(Ω)) ≤ C. (2.18)

Proof. We first prove that there exists a constant C independent of ε such that

‖R∗ε
(
ρε
∂uε
∂t

)
‖L2(0,T ;H−1(Ω)) ≤ C. (2.19)

To do this, let ϕ be arbitrarily fixed in L2(0, T ;H1
0 (Ω)). We have∣∣〈R∗ε(ρε ∂uε∂t ), ϕ〉∣∣ =

∣∣〈ρε ∂uε
∂t

,Rεϕ
〉∣∣

=
∣∣ ∫ T

0

〈
ρε
∂uε
∂t

,Rεϕ
〉
V ′ε ,Vε

dt
∣∣

≤ ‖ρε ∂uε
∂t
‖L2(0,T,V ′ε )‖Rεϕ‖L2(0,T ;Vε)

≤ C‖Rεϕ‖L2(0,T ;Vε) (see (2.5))

≤ C‖ϕ‖L2(0,T ;H1
0 (Ω)).

Having done this, it remains to prove that

R∗ε
(
ρε
∂uε
∂t

)
= ρεχΩε

∂(Pεuε)
∂t

. (2.20)

But with (2.16) and (2.17) in mind, it is easy to see that

R∗ε
(
ρε
∂uε
∂t

)
= ρεR∗ε

(∂uε
∂t

)
= ρε

∂(R∗εuε)
∂t

= ρε
∂(χΩεPεuε)

∂t
= ρεχΩε

∂(Pεuε)
∂t

,

and the proof is complete. �

The following compactness result will be the starting point of our homogenization
process.

Theorem 2.5. Assume that the sequence (ρεχΩε)ε>0 weakly ∗-converges in L∞(Ω),
as ε→ 0, to some real function that is different from zero almost everywhere in Ω.
Then the sequence (Pεuε)ε>0 is relatively compact in L2(0, T ;L2(Ω)).

Proof. This is a direct consequence of the convergence hypothesis on the sequence
(ρεχΩε)ε>0, Corollary 2.3 and Lemma 2.4, by using [5, Theorem 2.3 and Remark
2.5]. �

3. Multi-scale convergence and preliminary convergence results

We recall the definition and some compactness results of the multi-scale con-
vergence theory [2, 21, 22]. We also introduce our functional setting and adapt
some results of the multi-scale convergence method to our framework. We fi-
nally prove some preliminary convergence results needed in the homogenization
process of the problem under consideration. We introduce the following notations:
ΩT = Ω× (0, T ) and T = (0, 1).



8 H. DOUANLA, J. L. WOUKENG EJDE-2015/253

3.1. Multi-scale convergence method.

Definition 3.1. (i) A sequence (uε)ε>0 ⊂ L2(ΩT ) is said to weakly multi-scale
converge towards u0 ∈ L2(ΩT × Y ×Z ×T ), and denoted uε

w−ms−−−−→ u0 in L2(ΩT ),
if as ε→ 0,∫

ΩT

uε(x, t)ϕ(x, t,
x

ε
,
x

ε2
,
t

ε2
) dx dt

→
∫∫∫∫

ΩT×Y×Z×T
u0(x, t, y, z, τ)ϕ(x, t, y, z, τ) dx dt dy dz dτ

(3.1)

for all ϕ ∈ L2(ΩT ; Cper(Y × Z × T )).
(ii) A sequence (uε)ε>0 ⊂ L2(ΩT ) is said to strongly multi-scale converge towards

u0 ∈ L2(ΩT × Y × Z × T ), and denoted uε
s−ms−−−−→ u0 in L2(ΩT ), if it multi scale

converges weakly to u0 in L2(ΩT × Y × Z × T ) and further satisfies

‖uε‖L2(ΩT ) → ‖u0‖L2(ΩT×Y×Z×T ) as ε→ 0. (3.2)

Remark 3.2. (i) Let u ∈ L2(ΩT ; Cper(Y × Z × T )) and define uε : ΩT → R by
uε(x, t) = u(x, t, xε ,

x
ε2 ,

t
ε2 ), for ε > 0 and (x, t) ∈ ΩT . Then uε

w−ms−−−−→ u and

uε
s−ms−−−−→ u in L2(ΩT ) as ε → 0. We also have uε → ũ in L2(ΩT ) -weak as ε → 0,

with
ũ(x, t) =

∫∫∫
Y×Z×T

u(·, ·, y, z, τ) dy dz dτ.

(ii) If a sequence (uε)ε>0 ⊂ L2(ΩT ) multi-scale converges weakly in L2(ΩT ) to
some u0 ∈ L2(ΩT ×Y ×Z ×T ), in the sense of Definition 3.1, then (3.1) still holds
for ϕ ∈ C(ΩT ;L∞per(Y × Z × T )).

(iii) Let u ∈ C(ΩT ;L∞per(Y × Z × T )) and define uε like in (i) above. Then

uε
w−ms−−−−→ u in L2(ΩT ) as ε→ 0.

The following two compactness results are the cornerstones of the multi-scale
convergence theory.

Theorem 3.3. Any bounded sequence in L2(ΩT ) admits a weakly multi-scale con-
vergent subsequence.

Let E be an ordinary sequence of real number converging to zero with ε.

Theorem 3.4. Let (uε)ε∈E be a bounded sequence in L2(0, T ;H1
0 (Ω)). There exist

a subsequence E′ of E and a triplet (u0, u1, u2) in the space

L2(0, T ;H1
0 (Ω))× L2(ΩT ;L2(T ;H1

per(Y )))× L2(ΩT ;L2(Y × T ;H1
per(Z)))

such that, as E′ 3 ε→ 0,

uε → u0 in L2(0, T ;H1
0 (Ω))-weak (3.3)

∂uε
∂xi

w−ms−−−−→ ∂u0

∂xi
+
∂u1

∂yi
+
∂u2

∂zi
in L2(ΩT ) (1 ≤ j ≤ N). (3.4)

We need to tailor Theorem 3.4 according to our needs. The functions u1 and u2

in Theorem 3.4 are unique up to additive function of variables x, t, τ and x, t, y, τ ,
respectively. It is crucial to fix the choice of u1. We introduce the space

H1
ρ(Ym) = {u ∈ H1

per(Y ) :
∫
Ym

ρ(y)u(y) dy = 0},
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which is a closed subspace of H1
per(Y ) since it is the kernel of the bounded linear

functional u 7→
∫
Ym

ρ(y)u(y) dy defined on H1
per(Y ). The version of Theorem 3.4

that will be used in the sequel formulates as follows.

Theorem 3.5. Let (uε)ε∈E be a bounded sequence in L2(0, T ;H1
0 (Ω)). There exist

a subsequence E′ of E and a triplet (u0, u1, u2) in the space

L2(0, T ;H1
0 (Ω))× L2(ΩT ;L2(T ;H1

ρ(Ym)))× L2(ΩT ;L2(Y × T ;H1
per(Z)))

such that, as E′ 3 ε→ 0,

uε → u0 in L2(0, T ;H1
0 (Ω))-weak (3.5)

∂uε
∂xi

w−ms−−−−→ ∂u0

∂xi
+
∂u1

∂yi
+
∂u2

∂zi
in L2(ΩT ) (1 ≤ j ≤ N). (3.6)

The proof of the above theorem is similar to that of [8, Theorem 2.5], and is
omitted. The following weak-strong convergence result (see [19, Theorem 6] for its
proof) and its corollary are worth recalling since they will be used in the sequel.

Theorem 3.6. Let (uε)ε∈E ⊂ L2(ΩT ) and (vε)ε∈E ⊂ L2(ΩT ) be two sequences such
that uε

w−ms−−−−→ u0 and vε
s−ms−−−−→ v0 in L2(ΩT ) with u0, v0 ∈ L2(ΩT × Y × Z × T ).

Then uεvε
w−ms−−−−→ u0v0 in L1(ΩT ).

Corollary 3.7. Let (uε)ε∈E ⊂ L2(ΩT ) and (vε)ε∈E ⊂ L2(ΩT ) ∩ L∞(ΩT ) be two
sequences such that uε

w−ms−−−−→ u0 and vε
s−ms−−−−→ v0 in L2(ΩT ) with u0, v0 ∈ L2(ΩT ×

Y ×Z×T ). Assume further that (vε)ε∈E is bounded in L∞(ΩT ). Then uεvε
w−ms−−−−→

u0v0 in L2(ΩT ).

3.2. Preliminary convergence results. We start this subsection by studying the
limiting behavior of the sequence (χΩε)ε>0 as ε → 0. To do this, we first express
the characteristic function of Ωε in Ω, in terms of those of Ym and Zs. Denoting by
χεc and χεp the characteristic functions of Ωεc and Ωεp, respectively, it appears that

χεc(x) = χGc
(x
ε

)
= χYc

(x
ε

)
(by Y -periodicity)

χεp(x) =
(
1− χGc

(x
ε

))
χGp

( x
ε2

)
=
(
1− χYc

(x
ε

))
χZp

( x
ε2

)
(by Y and Z-periodicity).

Hence

χΩε(x) = 1− (χεc(x) + χεp(x)) (x ∈ Ω)

= 1−
[
χYc(

x

ε
) +

(
1− χYc(

x

ε
)
)
χZp

( x
ε2

)]
=
(
1− χYc(

x

ε
)
)(

1− χZp
( x
ε2

))
= χYm(

x

ε
)χZs

( x
ε2

)
.

But, χYm(·)⊗ χZs(·) ∈ L∞per(Y × Z) so that according to (iii) of Remark 3.2,

χΩε
w−ms−−−−→ χYm ⊗ χZs in L2(ΩT ),

where the tensor product χYm⊗χZs is (χYm ⊗ χZs) (y, z) = χYm(y)χZs(z), ((y, z) ∈
RN × RN ). We have proved the following result.
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Proposition 3.8. As ε → 0, the characteristic function χΩε of Ωε multi-scale
converges weakly in L2(ΩT ) to χYm ⊗ χZp .

We now recall properties of some functional spaces that we will use. The topo-
logical dual of H1

ρ(Ym) is denoted in the sequel by (H1
ρ(Ym))′ while L2

ρ(Ym) stands
for the space of functions u ∈ L2

per(Y ) satisfying
∫
Ym

ρ(y)u(y) dy = 0. We first
recall that, since the space H1

ρ(Ym) is densely embedded in L2
ρ(Ym), the following

continuous embeddings hold:

H1
ρ(Ym) ⊂ L2

ρ(Ym) ⊂ (H1
ρ(Ym))′.

We also recall that the topological dual of L2(T ;H1
ρ(Ym)) is L2(T ; (H1

ρ(Ym))′). This
readily follows from the reflexiveness of the space H1

ρ(Ym). We denote the duality
pairing between H1

ρ(Ym) and (H1
ρ(Ym))′ by (·, ·), and that of L2(T ;H1

ρ(Ym)) and
L2(T ; (H1

ρ(Ym))′) by [·, ·]. Thus, we have

(u, v) =
∫
Y

u(y)v(y) dy

for u ∈ L2
ρ(Ym) and v ∈ H1

ρ(Ym), and

[u, v] =
∫ 1

0

(u(τ), v(τ)) dτ =
∫ 1

0

∫
Y

u(y, τ)v(y, τ) dy dτ

for u ∈ L2(T ;H1
ρ(Ym)) and v ∈ L2(T ; (H1

ρ(Ym))′). Furthermore, let Dρ(Ym) stands
for the space of functions u ∈ Dper(Y ) with

∫
Ym

ρ(y)u(y) dy = 0. Owing to the fact
that the space Dρ(Ym) is dense in H1

ρ(Ym) the following result holds (see e.g. [20,
Lemma 2 and Lemma 3]).

Theorem 3.9. Let u ∈ D′per(Y ×T ) and assume that u is continuous on Dρ(Ym)⊗
Dper(T ) endowed with the L2

per(T ;H1
ρ(Ym))-norm. Then u ∈ L2

per(T ; (H1
ρ(Ym))′),

and further

〈u, ϕ〉 =
∫ 1

0

(u(τ), ϕ(·, τ)) dτ

for all ϕ ∈ Dρ(Ym) ⊗ Dper(T ), where 〈·, ·〉 denotes the duality pairing between
D′per(Y ×T ) and Dper(Y ×T ), whereas the right-hand side is the product of u and
ϕ in the duality between L2

per(T ; (H1
ρ(Ym))′) and L2

per(T ;H1
ρ(Ym)).

We now define an operator

R : L2
per(Y )→ L2

per(Y )
u 7→ χYmρu.

(3.7)

It is clear that R is a non-negative and linear bounded self-adjoint operator. Using
the positivity of the weight ρ we prove that the kernel of R is defined by:

ker(R) = {u ∈ L2
per(Y ) : u = 0 a.e. in Ym}.

We denote by ker(R)⊥ the orthogonal of the kernel of R in L2
per(Y ) while L2

0(Ym)
stands for the completion of ker(R)⊥ with respect to the norm

‖u‖+ = ‖χYmρ
1
2u‖L2

per(Y ) (u ∈ ker(R)⊥).
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We denote by P the orthogonal projection from L2
per(Y ) onto L2

0(Ym). We recall
that for u ∈ L2

per(T ;L2
per(Y )) we define Ru and Pu by

(Ru)(τ) = R(u(τ)) and (Pu)(τ) = P (u(τ)) for a.e. τ ∈ (0, 1).

Considered as an unbounded operator on L2
per(T ;H1

ρ(Ym)), the domain of R′ ≡
χYmρ

∂
∂τ is

W =
{
u ∈ L2

per(T ;H1
ρ(Ym)) : χYmρ

∂u

∂τ
∈ L2

per(T ; (H1
ρ(Ym))′)

}
.

We endow W with its natural norm

‖u‖W = ‖u‖L2
per(T ;H1

ρ(Ym)) + ‖χYmρ
∂u

∂τ
‖L2

per(T ;(H1
ρ(Ym))′) (u ∈ W),

and recall an important result (see e.g., [16, 17]) we will use in the sequel.

Proposition 3.10. The operator P maps continuously W into C([0, 1];L2
0(Ym)),

i.e., there exists a constant c > 0 such that

‖Pu‖C([0,1];L2
0(Ym)) = sup

0≤τ≤1
‖χYmρ1/2u(τ)‖L2(Y ) ≤ c‖u‖W for all u ∈ W.

Moreover,

[χYmρ
∂u

∂τ
, v] = −[χYmρ

∂v

∂τ
, u] for all u, v ∈ W. (3.8)

We will also use the following convergence results in the forthcoming homoge-
nization process.

Proposition 3.11. Let ϕ ∈ C∞0 (QT ) ⊗ Dper(T ) ⊗ Dρ(Ym). Let E′, (uε)ε∈E and
(u0, u1) ∈ L2(0, T ;H1

0 (Ω))× L2(ΩT ;L2(T ;H1
ρ(Ym))) be as in Theorem 3.5. Then

lim
E3ε→0

1
ε

∫
QεT

uε(x, t)ρ(
x

ε
)ϕ(x, t,

x

ε
,
t

ε2
)dx dt = |Zs|

∫
QT

[χYm ρ u1(x, t), ϕ(x, t)] dx dt,

where 0 < |Zs| < 1 denotes the Lebesgue measure of the set Zs.

Proof. We have
1
ε

∫
QεT

uε(x, t)ρ(
x

ε
)ϕ(x, t,

x

ε
,
t

ε2
)dx dt

=
1
ε

∫
QT

uε(x, t)χΩε(x)ρ(
x

ε
)ϕ(x, t,

x

ε
,
t

ε2
)dx dt

=
1
ε

∫
QT

uε(x, t)χYm(
x

ε
)χZs(

x

ε2
)ρ(

x

ε
)ϕ(x, t,

x

ε
,
t

ε2
)dx dt

Bearing in mind that∫
Y

χYm(y)ρ(y)ϕ(x, t, y, τ)dy = 0 for all (x, t, τ) ∈ RN × R× R),

the same line of reasoning as in the proof of [8, Theorem 2.3] yields, as E 3 ε→ 0,
1
ε

∫
QT

uε(x, t)χYm(
x

ε
)χZs(

x

ε2
)ρ(

x

ε
)ϕ(x, t,

x

ε
,
t

ε2
) dx dt

→
∫
QT×Y×Z×T

χYmχZsρu1ϕdx dt dy dz dτ,

which concludes the proof. �



12 H. DOUANLA, J. L. WOUKENG EJDE-2015/253

We finally introduce the following notation-definition

F1
0 = L2(0, T ;H1

0 (Ω))×L2(ΩT ;L2
per(T ;H1

ρ(Ym)))×L2(ΩT ;L2
per(Y ×T ;H1

per(Zs))),

where H1
per(Zs) stands for the space of functions u ∈ H1

per(Z) with
∫
Zs
u(z)dz = 0.

We similarly define Dper(Zs) and remark that the space F1
0 admits the following

dense subspace

F∞0 = C∞0 (ΩT )×
(
C∞0 (ΩT )⊗Dper(T )⊗Dρ(Ym)

)
×
(
C∞0 (ΩT )⊗Dper(Y × T )

⊗Dper(Zs)
)
.

Moreover, F1
0 is a Banach space under the norm

‖(u0, u1, u2)‖F1
0

= ‖u0‖L2(0,T ;H1
0 (Ω)) + ‖u1‖L2(ΩT ;L2(T ;H1

ρ(Ym))) + ‖u2‖L2(ΩT ;L2(Y×T ;H1
per(Z))).

4. Homogenization process and main results

Let E be an ordinary sequence of real numbers ε converging to zero with ε.

4.1. Derivation of the global limit problem. By Corollary 2.3 and Theorem
3.5, there exist

(u0, u1, u2) ∈ F1
0 (4.1)

and a subsequence E′ of E such that, as E′ 3 ε→ 0,

Pεuε → u0 in L2(0, T ;H1
0 (Ω))-weak,

∂(Pεuε)
∂xi

w−ms−−−−→ ∂u0

∂xi
+
∂u1

∂yi
+
∂u2

∂zi
in L2(ΩT ) (1 ≤ j ≤ N).

Moreover, as E′ 3 ε→ 0 we have

ρεχΩε → ρχYm ⊗ χZs in L∞(Ω) weak-∗

so that Theorem 2.5 yields

Pεuε → u0 in L2(0, T ;L2(Ω)). (4.2)

We are now in a position to formulate the first homogenization result.
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Theorem 4.1. The triple (u0, u1, u2) ∈ F1
0 determined above by (4.1) is a solution

to the variational problem

(u0, u1, u2) ∈ F1
0,(∫

Ym

ρ(y)dy
)∫

ΩT

∂u0

∂t
ψ0 dx dt−

∫
ΩT

[
ρχYmu1(x, t),

∂ψ1

∂τ
(x, t)

]
dx dt

= −
∫∫∫

ΩT×Ym×T
G(y, τ, u0) · ∇ψ0 dx dt dy dτ

+
∫∫∫

ΩT×Ym×T
g(y, τ, u0)ψ1 dx dt dy dτ

− 1
|Zs|

∫∫∫∫
ΩT×Ym×Zs×T

A(y, τ)(∇xu0 +∇yu1 +∇zu2)

· (∇xψ0 +∇yψ1 +∇zψ2) dx dt dy dz dτ

− 1
|Zs|

∫∫∫∫
ΩT×Ym×Zs×T

(
∂rG(y, τ, u0)

· (∇xu0 +∇yu1 +∇zu2)
)
ψ0 dx dt dy dz dτ

for all (ψ0, ψ1, ψ2) ∈ F∞0 .

(4.3)

Proof. Let ε > 0 and let (ψ0, ψ1, ψ2) ∈ F∞0 . The appropriate oscillating test func-
tion for our problem is defined as follows:

ψε(x, t) = ψ0(x, t) + εψ1(x, t,
x

ε
,
t

ε2
) + ε2ψ2(x, t,

x

ε
,
x

ε2
,
t

ε2
), (4.4)

for (x, t) ∈ Ω × (0, T ). Multiplying all terms in the main equation of (1.1) by
ψε(x, t) and integrating over Ωε × (0, T ) leads to∫

ΩεT

ρ(
x

ε
)
∂uε
∂t

ψε dx dt = −
∫

ΩεT

A(
x

ε
,
t

ε2
)∇uε·∇ψε dx dt+

1
ε

∫
ΩεT

g(
x

ε
,
t

ε2
, uε)ψε dx dt,

or equivalently to ∫
ΩT

ρ(
x

ε
)χΩε(

x

ε
,
x

ε2
)
∂(Pεuε)
∂t

ψε dx dt

=
∫

ΩT

χΩε(
x

ε
,
x

ε2
)A(

x

ε
,
t

ε2
)∇(Pεuε) · ∇ψε dx dt

+
1
ε

∫
ΩT

χΩε(
x

ε
,
x

ε2
)g(

x

ε
,
t

ε2
, Pεuε)ψε dx dt.

(4.5)

We now pass to the limit in (4.5) as E′ 3 ε→ 0. We start with the term in the left
hand side. We have∫

ΩT

ρ(
x

ε
)χΩε(

x

ε
,
x

ε2
)
∂(Pεuε)
∂t

ψε dx dt = −
∫

ΩT

ρ(
x

ε
)χΩε(

x

ε
,
x

ε2
)Pεuε

∂ψε
∂t

dx dt,

(4.6)
and we recall that

∂ψε
∂t

(x, t) =
∂ψ0

∂t
(x, t) + ε

∂ψ1

∂t
(x, t,

x

ε
,
t

ε2
) +

1
ε

∂ψ1

∂τ
(x, t,

x

ε
,
t

ε2
)

+ ε2 ∂ψ2

∂t
(x, t,

x

ε
,
x

ε2
,
t

ε2
) +

∂ψ2

∂τ
(x, t,

x

ε
,
x

ε2
,
t

ε2
).
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It follows from (4.2) that

lim
E′3ε→0

∫
ΩT

ρ(
x

ε
)χΩε(

x

ε
,
x

ε2
)Pεuε

∂ψ0

∂t
dx dt

=
∫∫∫

ΩT×Y×Z
ρ(y)χYm(y)χZs(z)u0(x, t)

∂ψ0

∂t
(x, t) dx dt dy dz

= −|Zs|
(∫

Ym

ρ(y)dy
)∫

ΩT

∂u0

∂t
ψ0 dx dt.

(4.7)

By means of Proposition 3.11 we have

lim
E′3ε→0

1
ε

∫
ΩT

ρ(
x

ε
)χΩε(

x

ε
,
x

ε2
)Pεuε

∂ψ1

∂τ
(x, t,

x

ε
,
t

ε2
)

=
∫∫∫

ΩT×Y×Z×T
ρ(y)χYm(y)χZs(z)u1

∂ψ1

∂τ
dx dt dy dz dτ

= |Zs|
∫

ΩT

[
ρχYmu1(x, t),

∂ψ1

∂τ
(x, t)

]
dx dt

(4.8)

The following limits hold:

lim
E′3ε→0

ε

∫
ΩT

ρ(
x

ε
)χΩε(

x

ε
,
x

ε2
)Pεuε

∂ψ1

∂t
(x, t,

x

ε
,
t

ε2
) dx dt = 0, (4.9)

lim
E′3ε→0

ε2

∫
ΩT

ρ(
x

ε
)χΩε(

x

ε
,
x

ε2
)Pεuε

∂ψ2

∂t
(x, t,

x

ε
,
x

ε2
,
t

ε2
) dx dt = 0, (4.10)

lim
E′3ε→0

∫
ΩT

ρ(
x

ε
)χΩε(

x

ε
,
x

ε2
)Pεuε

∂ψ2

∂τ
(x, t,

x

ε
,
x

ε2
,
t

ε2
) dx dt = 0. (4.11)

After the passage to the limit in the left hand side of (4.11), we used the formula∫
T
∂ψ2
∂τ dτ = 0. Similar trivial arguments work for (4.9) and (4.10). Thus as E′ 3

ε→ 0, we have∫
ΩεT

ρ(
x

ε
)
∂uε
∂t

ψε dx dt→ |Zs|
(∫

Ym

ρ(y)dy
)∫

ΩT

∂u0

∂t
ψ0 dx dt

− |Zs|
∫

ΩT

[ρχYmu1(x, t),
∂ψ1

∂τ
(x, t)] dx dt.

(4.12)

As regards the first term in the right hand side of (4.5), it is classical that, as
E′ 3 ε→ 0, we have∫

ΩεT

A(
x

ε
,
t

ε2
)∇(Pεuε) · ∇ψε dx dt

=
∫

ΩT

χΩε(
x

ε
,
x

ε2
)A(

x

ε
,
t

ε2
)∇(Pεuε) · ∇ψε dx dt

→
∫∫∫∫

ΩT×Ym×Zs×T
A(y, τ)(∇xu0 +∇yu1 +∇zu2)

(
∇xψ0

+∇yψ1 +∇zψ2

)
dx dt dy dz dτ.

(4.13)
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Concerning the second term in the right hand side of (4.5), we first rewrite it as
follows:

1
ε

∫
ΩεT

g(
x

ε
,
t

ε2
, Pεuε)ψε dx dt

=
1
ε

∫
ΩεT

g(
x

ε
,
t

ε2
, Pεuε)ψ0 dx dt+

∫
ΩεT

g(
x

ε
,
t

ε2
, Pεuε)ψ1(x, t,

x

ε
,
t

ε2
) dx dt

+ ε

∫
ΩεT

g(
x

ε
,
t

ε2
, Pεuε)ψ2(x, t,

x

ε
,
x

ε2
,
t

ε2
) dx dt.

(4.14)

It is straightforward from [20, Lemma 5] that∫
ΩεT

g(
x

ε
,
t

ε2
, Pεuε)ψ1(x, t,

x

ε
,
t

ε2
) dx dt

=
∫

ΩT

g(
x

ε
,
t

ε2
, Pεuε)χΩε(

x

ε
,
x

ε2
)ψ1(x, t,

x

ε
,
t

ε2
) dx dt

→ |Zs|
∫∫∫

ΩT×Ym×T
g(y, τ, u0)ψ1(x, t, y, τ) dx dt dy dτ

(4.15)

as E′ 3 ε→ 0. Likewise, it holds that

lim
E′3ε→0

ε

∫
ΩεT

g(
x

ε
,
t

ε2
, Pεuε)ψ2(x, t,

x

ε
,
x

ε2
,
t

ε2
) dx dt = 0. (4.16)

It then remains to deal with the first term in the right hand side of (4.14). We have

1
ε

∫
ΩεT

g(
x

ε
,
t

ε2
, Pεuε)ψ0 dx dt

= −
∫

ΩεT

G(
x

ε
,
t

ε2
, Pεuε) · ∇xψ0 dx dt

−
∫

ΩεT

(
∂rG(

x

ε
,
t

ε2
, Pεuε) · ∇xuε

)
ψ0 dx dt.

(4.17)

It follows from [20, Lemma 5 - Remark 2] that as E′ 3 ε→ 0,∫
ΩεT

(
∂rG(

x

ε
,
t

ε2
, Pεuε) · ∇xuε

)
ψ0 dx dt

=
∫∫∫∫

ΩT×Ym×Zs×T
(∂rG(y, τ, u0) · (∇xu0 +∇yu1 +∇zu2))ψ0 dx dt dy dz dτ.

(4.18)
Likewise,

lim
E′3ε→0

∫
ΩεT

G(
x

ε
,
t

ε2
, Pεuε) · ∇xψ0 dx dt

= |Zs|
∫∫∫

ΩT×Ym×T
G(y, τ, u0) · ∇xψ0 dx dt dy dτ.

(4.19)
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Thus, as E′ 3 ε→ 0, we have

1
ε

∫
ΩεT

g(
x

ε
,
t

ε2
, Pεuε)ψε dx dt

→ −
∫∫∫∫

ΩT×Ym×Zs×T
(∂rG(y, τ, u0) · (∇xu0 +∇yu1 +∇zu2))ψ0 dx dt dy dz dτ

− |Zs|
∫∫∫

ΩT×Ym×T
G(y, τ, u0) · ∇xψ0 dx dt dy dτ

+ |Zs|
∫∫∫

ΩT×Ym×T
g(y, τ, u0)ψ1(x, t, y, τ) dx dt dy dτ,

(4.20)
which combined with (4.12)–(4.13) concludes the proof. �

The second term on the left hand side of (4.3) needs further investigations. In
fact, for further needs, we would like to rewrite it using formula (3.8) of Proposition
3.10 as follows

−
∫

ΩT

[
ρχYmu1(x, t),

∂ψ1

∂τ
(x, t)

]
dx dt =

∫
ΩT

[
ρχYm

∂u1

∂τ
(x, t), ψ1(x, t)

]
dx dt,

but this requires that u1 ∈ W.

Proposition 4.2. The function u1 ∈ L2
per(T ;H1

ρ(Ym)) defined by (4.1) and Theo-
rem 4.1 belongs to W.

Proof. Let ψ0 = ψ2 = 0 and ψ1 = ϕ ⊗ ψ in ((4.3), where ϕ ∈ C∞0 (ΩT ) and
ψ ∈ Dper(T )⊗Dρ(Ym). Using the arbitrariness of ϕ, we are led to

−
[
ρχYmu1(x, t),

∂ψ

∂τ
(x, t)

]
dx dt =

∫∫
Y×T

χYmρ
∂u1

∂τ
ψ dy dτ

=
∫∫

Y×T
g(y, τ, u0)ψ dy dτ

− 1
|Zs|

∫∫∫
Ym×Zs×T

A(y, τ)(∇xu0 +∇yu1 +∇zu2)∇yψ dy dz dτ.

But g = divy G, and the boundedness of the matrix A implies that the linear
functional

ψ 7→
∫∫

Y×T
g(y, τ, u0)ψ dy dτ

− 1
|Zs|

∫∫∫
Ym×Zs×T

A(y, τ)(∇xu0 +∇yu1 +∇zu2)∇yψ dy dz dτ

is continuous on Dper(T ) ⊗ Dρ(Ym) with the L2
per(T ;H1

ρ(Ym))-norm. Thus can
be extended to and element of L2

per(T ; (H1
ρ(Ym))′). In other words, χYmρ

∂u1
∂τ ∈

L2
per(T ; (H1

ρ(Ym))′) and the proof is complete. �
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Therefore the global homogenized problem of (1.1) reads

(u0, u1, u2) ∈ F1
0,(∫

Ym

ρ(y)dy
)∫

ΩT

∂u0

∂t
ψ0 dx dt+

∫
ΩT

[
ρχYm

∂u1

∂τ
(x, t), ψ1(x, t)

]
dx dt

= −
∫∫∫

ΩT×Ym×T
G(y, τ, u0) · ∇ψ0 dx dt dy dτ

+
∫∫∫

ΩT×Ym×T
g(y, τ, u0)ψ1 dx dt dy dτ

− 1
|Zs|

∫∫∫∫
ΩT×Ym×Zs×T

A(y, τ)(∇xu0 +∇yu1 +∇zu2) ·
(
∇xψ0

+∇yψ1 +∇zψ2

)
dx dt dy dz dτ

− 1
|Zs|

∫∫∫∫
ΩT×Ym×Zs×T

(
∂rG(y, τ, u0) · (∇xu0 +∇yu1

+∇zu2)
)
ψ0 dx dt dy dz dτ for all (ψ0, ψ1, ψ2) ∈ F∞0 .

(4.21)

The variational problem (4.21) is termed global since it contains the macroscopic
homogenized problem and the local problem.

4.2. The macroscopic problem. We are now in a position to derive the equa-
tion describing the macroscopic behavior of the ε-problem (1.1). The variational
problem 4.21 is equivalent to the system(∫

Ym

ρ(y)dy
)∫

ΩT

∂u0

∂t
ψ0 dx dt

= −
∫∫∫

ΩT×Ym×T
G(y, τ, u0) · ∇ψ0 dx dt dy dτ

− 1
|Zs|

∫∫∫∫
ΩT×Ym×Zs×T

A(y, τ)(∇xu0 +∇yu1

+∇zu2) · (∇xψ0) dx dt dy dz dτ

− 1
|Zs|

∫∫∫∫
ΩT×Ym×Zs×T

(∂rG(y, τ, u0) · (∇xu0 +∇yu1

+∇zu2))ψ0 dx dt dy dz dτ for all ψ0 ∈ C∞0 (ΩT ),

(4.22)

∫
ΩT

[
ρχYm

∂u1

∂τ
(x, t), ψ1(x, t)

]
dx dt

=
∫∫∫

ΩT×Ym×T
g(y, τ, u0)ψ1 dx dt dy dτ

− 1
|Zs|

∫∫∫∫
ΩT×Ym×Zs×T

A(y, τ)(∇xu0 +∇yu1

+∇zu2) · (∇yψ1) dx dt dy dz dτ

for all ψ1 ∈ C∞0 (ΩT )⊗Dper(T )⊗Dρ(Ym),

(4.23)
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and∫∫∫∫
ΩT×Ym×Zs×T

A(y, τ)(∇xu0 +∇yu1 +∇zu2) · (∇zψ2) dx dt dy dz dτ = 0

for all ψ2 ∈ C∞0 (ΩT )⊗Dper(T )⊗Dper(Ym)⊗Dper(Z).
(4.24)

We first study (4.24). We start with a few preliminaries. We define H1
#(Zs)

to be the space of functions in H1(Zs) assuming same values on the opposites
faces of Z, and satisfying

∫
Zs
u(z)dz = 0. We remark that if u ∈ H1

per(Z) with∫
Zs
u(z)dz = 0 then its restriction to Zs (which is still denoted by u in the sequel)

belongs to H1
#(Zs). Vice-versa, the extension of a function u ∈ H1

#(Zs) belongs to
H1

per(Z) with
∫
Zs
u(z)dz = 0. We have the following result whose proof is obvious

and therefore omitted.

Proposition 4.3. Let 1 ≤ j ≤ N and let (y, τ) ∈ RN × R be fixed. The follow-
ing microscopic local problem admits a solution which is uniquely defined almost
everywhere in Zs.

χj(y, τ) ∈ H1
#(Zs) :∫

Zs

A(y, τ)∇zχj · ∇zω dz = −
N∑
k=1

akj

∫
Zs

∂ω

∂zk
dz

for all ω ∈ H1
#(Zs).

(4.25)

Back to (4.24), let ψ2 = ϕ ⊗ ω with ϕ ∈ D(ΩT ) ⊗ Dper(T ) ⊗ Dρ(Ym) and
ω ∈ Dper(Zs). We get∫∫∫

ΩT×Ym×T
ϕ(x, t, y, τ) dx dt

[ ∫
Zs

A(y, τ)(∇xu0 +∇yu1 +∇zu2) · ∇zω dz
]

= 0

which by the arbitrariness of ϕ gives, for fixed (x, t) ∈ ΩT and fixed (y, τ) ∈ RN×R,∫
Zs

A(y, τ)∇zu2 · ∇zω dz = −
∫
Zs

A(y, τ)(∇xu0 +∇yu1) · ∇zω dz. (4.26)

By inspection of the microscopic problems (4.25) and (4.26) it appears by the
uniqueness of the solution to (4.25) that for almost all (x, t, y, τ) fixed in ΩT×RN×R

u2(x, t, y, τ) =
N∑
j=1

(∂u0

∂xj
(x, t) +

∂u1

∂yj
(x, t, y, τ)

)
χj(y, τ) a.e., in Zs. (4.27)

For further needs, we introduce a notation. We define the matrix ∇zχ by

(∇zχ)ij =
∂χi

∂zj
(1 ≤ i, j ≤ N).

Then we can write in short for almost all (x, t, y, τ, z) ∈ ΩT × RN × R× RN ,

∇zu2 = ∇zχ · (∇xu0 +∇yu1). (4.28)
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We can now look at the mesoscopic scale. Let (x, t) ∈ ΩT and (r, ξ) ∈ R × RN
be freely fixed and let π(x, t, r, ξ) be defined by the mesoscopic cell problem:

π1(x, t, r, ξ) ∈ W

[ρχYm
∂π1

∂τ
, ψ1] dx dt− 1

|Zs|

∫∫∫
Ym×Zs×T

[A(I +∇zχ)](ξ +∇yπ1) · (∇yψ1) dy dz dτ

=
∫∫

Ym×T
g(y, τ, r)ψ1 d ydτ for all ψ1 ∈ W,

(4.29)
Where I stands for the identity matrix. For the sake of simplicity, we put Ã =∫
Zs
A(I +∇zχ) dz. The following Proposition addresses the question of existence

and uniqueness of the solution to the variational problem (4.29).

Proposition 4.4. The following local variational problem admits a solution which
is uniquely defined on Ym × τ :

π1(x, t, r, ξ) ∈ W

[ρχYm
∂π1

∂τ
, ψ1]− 1

|Zs|

∫∫
Ym×T

Ã(y, τ)∇yπ1 · ∇yψ1 dy dτ

=
∫∫

Ym×T
g(y, τ, r)ψ1 dy dτ +

1
|Zs|

∫∫
Ym×T

Ã(y, τ)ξ · ∇yψ1 dy dτ

for all ψ1 ∈ W.

(4.30)

Proof. It is clear from the boundedness of the bilinear form on the left hand side,
and the boundedness of the linear form on the right hand side of (4.30) that (4.30)
admits at least one solution in W. As for the question of uniqueness, let π1, θ1 be
two solutions to (4.30). Then ζ1 = π1 − θ1 solves (4.30) with zero right hand side.
This yields

[ρχYm
∂ζ1
∂τ

, ζ1]− 1
|Zs|

∫∫
Ym×T

Ã(y, τ)∇yζ1 · ∇yζ1 dy dτ = 0.

But formula (3.8) of Proposition 3.10 implies

[ρχYm
∂ζ1
∂τ

, ζ1] = 0.

We are left with ∫∫
Ym×T

Ã(y, τ)∇yζ1 · ∇yζ1 dy dτ = 0,

which by the uniform ellipticity of the homogenized matrix Ã yields ∇yζ1 =
0 a.e. in Ym×T . Therefore there exists a function h depending only on τ such that
ξ1(y, τ) = h(τ) for almost every (y, τ) ∈ Ym×T . But, since ξ1 ∈ L2

per(T ;H1
ρ(Ym)),

we have

0 =
∫
Ym

ρ(y)ξ1(y, τ) dy = h(τ)
∫
Ym

ρ(y) dy a.e. in T . (4.31)

Thus h = 0 since
∫
Ym

ρ(y) dy 6= 0. Therefore ξ1 = 0 almost every where in Ym ×
T . �

In particular taking r = u0(x, t) and ξ = ∇u0(x, t) with (x, t) arbitrarily chosen
in ΩT and then choosing in (4.29) the particular test functions ψ1 = ϕ(x, t)v1, with
ϕ ∈ C∞0 (ΩT ) and v1 ∈ (Dper(T )⊗Dρ(Ym)), and finally comparing the resulting
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equation with (4.23), it follows by means of Proposition 4.2 (bear in mind that
Dper(T )⊗Dρ(Ym) is dense in W), that for almost every (x, t) ∈ ΩT we have

u1(x, t) = π1(x, t, u0(x, t),∇xu0(x, t)) (4.32)

almost everywhere on Ym × T . The linearity of the problem 4.30 suggests a more
flexible expression of its solution π1. We formulate the following variational prob-
lems

ω1(x, t, r) ∈ W[
ρχYm

∂ω1

∂τ
, ψ
]
− 1
|Zs|

∫∫
Ym×T

Ã(y, τ)∇yω1 · ∇yψ dy dτ =
∫∫

Ym×T
g(y, τ, r)ψ dy dτ

for all ψ ∈ W.

(4.33)
and

θ(x, t) = (θi(x, t))1≤i≤N ∈ (W)N[
ρχYm

∂θi
∂τ

, ψ
]
− 1
|Zs|

∫∫
Ym×T

Ã(y, τ)∇yθi · ∇yψ dy dτ

=
1
|Zs|

N∑
k=1

∫∫
Ym×T

Ãik(y, τ)
∂ψ

∂yk
dy dτ for all ψ ∈ W,

(4.34)

and leave to the reader to check that they admits solutions that are uniquely defined
on Ym × τ and satisfy

π1(x, t, r, ξ)(y, τ) = θ(x, t, y, τ) · ξ + ω1(x, t, y, τ, r). (4.35)

Hence, the same lines of reasoning as above yields

u1(x, t, y, τ) = θ(x, t, y, τ) · ∇xu0(x, t) + ω1(x, t, y, τ, u0(x, t)). (4.36)

We are now in a position to formulate the strong form of the macroscopic vari-
ational problem (4.22). Substituting in (4.22) the expression of ∇zu2 obtained in
(4.28), we have:

(∫
Ym

ρ(y)dy
)∫

ΩT

∂u0

∂t
ψ0 dx dt

= −
∫∫∫

ΩT×Ym×T
G(y, τ, u0) · ∇ψ0 dx dt dy dτ

− 1
|Zs|

∫∫∫
ΩT×Ym×T

Ã(y, τ)(∇xu0 +∇yu1) · (∇xψ0) dx dt dy dτ

− 1
|Zs|

∫∫∫
ΩT×Ym×T

[
∂rG(y, τ, u0) ·

((∫
Zs

(I +∇zχ)dz
)
· (∇xu0

+∇yu1)
)]
ψ0 dx dt dy dτ for all ψ0 ∈ C∞0 (ΩT ).

(4.37)



EJDE-2015/253 REACTION-DIFFUSION EQUATIONS IN FRACTURED POROUS MEDIA 21

We put B̃(y, τ) =
∫
Zs

(I +∇zχ(y, τ, z))dz ((y, τ) ∈ RN × R) and use (4.36) to get(∫
Ym

ρ(y)dy
)∫

ΩT

∂u0

∂t
ψ0 dx dt

= −
∫

ΩT

(∫∫
Ym×T

∂rG(y, τ, u0) · ∇xu0

)
ψ0 dx dt dy dτ

− 1
|Zs|

∫
ΩT

Â∇xu0 · ∇xψ0 dx dt

− 1
|Zs|

∫
ΩT

(∫∫
Ym×T

Ã(y, τ)∇yω1 dy dτ
)
· ∇xψ0 dx dt

− 1
|Zs|

∫
ΩT

{(∫∫
Ym×T

∂rG(y, τ, u0)
(
B̃(y, τ)(I +∇yθ)

)
dy dτ

)
· ∇xu0

}
ψ0 dx dt

− 1
|Zs|

∫
ΩT

(∫∫
Ym×T

∂rG(y, τ, u0)
(
B̃(y, τ)(I +∇yθ) · ∇yω1

)
dy dτ

)
· ψ0 dx dt for all ψ0 ∈ C∞0 (ΩT ),

(4.38)

where

Â(x, t) =
∫∫

Ym×T
Ã(y, τ)(I +∇yθ(x, t, y, τ))dy dτ ((x, t) ∈ ΩT ).

Setting

L1(x, t, r) =
∫∫

Ym×T
Ã(y, τ)∇yω1(x, t, y, τ, r) dy dτ,

L2(x, t, r)

=
∫∫

Ym×T

[
|Zs|∂rG(y, τ, r) + ∂rG(y, τ, r)

(
B̃(y, τ)(I +∇yθ(x, t, y, τ))

)]
dy dτ,

L3(x, t, r)

=
∫∫

Ym×T
∂rG(y, τ, r)

(
B̃(y, τ)(I +∇yθ(x, t, y, τ)) · ∇yω1(x, t, y, τ, r)

)
dy dτ .

We are led to the following result.

Theorem 4.5. The function u0 determined by (4.1) and solution to the variational
problem (4.22), is the unique solution to the boundary value problem

|Zs|
(∫

Ym

ρ(y) dy
)∂u0

∂t
= div

(
Â(x, t)∇u0

)
+ div L1(x, t, u0)

− L2(x, t, u0) · ∇u0 − L3(x, t, u0) in ΩT
u0 = 0 on ∂Ω× (0, T )

u0(x, 0) = u0(x) in Ω.

(4.39)

Proof. The claim that u0 solves the problem (4.39) has been proved above and
the uniqueness of the solution to (4.39) follows from the fact that the functions
Li(x, t, ·) (1 ≤ i ≤ N) are Lipschitz. This can be proved by mimicking the reasoning
in [3]. �

We can now formulate the homogenization result for problem (1.1).
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Theorem 4.6. Assuming that the hypotheses (A1)–(A4) are in place and letting
uε (ε > 0) be the unique solution to (1.1), we have, as ε→ 0,

uε → u0 in L2(ΩT ),

where u0 ∈ L2(0, T ;H1
0 (Ω)) is the unique solution to (4.39).
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[12] W. Jäger, M. Neuss-Radu, T. A. Shaposhnikova; Homogenization limit for the diffusion equa-

tion with nonlinear flux condition on the boundary of very thin holes periodically distributed
in a domain, in case of a critical size, Doklady Mathematics, 82 (2010), 736–740.

[13] A. K. Nandakumaran, M. Rajesh; Homogenization of a parabolic equation in perforated

domain with Dirichlet boundary condition, Proc. Indian Acad. Sci. (Math. Sci.), 112 (2002)
,425–439.

[14] A. K. Nandakumaran, M. Rajesh; Homogenization of a parabolic equation in perforated

domain with Neumann boundary condition, Proc. Indian Acad. Sci. Math. Sci., 112 (2002),
195-207.

[15] G. Nguetseng J. L. Woukeng; Σ-convergence of nonlinear parabolic operators, Nonlin. Anal.

TMA, 66 (2007), 968–1004.
[16] A. Pankov, T. E. Pankova; Nonlinear Evolution equations with non-invertible operator coef-

ficient at the derivative, Dokl. Akad. Nauk Ukrainy, 9 (1993), 18–20 (in Russian).
[17] F. Paronetto; Homogenization of degenerate elliptic-parabolic equations, Asymptot. Anal.,

37 (2004), 21–56.
[18] A. Piatnitski, V. Rybalko; Homogenization of boundary value problems for monotone oper-

ators in perforated domains with rapidly oscillating boundary conditions of fourier type, J.
Math. Sci., 177 (2011), 109–140.

[19] M. Sango J. L. Woukeng; Stochastic Sigma-convergence and applications. Dyn. PDE, 8
(2011), 261–310.

[20] N. Svanstedt, J. L. Woukeng; Periodic homogenization of strongly nonlinear reaction-
diffusion equations with large reaction terms, Appl. Anal., 92 (2013), 1357-1378.

[21] J. L. Woukeng; Reiterated homogenization of nonlinear pseudo monotone degenerate para-
bolic operators, Commun. Math. Anal., 9 (2010), 98–129.

[22] J. L. Woukeng; Σ-convergence and reiterated homogenization of nonlinear parabolic opera-
tors, Commun. Pure Appl. Anal., 9 (2010), 1753–1789.



EJDE-2015/253 REACTION-DIFFUSION EQUATIONS IN FRACTURED POROUS MEDIA 23

[23] J. L. Woukeng; Multiscale nonlocal flow in a fractured porous medium, Ann Univ Ferrara,

61 (2015), 173–200.

Hermann Douanla

Department of Mathematics, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
E-mail address: hdouanla@gmail.com

Jean Louis Woukeng
Department of Mathematics and Computer Science, University of Dschang, P.O. Box

67, Dschang, Cameroon

E-mail address: jwoukeng@yahoo.fr


	1. Introduction
	2. A priori estimates and compactness result
	3. Multi-scale convergence and preliminary convergence results
	3.1. Multi-scale convergence method
	3.2. Preliminary convergence results

	4. Homogenization process and main results
	4.1. Derivation of the global limit problem
	4.2. The macroscopic problem

	References

