Jackson Itikawa, Jaume Llibre
Abstract:
We study the number of limit cycles that bifurcate from the periodic
solutions surrounding a uniform isochronous center located at the
origin of the quartic polynomial differential system
when perturbed in the class of all quartic polynomial differential
systems. Using the averaging theory of first order we show that at
least 8 limit cycles bifurcate from the period annulus of the center.
Recently this problem was studied by Peng and Feng [9],
where the authors found 3 limit cycles.
Submitted October 15, 2014. Published September 22, 2015.
Math Subject Classifications: 34A36, 34C07, 34C25, 37G15.
Key Words: Polynomial vector field; limit cycle; averaging method;
periodic orbit; uniform isochronous center.
Show me the PDF file (217 KB), TEX file, and other files for this article.
Jackson Itikawa Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Catalonia, Spain Fax +34 935812790. Phone +34 93 5811303 email: itikawa@mat.uab.cat | |
Jaume Llibre Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Catalonia, Spain Fax +34 935812790. Phone +34 93 5811303 email: jllibre@mat.uab.cat |
Return to the EJDE web page