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FOURTH-ORDER DISCRETE ANISOTROPIC
BOUNDARY-VALUE PROBLEMS

MACIEJ LESZCZYŃSKI

Abstract. In this article we consider the fourth-order discrete anisotropic

boundary value problem with both advance and retardation. We apply the
direct method of the calculus of variations and the mountain pass technique

to prove the existence of at least one and at least two solutions. Non-existence

of non-trivial solutions is also undertaken.

1. Introduction

Below N, Z and R denote the sets of all natural numbers, integers and real
numbers respectively. Let k denote a natural number. Let a, b ∈ Z; we define
Z(a) = {a, a+ 1, . . . }, and when a < b, Z(a, b) = {a, a+ 1, . . . b}.

We consider the difference equation with both advance and retardation,

∆2(γn−1φpn(∆2un−2)) = f(n, un+1, un, un−1), n ∈ Z(1, k), (1.1)

with boundary values conditions

∆u−1 = ∆u0 = 0, uk+1 = uk+2 = 0, (1.2)

where γn is non-zero and real parameter for each n ∈ Z(0, k + 1), pn is real valued
and 2 ≤ pn < ∞ for all n ∈ Z(0, k), ∆ is the forward difference operator ∆un =
un+1−un, ∆iun = ∆(∆i−1un) for i ≥ 2, φpn is the so called pn-Laplacian operator
defined as

φpn(s) = |s|pn−2s,

and f ∈ C(Z(0, k)× R3,R).
To determine whether boundary value problem (BVP) (1.1)-(1.2) has any solu-

tions, we use the critical point theory. Let us denote

γ = max{γn : n ∈ Z(0, k + 1)}, γ = min{γn : n ∈ Z(0, k + 1)},
p = max{pn : n ∈ Z(0, k)}, p = min{pn : n ∈ Z(0, k)}.

Continuous versions of problem like(1.1)-(1.2) are known to be mathematical
models of various phenomena arising in the study of elastic mechanics (see [23]),
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electrorheological fluids (see [17]), and image restoration (see [4]). Variational con-
tinuous anisotropic problems were started by Fan and Zhang in [5] and later consid-
ered by many methods and authors; see [10] for an extensive survey of such bound-
ary value problems. The research concerning the discrete fourth-order anisotropic
problems have only been started, see [11, 15], where known tools from the critical
point theory are applied prove the existence of solutions. Concerning the investiga-
tion of discrete boundary value problems we mention, far from being exhaustive, the
following recent papers that used critical point theory [1, 3, 12, 18, 19, 20, 21, 22].
These papers employ in the discrete setting the variational techniques already
known for continuous problems of course with necessary modifications. The tools
employed cover the Morse theory, mountain pass methodology, linking arguments.
New critical point tool for fourth-order discrete BVPs are considered in [16]. In our
setting, upon suitable changes, it seems possible to obtain similar results.

Concerning the fourth-order problems we mainly follow [13]. We use somehow
simpler approach and consider a more complicated variable exponent case.

2. Variational framework

Let X be a k-dimensional Euclidean space consisting of functions x : Z(−1, k +
1)→ R satisfying (1.2) and equipped with a norm

‖u‖ :=
( k∑
n=1

|∆2un|2
)1/2

.

For r ∈ [1,∞), we define the norm

‖u‖r =
( k∑
j=1

|uj |r
)1/r

.

Since dim(X) = k, all norms are equivalent, hence there exist constants c1,r, c2,r
for r ∈ [1,∞) such that c2,r ≥ c1,r ≥ 0, and

c1,r‖u‖ ≤ ‖u‖r ≤ c2,r‖u‖ ∀u ∈ X.

Remark 2.1. Following some ideas from [7], the values of the above constants can
be easily calculated as

c1,2 =
√

6
6
, c2,2 =

k2

2
For any u ∈ X we have

|um| ≤
k

2

k∑
n=1

|∆2un| ∀m ∈ Z(1, k).

Indeed, the following inequality is true

max
i∈Z(1,k)

|u(i)| ≤ 1
2

k∑
n=1

|∆un|,

while the the boundary conditions u0 = uk+1 = 0 are satisfied. So, analogously we
obtain

max
i∈Z(1,k)

|∆u(i)| ≤ 1
2

k∑
n=1

|∆2un|,
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with conditions ∆u0 = ∆uk+1 = 0, which are satisfied for every u ∈ X. Hence, for
every n ∈ Z(1, k), we obtain

|un| ≤
k∑
i=1

|∆ui| ≤ k max
i∈Z(1,k)

|∆ui| ≤
k

2

k∑
i=1

|∆2un|.

Thus, for m ∈ Z(1, k) we have

|um|2 ≤
k2

4

( k∑
n=1

|∆2un|
)2

≤ k2

4

(( k∑
n=1

12
)1/2( k∑

n=1

|∆2un|2
)1/2)2

=
k3

4

k∑
n=1

|∆2un|2.

Therefore,
k∑

n=1

|un|2 = |u1|2 + |u2|2 + . . .+ |uk|2

≤ k3

4

k∑
n=1

|∆2un|2 + k

k∑
n=1

|∆2un|2 + . . .+ k

k∑
n=1

|∆2un|2

=
k4

4

k∑
n=1

|∆2un|2.

As a consequence,

‖u‖2 =
( k∑
n=1

|un|2
)1/2

≤
(k4

4

k∑
n=1

|∆2un|2
)1/2

=
k2

2

( k∑
n=1

|∆2un|2
)1/2

=
k2

2
‖u‖.

Additionally

‖u‖2 =
k∑

n=1

|∆2un|2 =
k∑

n=1

|un+2 − 2un+1 + un|2

≤
k∑

n=1

|un+2|2 + 4
k∑

n=1

|un+1|2 +
k∑

n=1

|un|2

≤
k∑

n=1

|un|2 + 4
k∑

n=1

|un|2 +
k∑

n=1

|un|2

= 6
k∑

n=1

|un|2 = 6‖u‖22.

Hence, we have

‖u‖2 ≤ 6‖u‖22 ⇔
√

6
6
‖u‖ ≤ ‖u‖2.

To sum up, we obtain √
6

6
‖u‖ ≤ ‖u‖2 ≤

k2

2
‖u‖
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Let us consider a functional J defined on X as follows

J(u) =
k∑

n=1

γn+1

pn
|∆2un|pn −

k∑
n=1

F (n, un+1, un), (2.1)

where F (n, x, y) is a function of three variables. We denote by Fx(n, v1, v2) the
derivative of F with respect to the second variable calculated at point (n, v1, v2)
and by Fy(n, v1, v2) the derivative of F with respect to the third one calculated at
point (n, v1, v2).

Fx(n− 1, v2, v3) + Fy(n, v1, v2) = f(n, v1, v2, v3);

It is easy to see that J ∈ C1(Rk,R) and for any u ∈ Rk exploiting boundary values
(1.2) we can calculate the partial derivative as

∂J

∂un
= ∆2(γn−1φpn(∆2un−2))− f(n, un+1, un, un−1), ∀n∈Z(1,k).

As a consequence, u is a critical point of J on Rk if and only if

∆2(γn−1φpn(∆2un−2)) = f(n, un+1, un, un−1),∀n ∈ Z(1, k)

We redefine problem of proving the existence of solutions of (1.1)-(1.2) to the ex-
istence of critical points of J on Rk. Thus, the functional J is the variational
framework of our problem.

Now we recall some necessary background from [6]. Let E be a real Banach space,
J ∈ C1(E,R) i.e, J is a continuously Frechet-differentiable functional defined on
E. J is said to satisfy the Palais-Smale condition (P.S. condition for short) if every
sequence {u(l)} ⊂ E for which {J(u(l))} is bounded and J ′(u(l)) → 0 (as l → ∞)
possesses a convergent subsequence in E.

Lemma 2.2 (Mountain Pass Lemma). Let E be a real Banach space and J ∈
C1(E,R) satisfying the P.S. condition. If J(0) = 0 and

(J1) there exist constants ρ, a > 0 such that J |∂Bρ ≥ a, and
(J2) there exists e ∈ E\Bρ such that J(e) ≤ 0.

Then, J possesses a critical value c ≥ a given by

c = inf
g∈Γ

max
s∈[0,1]

J(g(s)),

where Γ = {g ∈ C([0, 1], E); g(0) = 0 and g(1) = e}.

3. Auxiliary results

In this article we use following inequalities
(A1) For every u ∈ X and for every m ≥ 1 we have

k∑
n=1

|∆2un|m ≤ k‖u‖m.

Proof. Of course we have

|∆2un|2 ≤
k∑
i=1

|∆2ui|2, for every n ∈ Z(1, k),
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hence we have

|∆2un|m ≤ ((
k∑
i=1

|∆2ui|2)1/2)m, for every n ∈ Z(1, k),

Summing left hand side of the inequality from 1 to k we obtain
k∑

n=1

|∆2un|m ≤ k
(( k∑

n=1

|∆2ui|2
)1/2)m

.

which leads us to
k∑

n=1

|∆2un|m ≤ k‖u‖m,

�

(A2) For every u ∈ X and every m > 2 we have
k∑

n=1

|∆2un|m ≥ k
2

m−2 ‖u‖m.

Proof. Using Hölder inequality for m > 2 we obtain
k∑

n=1

|∆2un|2 ≤
( k∑
n=1

1
m
m−2

)m−2
m
( k∑
n=1

(|∆2un|2)m/2
)2/m

= k
m−2
m

k∑
n=1

(|∆2un|m)2/m.

Calculating further we obtain

‖u‖ =
( k∑
n=1

|∆2un|2
)1/2

≤ k
m−2
2m

k∑
n=1

(|∆2un|m)1/m.

Thus, we see the thesis

‖u‖m ≤ k
m−2

2

k∑
n=1

|∆2un|m ⇔ k
2

m−2 ‖u‖m ≤
k∑

n=1

|∆2un|m.

�

(A3) For every u ∈ X such that ‖u‖ ≥ 1 we have
k∑

n=1

|∆2un|pn ≥ k
2
p−2 ‖u‖p − k.

Proof. Let u ∈ X be such that ‖u‖ ≥ 1. We obtain
k∑

n=1

|∆2un|pn

=
∑

{k∈Z(1,k);|∆2uk|≤1}

|∆2un|pn +
∑

{k∈Z(1,k);|∆2uk|>1}

|∆2un|pn

≥
∑

{k∈Z(1,k);|∆2uk|≤1}

|∆2un|p +
∑

{k∈Z(1,k);|∆2uk|>1}

|∆2un|p

=
k∑

n=1

|∆2un|p −
∑

{k∈Z(1,k);|∆2uk|≤1}

|∆2un|p +
∑

{k∈Z(1,k);|∆2uk|≤1}

|∆2un|p
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≥
k∑

n=1

|∆2un|p −
k∑

n=1

1

=
k∑

n=1

|∆2un|p − k.

Now we can use (A2) with m := p to get

k∑
n=1

|∆2un|p − k ≥ k
2
p−2 ‖u‖p − k,

which is our assertion. �

(A4) For every u ∈ X we have

k∑
n=1

|∆2un|pn ≤ k‖u‖p + k.

Proof. Let us decompose

k∑
n=1

|∆2un|pn

=
∑

{k∈Z(1,k);|∆2uk|≤1}

|∆2un|pn +
∑

{k∈Z(1,k);|∆2uk|>1}

|∆2un|pn

≤
∑

{k∈Z(1,k);|∆2uk|≤1}

|∆2un|p +
∑

{k∈Z(1,k);|∆2uk|>1}

|∆2un|p

=
k∑

n=1

|∆2un|p +
∑

{k∈Z(1,k);|∆2uk|≤1}

|∆2un|p −
∑

{k∈Z(1,k);|∆2uk|≤1}

|∆2un|p

≤
k∑

n=1

|∆2un|p +
k∑

n=1

1

=
k∑

n=1

|∆2un|p + k.

Now, using (A1) we have

k∑
n=1

|∆2un|p + k ≤ k‖u‖p + k.

�

(A5) For every u ∈ X such that ‖u‖ ≤ 1 we have

k∑
n=1

|∆2un|pn ≥ k−
p−2
2 ‖u‖p.

In this section we have used some ideas from [8].
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4. Existence of solutions

This section gives theorems with sufficient conditions for the existence of at least
one solution to (1.1)-(1.2).

Theorem 4.1. Assume that the following hypothesis are satisfied
(F0) for any n ∈ Z(0, k + 1), γn < 0;
(F1) there exists a functional F ∈ C1(Z× R2,R), such that

Fx(n− 1, v2, v3) + Fy(n, v1, v2) = f(n, v1, v2, v3);

(F2) There exists M0 > 0 such that, for all (n, v1, v2) ∈ Z(1, k)× R2

Fx(n, v1, v2) ≤M0, Fy(n, v1, v2) ≤M0.

Then (1.1)-(1.2) possesses at least one solution.

Remark 4.2. Assumption (F2) implies that there exists a constant M1 such that
(F2’) |F (n, v1, v2)| ≤M1 +M0(|v1|+ |v2|) for all (n, v1, v2) ∈ Z(1, k)× R2.

Let us define a function H : [0, 1] → R, H(t) = F (n, tv1, tv2). Then H is differen-
tiable, and

H ′(t) = Fx(n, tv1, tv2)v1 + Fy(n, tv1, tv2)v2.

Using the mean value theorem on [0, 1] we obtain

F (n, v1, v2)− F (n, 0, 0) = H(1)−H(0) = H ′(θ)(1− 0)

= Fx(n, θv1, θv2)v1 + Fy(n, θv1, θv2)v2

for some θ ∈ [0, 1]. Now, using assumption (F2) we obtain

|F (n, v1, v2)− F (n, 0, 0)| = |Fx(n, θv1, θv2)v1 + Fy(n, θv1, θv2)v2|
≤ |Fx(n, θv1, θv2)||v1|+ |Fy(n, θv1, θv2)||v2|
≤M0|v1|+M0|v2|.

On the other hand, using a well know inequality for absolute value we obtain

|F (n, v1, v2)− F (n, 0, 0)| ≥ ||F (n, v1, v2)| − |F (n, 0, 0)||,
and combining both inequalities we produce the following statement

||F (n, v1, v2)| − |F (n, 0, 0)|| ≤M0|v1|+M0|v2|.
By the definition of the absolute value, it is equivalent to

−M0(|v1|+ |v2|) ≤ |F (n, v1, v2)| − |F (n, 0, 0)| ≤M0|v1|+M0|v2|,
which leads us to thesis substituting M1 := maxn∈Z(1,k){|F (n, 0, 0)|}.

Proof of Theorem 4.1. By (F2’), for any u ∈ Rk, we have

J(u) =
k∑

n=1

γn+1

pn
|∆2un|pn −

k∑
n=1

F (n, un+1, un)

≤ γ

p

k∑
n=1

|∆2un|pn −
k∑

n=1

F (n, un+1, un)

≤ γ

p

k∑
n=1

|∆2un|pn +M0

k∑
n=1

(|un+1|+ |un|) +M1k
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≤ γ

p

k∑
n=1

|∆2un|pn + 2M0

k∑
n=1

|un|+M1k.

Now, using (A3) we obtain

γ

p

k∑
n=1

|∆2un|pn + 2M0

k∑
n=1

|un|+M1k

≤ γ

p
(k

2
p−2 ‖u‖p − k) + 2M0

k∑
n=1

|un|+M1k

≤ γ

p
k

2
p−2 ‖u‖p − γ

p
k + 2M0c2,1‖u‖+M1k → −∞ as ‖u‖ → +∞.

Above inequality means that J is anti coercive. With continuity of J , it attains its
maximum at some point. From necessity condition of extremal point of differen-
tiable functional, we acquire that u0 := max{J(u) : u ∈ X} is a critical point of J .
This finishes the proof. �

Theorem 4.3. Suppose that (F1) and the following hypothesis are satisfied
(F0’) For every n ∈ Z(1, k + 1), γn > 0;
(F3) There exist R > 0, 1 < α < 2 and constants a1, a2 > 0 such that for

n ∈ Z(1, k) and
√

(v2
1 + v2

2) ≥ R;

F (n, v1, v2) ≤ a1(
√
v2

1 + v2
2)

α
2 p − a2 .

Then (1.1)-(1.2) possesses at least one solution.

Proof. By (F3) for any u ∈ Rk, we have

J(u) =
k∑

n=1

γn+1

pn
|∆2un|pn −

k∑
n=1

F (n, un+1, un)

≥
γ

p

k∑
n=1

|∆2un|pn −
k∑

n=1

F (n, un+1, un)

≥
γ

p

k∑
n=1

|∆2un|pn − a1

k∑
n=1

(
√
u2
n+1 + u2

n)
α
2 p − a2k

≥
γ

p

k∑
n=1

|∆2un|pn − a1

k∑
n=1

(

√√√√ k∑
i=1

u2
i )

α
2 p − a2k

≥
γ

p

k∑
n=1

|∆2un|pn − a1

k∑
n=1

‖u‖
α
2 p

2 − a2k

≥
γ

p

k∑
n=1

|∆2un|pn − a1k‖u‖
α
2 p

2 − a2k.

Again we will use (A3). Indeed, we have

γ

p

k∑
n=1

|∆2un|pn − a1k‖u‖
αp/2

2 − a2k
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≥
γ

p
(k

2
p−2 ‖u‖p − k)− a1k‖u‖

α
2 p

2 − a2k

≥
γ

p
k

2
p−2 ‖u‖p −

γ

p
k − a1k‖u‖

α
2 p

2 − a2k → +∞ as ‖u‖ → +∞.

This inequality implies that J is coercive, and using similar reasoning, we acquire
that (1.1)-(1.2) possesses at least one solution. �

5. Existence and multiplicity of solutions

This section will give sufficient conditions to existing at least two solutions to
(1.1)-(1.2).

Theorem 5.1. Suppose (F0’), (F1) and the following conditions are satisfied:
(F4) Functional F satisfies

lim
r→0

F (n, v1, v2)
rp

= 0, r =
√
v2

1 + v2
2 ;

(F5) There exist β > p and a3 > 0 such that for n ∈ Z(1, k) and
√

(v2
1 + v2

2) ≥ R

F (n, v1, v2) > a3(
√
v2

1 + v2
2)β .

Then (1.1)-(1.2) possesses at least two nontrivial solutions.

Proof. To show that our functional satisfies the P.S. condition we use that any
anti-coercive functional T : X → R, where dimX <∞, satisfies the P.S. condition.
By (F5) we have

J(u) =
k∑

n=1

γn+1

pn
|∆2un|pn −

k∑
n=1

F (n, un+1, un)

≤
k∑

n=1

γn+1

pn
|∆2un|pn −

k∑
n=1

a3(
√
u2
n+1 + u2

n)β .

Now, using (A2) and (A3) we have
k∑

n=1

γn+1

pn
|∆2un|pn −

k∑
n=1

a3(
√
u2
n+1 + u2

n)β

≤ γ

p
k‖u‖p +

γ

p
k − a3

( k∑
n=1

√
u2
n

)β
=
γ

p
k‖u‖p +

γ

p
k − a3‖u‖β1

≤ γ

p
k‖u‖p +

γ

p
k − a3c

β
2,1‖u‖β → −∞ as ‖u‖ → ∞,

We proved that J is anti coercive, thus, the P.S. condition is verified.
Now, we have to show that other conditions of Mountain Pass Lemma are sat-

isfied. By (F4), for any

ε = k−
p−4
2

γ

2p(c2,2)p
,

there exists ρ > 0 such that

|F (n, v1, v2)| ≤ ε(v1 + v2)p/2 ∀n∈Z(1,k)
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for
√
v2

1 + v2
2 ≤ 2

√
ρ. Then

J(u) =
k∑

n=1

γn+1

pn
|∆2un|pn −

k∑
n=1

F (n, un+1, un)

≥
γ

p

k∑
n=1

|∆2un|pn − ε
k∑

n=1

(u2
n+1 + u2

n)p/2.

Now, using (A5), we can estimate

γ

p

k∑
n=1

|∆2un|pn − ε
k∑

n=1

(u2
n+1 + u2

n)p/2

≥
γ

p
k−

p−2
2 ‖u‖p − ε

k∑
n=1

(

√√√√ k∑
i=1

u2
i )
p

≥
γ

p
k−

p−2
2 ‖u‖p − ε

k∑
n=1

‖u‖p2

≥
γ

p
k−

p−2
2 ‖u‖p − εk‖u‖p2

≥
γ

p
k−

p−2
2 ‖u‖p − εkcp2,2‖u‖p

=
γ

p
k−

p−2
2 ‖u‖p − k−

p−2
2

γ

2p(c2,2)p
(c2,2)p‖u‖p

=
γ

2p
k−

p−2
2 ‖u‖p

Take a =
γ

2pk
− p−2

2 ρp > 0. Therefore

J(u) ≥ a > 0 ∀u∈∂B .

At the same time, we have also proved that there exist constants a > 0 and ρ > 0
such that J |∂B ≥ a. That is to say, J satisfies (J1) of the Mountain Pass Lemma.

For our setting, J(0) = 0. To exploit the Mountain Pass Lemma in critical point
theory, we need to verify other conditions of the lemma. We have shown that J
satisfies the P.S. condition. So, it suffices to verify the condition (J2). From the
proof of the P.S. condition we know that

J(u) ≤ γ

p
k‖u‖p +

γ

p
k − a3c

β
2,1‖u‖β .

Since β > p, we can choose u∗ far enough to ensure that J(u∗) < 0. By the
Mountain Pass Lemma, J possesses a critical value c ≥ a > 0 where

c = inf
h∈Γ

sup
s∈[0,1]

J(h(s)),

Γ = {h ∈ C([0, 1],Rk)|h(0) = 0, h(1) = u∗}.

Let u ∈ Rk be a critical point associated to the critical value c of J. Due to anti
coercivity and continuity, we know that there exists û such that

J(û) = cmax = max
s∈[0,1]

J(h(s)).
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Clearly, û 6= 0. If u 6= û we reach the assertion of the theorem.
Suppose that u = û. Itimplies that

J(u) = inf
h∈Γ

sup
s∈[0,1]

J(h(s)).

Hence for any function h ∈ Γ, maxt∈[0,1] J(h(t)) = J(u). Indeed, for any h ∈ Γ we
have

J(u) ≥ max
t∈[0,1]

J(h(t))

since
J(p) = max

x∈X
J(x) and J(p) ≤ max

t∈[0,1]
J(h(t))

by the definition of the minimum. Since k > 1, the space X\{u} is path con-
nected. Then there exists a function h0 ∈ Γ such that h0(t) 6= u for t ∈ [0, 1].
Since maxt∈[0,1] J(h0(t)) = J(u) it follows that there exists t0 ∈ (0, 1) such that
J(h0(t0)) = maxx∈X J(x) and by assertion h0(t0) 6= u. Thus h0(t0 is a critical
point different from u.
The above argumentation implies that (1.1)-(1.2) possesses at least two nontrivial
solutions. �

6. Nonexistence of solutions

This section give sufficient conditions for the nonexistence of nontrivial solutions
to (1.1)-(1.2).

Theorem 6.1. Let (F0), (F1) and the following conditions be satisfied.
(F6) For all n ∈ Z(1, k), v2 6= 0⇒ v2f(n, v1, v2, v3) > 0.

Then (1.1)-(1.2) has no nontrivial solution.

Proof. Assume in the sake of contradiction that (1.1)-(1.2) possesses a nontrivial
solution. Then, functional J has a nonzero critical point u∗. Since

∂J

∂un
= ∆2(γn−1φpn(∆2un))− f(n, un+1, un, un−1),

it follows that
k∑

n=1

f(n, u∗n+1, u
∗
n, u
∗
n−1) · u∗n

=
k∑

n=1

∆2(γn−1φpn(∆2u∗n−2)) · u∗n

=
k∑

n=1

γn+1|∆2u∗n|pn+2−2(∆2u∗n)u∗n − 2γn|∆2u∗n−1|pn+1−2(∆2u∗n−1)u∗n

+ γn−1|∆2u∗n−2|pn−2(∆2u∗n−2)u∗n

=
k∑

n=1

γn+1|∆2u∗n|pn+2−2(∆2u∗n)u∗n − 2
k∑

n=1

γn|∆2u∗n−1|pn+1−2(∆2u∗n−1)u∗n

+
k∑

n=1

γn−1|∆2u∗n−2|pn−2(∆2u∗n−2)u∗n
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=
k∑

n=1

γn+1|∆2u∗n|pn+2−2(∆2u∗n)u∗n − 2
k−1∑
n=0

γn+1|∆2u∗n|pn+2−2(∆2u∗n)u∗n+1

+
k−2∑
n=−1

γn+1|∆2u∗n|pn+2−2(∆2u∗n)u∗n+2

=
k∑

n=1

γn+1|∆2u∗n|pn+2−2(∆2u∗n)u∗n − 2
k∑

n=1

γn+1|∆2u∗n|pn+2−2(∆2u∗n)u∗n+1

+
k∑

n=1

γn+1|∆2u∗n|pn+2−2(∆2u∗n)u∗n+2 + [−2γ1|∆2u∗0|p2−2(∆2u∗0)u∗1

+ 2γk+1|∆2u∗k|pk+2−2(∆2u∗k)u∗k+1 + γ0|∆2u∗−1|p1−2(∆2u∗−1)u∗1
+ γ1|∆2u∗0|p2−2(∆2u∗0)u∗2 − γk|∆2u∗k−1|pk+1−2(∆2u∗k−1)u∗k+1

− γk+1|∆2u∗k|pk+2−2(∆2u∗k)u∗k+2].

Using boundary values, it is easy to see that the expression in square bracket is
equal to zero. This implies

k∑
n=1

γn+1|∆2u∗n|pn+2−2(∆2u∗n)(u∗n − 2u∗n+1 + u∗n+2)

=
k∑

n=1

γn+1|∆2u∗n|pn+2−2(∆2u∗n)2 < 0,

which is a contradiction with assumption. Hence, the only critical point of J is
0. �

7. Final comments and examples

Firstly note that the classical approach to the positive solutions do not apply to
the fourth-order problems. It is so because of the inequality

∆2un ·∆2u−n ≤ 0,

where u− = max{−u, 0}, is not satisfied for all u ∈ X. Indeed, take

un = 5, un+1 = 1, un+2 = −2.

Substituting symbols by numbers we obtain

∆2un ·∆2u−n = (un+2 − 2un+1 + un)(u−n+2 − 2u−n+1 + u−n)

= (−2− 2 + 5) · (2 + 0 + 0) = 2 > 0.

Now, we shown four examples to illustrate the main results.

Example 7.1. For n ∈ Z(1, k), assume that

∆2(−2nφpn(∆2un−2)) = Φ(n− 1) cosun cosun−1 − Φ(n) sinun+1 sinun,

with boundary value conditions (1.2), where pn : Z(1, k) → R, Φ(n) > 0, n ∈
Z(1, k). We have

γn = −2(n+ 1), f(n, v1, v2, v3) = Φ(n− 1) cos v2 cos v3 − Φ(n) sin v1 sin v2,

F (n, v1, v2) = Φ(n) sin v1 cos v2.
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It is easy to verify that all the assumptions of Theorem 4.1 are satisfied, thus our
problem possesses at least one solution.

Example 7.2. For n ∈ Z(1, k), assume that

∆2(6n−1φpn(∆2un−2)) = αun[ψ(n)(u2
n+1 + u2

n)
α
4 p−1 + ψ(n− 1)(u2

n + u2
n−1)

α
4 p−1],

with boundary value conditions (1.2), where pn : Z(1, k) → R, ψ(n) > 0, n ∈
Z(1, k), 1 < α < 2. We have

γn = 6n, f(n, v1, v2, v3) = αv2[ψ(n)(v2
1 + v2

2)
α
4 p−1 + ψ(n− 1)(v2

2 + v2
3)

α
4 p−1],

F (n, v1, v2) = ψ(n)(v2
1 + v2

2)
α
4 p.

We can easily check that all the assumptions of Theorem 4.1 are satisfied, hence
our problem possesses at least one solution.

Example 7.3. For n ∈ Z(1, k), assume that

∆2(φpn(∆2un−2)) = βun[ψ(n)(u2
n+1 + u2

n)
β
2−1 + ψ(n− 1)(u2

n + u2
n−1)

β
2−1]

with boundary value conditions (1.2), where pn : Z(1, k) → R, ψ(n) > 0, n ∈
Z(1, k), β > p. We have

γn ≡ 1, f(n, v1, v2, v3) = βv2[ψ(n)(v2
1 + v2

2)
β
2−1 + ψ(n− 1)(v2

2 + v2
3)

β
2−1],

F (n, v1, v2) = ψ(n)(v2
1 + v2

2)
β
2 .

Then, the assumptions of Theorem 5.1 are satisfied, hence our problem possesses
at least two solutions.

Example 7.4. For n ∈ Z(1, k), assume that

∆2(−φpn(∆2un−2)) = 4un[(u2
n+1 + u2

n) + (u2
n + u2

n−1)],

with boundary value conditions (1.2), where pn : Z(1, k)→ R. We have

γn ≡ −1, f(n, v1, v2, v3) = 4v2[(v2
1 + v2

2) + (v2
2 + v2

3)],

F (n, v1, v2) = (v2
1 + v2

2)2.

Then, the assumptions of Theorem 6.1 are satisfied, hence our problem has no
nontrivial solutions.
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