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NO-FLUX BOUNDARY PROBLEMS INVOLVING
p(x)-LAPLACIAN-LIKE OPERATORS

EUGENIO CABANILLAS LAPA, VICTOR PARDO RIVERA, JOSE QUIQUE BRONCANO

Abstract. In this article we obtain weak solutions for a class nonlinear el-
liptic problems for the p(x)-Laplacian-like operators under no-flux boundary

conditions. Our result is obtained using a Fredholm-type result for a couple

of nonlinear operators, and the theory of variable exponent Sobolev spaces.

1. Introduction

In this paper we show the existence of weak solutions for the following nonlinear
elliptic problem for the p(x)-Laplacian-like operators originated from a capillary
phenomena,

−M
(
L(u)

)[
div(|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)− |u|p(x)−2u
]

= f(x, u)|u|t(x)
s(x) in Ω,

u = a constant on ∂Ω,∫
∂Ω

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)∂u
∂ν
dΓ = 0.

(1.1)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, and N ≥ 1,
p, s, t ∈ C(Ω) for any x ∈ Ω; M : R+ → R+ is a continuous function, f is a
Caratheodory function and

L(u) =
∫

Ω

|∇u|p(x) +
√

1 + |∇u|2p(x) + |u|p(x)

p(x)
dx

is a p(x)-Laplacian type operator. The study of differential and partial differential
equations with variable exponent has been received considerable attention in recent
years. This importance reflects directly into various range of applications. There
are applications concerning elastic mechanics [40], thermorheologic and electrorhe-
ologic fluids [5, 38], image restoration [14] and mathematical biology [29]. In the
context of the study of capillarity phenomena, many results have been obtained,
for example [6, 9, 16, 28, 31, 37, 45]. Recently, Avci [6] has considered the existence
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and multiplicity of solutions for the problem (1.1),without the term |u|p(x)−2u and
with boundary condition u = 0 on ∂Ω. In this case, we notice that if we choose the
functional L(u) =

∫
Ω

1
p(x) |∇u|

p(x) dx then we have the problem

−M
(∫

Ω

1
p(x)
|∇u|p(x) dx

)
div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

which is called the p(x)-Kirchhoff type equation.The problem (1.2) is a generaliza-
tion of a model introduced by Kirchhoff [13], who studied the equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx)∂2u

∂x2
= 0, (1.3)

which extends the classical D’Alembert’s wave equation, by considering the effect
of the changing in the length of the string during the vibration. A distinct feature
is that the (1.3) contains a nonlocal coefficient P0

h + E
2L

∫ L
0
|∂u∂x |

2 dx which depends
on the average 1

2L

∫ L
0

∣∣∂u
∂x

∣∣2 dx, and hence the equation is no longer a pointwise
equation. The parameters in (1.3) have the following meanings: L is the length of
the string, h is the area of the cross-section, E is the Young modulus of the material,
ρ is the mass density and P0 is the initial tension. Lions [35] has proposed an
abstract framework for the Kirchhoff-type equations. After the work by Lions [35],
various equations of Kirchhoff-type have been studied extensively, see e.g. [3, 13]
and [17]-[24]. The study of Kirchhoff type equations has already been extended
to the case involving the p-Laplacian (for details, see [17, 18, 22, 24]) and p(x)-
Laplacian (see [4, 15, 19, 20, 21, 30, 42]).

The nonlocal boundary condition in (1.1) have been studied by Berestycki and
Brezis [8], Ortega [36] , Amster et al. [2], Zhao et al. [44], Boureanou et al. [11],
Cabanillas et al. [12], Afrouzi et al. [1] and the references therein. They arise from
certain models in plasma physics:specifically,a model describing the equilibrium
of a plasma confined in a toroidal cavity, called a Tokamak machine. A detailed
description of this model can be found in the Appendix of [41].

Motivated by the above papers and the results in Avci [6], we consider (1.1) to
study the existence of weak solutions. We note that our problem has no variational
structure, so the most usual variational techniques can not used to study it. To
attack it we will employ a Fredholm type theorem for a couple of nonlinear operators
due to Dinca [23].

This article is organized as follows. In Section 2, we present some preliminaries
about variable exponent Sobolev spaces. In Sections 3, we give some existence
results of weak solutions of problem (1.1) and their proofs.

2. Preliminaries

To discuss problem (1.1), we need some theory on W 1,p(x)(Ω) which is called
variable exponent Sobolev space (for details, see [25]). Denote by S(Ω) the set of
all measurable real functions defined on Ω. Two functions in S(Ω) are considered
as the same element of S(Ω) when they are equal almost everywhere. Write

C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω},
h− := min

Ω
h(x), h+ := max

Ω
h(x) for every h ∈ C+(Ω).



EJDE-2015/219 NO-FLUX BOUNDARY PROBLEM 3

Define

Lp(x)(Ω) = {u ∈ S(Ω) :
∫

Ω

|u(x)|p(x) dx < +∞ for p ∈ C+(Ω)}

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf{λ > 0 :
∫

Ω

|u(x)
λ
|p(x) dx ≤ 1},

and
W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

with the norm

‖u‖ ≡ ‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Proposition 2.1 ([25]). The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable and
reflexive Banach spaces.

Proposition 2.2 ([25]). Set ρ(u) =
∫

Ω
|u(x)|p(x) dx. For any u ∈ Lp(x)(Ω), then

(1) for u 6= 0, |u|p(x) = λ if and only if ρ(uλ ) = 1;
(2) |u|p(x) < 1 (= 1;> 1) if and only if ρ(u) < 1 (= 1;> 1);

(3) if |u|p(x) > 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);

(4) if |u|p(x) < 1, then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x);
(5) limk→+∞ |uk|p(x) = 0 if and only if limk→+∞ ρ(uk) = 0;
(6) limk→+∞ |uk|p(x) = +∞ if and only if limk→+∞ ρ(uk) = +∞.

Proposition 2.3 ([25, 26]). If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for
x ∈ Ω, then there is a continuous (compact) embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω),
where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

Proposition 2.4 ([25, 27]). The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where
1

q(x) + 1
p(x) = 1 holds a.e. in Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have

the Hölder-type inequality∣∣ ∫
Ω

uv dx
∣∣ ≤ (

1
p−

+
1
q−

)|u|p(x)|v|q(x).

Theorem 2.5 ([23]). Let X and Y be real Banach spaces and two nonlinear oper-
ators T, S : X → Y such that

(1) T is bijective and T−1 is continuous.
(2) S is compact.
(3) Let λ 6= 0 be a real number such that: ‖(λT −S)(x)‖ → +∞ as ‖x‖ → +∞;
(4) There is a constant R > 0 such that ‖(λT − S)(x)‖ > 0 if ‖x‖ ≥ R,

dLS(I − T−1(Sλ ), B(θ,R), 0) 6= 0.
Then λI − S is surjective from X onto Y .

Here dLS(G,B, 0) denotes the Leray-Schauder degree. Throughout this paper,
let

V = {u ∈W 1,p(x)(Ω) : u|∂Ω = constant}.
The space V is a closed subspace of the separable and reflexive Banach space
W 1,p(x)(Ω) (See [10]), so V is also separable and reflexive Banach space with the
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usual norm of W 1,p(x)(Ω). The space V is the space where we will try to find weak
solutions for problem (1.1).

Definition 2.6. A function u ∈ V is said to be a weak solution of (1.1) if

M
(
L(u)

)[ ∫
Ω

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∇u∇v dx+

∫
Ω

|u|p(x)−2uv dx
]

=
∫

Ω

f(x, u)|u|t(x)
s(x)v dx ,

for all v ∈ V .

We assume that M and f satisfy the following hypotheses:
(H0) M : [0,+∞[→ [m0,+∞[ is a continuous and nondecreasing function with

m0 > 0.
(H1) f : Ω×R→ R is a Carathéodory function and there exist positive constants

c1 and c2 such that

|f(x, s)| ≤ c1 + c2|s|α(x)−1), ∀x ∈ Ω, s ∈ R,

for some α ∈ C+(Ω) such that 1 < α(x) < p∗(x) for x ∈ Ω.

3. Existence of solutions

In this section we discuss the existence of weak solutions of (1.1). Our main
result is as follows.

Theorem 3.1. Assume that (H0) and (H1) hold. Then (1.1) has a weak solution
in V .

Proof. To apply theorem (2.5), we take Y = V ′ and the operators T, S : V → V ′

in as follows:
〈Tu, v〉

= M
(
L(u)

)[ ∫
Ω

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∇u∇v dx+

∫
Ω

|u|p(x)−2uv dx
]

〈Su, v〉 =
∫

Ω

f(x, u)|u|t(x)
s(x)v dx

for all u, v ∈ V . Then u ∈ V is a solution of (1.1) if and only if

Tu = Su in V ′.

Next, we split the proof in several steps.
Step 1. We prove that T is an injection. First we observe that

Φ(u) = M̂
(
L(u)

)
, where M̂(s) =

∫ s

0

M(t) dt,

is a continuously Gâteaux differentiable function whose Gâteaux derivative at the
point u ∈ V is the functional Φ′(u) ∈ V ′ given by

〈Φ′(u), v〉 = 〈T (u), v〉 for all v ∈ V.
On the other hand, L ∈ C1(V,R) and

〈L′(u), v〉 =
∫

Ω

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∇u∇v dx+

∫
Ω

|u|p(x)−2uv dx
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for all u, v ∈ V . From [37, Prop. 3.1] and taking into account the inequality [39,
(2.2)],

〈|x|p−2x− |y|p−2y, x− y〉 ≥

Cp|x− y|
p if p ≥ 2

Cp
|x−y|2

(|x|+|y|)p−2 , (x, y) 6= (0, 0) if 1 < p < 2,
(3.1)

for all x, y ∈ RN . Then we obtain

〈L′(u)− L′(v), u− v〉 > 0 for all u, v ∈ V with u 6= v

which means that L′ is strictly monotone. So, by [43, Prop. 25.10], L is strictly
convex. Moreover, since M is nondecreasing, M̂ is convex in [0,+∞[. Thus, for
every u, v ∈ X with u 6= v, and every s, t ∈ (0, 1) with s+ t = 1, one has

M̂(L(su+ tv)) < M̂(sL(u) + tL(v)) ≤ sM̂(L(u)) + tM̂(L(v)).

This shows that Φ is strictly convex, and as Φ′(u) = T (u) in V ′ we infer that T is
strictly monotone in V , then T is an injection.
Step 2. We prove that the inverse T−1 : V ′ → V of T is continuous. For any
u ∈ V with ‖u‖ > 1, one has

〈T (u), u〉
‖u‖

= M
(
L(u

)[ ∫
Ω

(
|∇u|p(x) +

|∇u|2p(x)√
1 + |∇u|2p(x)

)
dx+

∫
Ω

|u|p(x) dx
]
/‖u‖

≥ m0

(
c

∫
Ω

√
1 + |∇u|2p(x) +

∫
Ω

|u|p(x) dx
)
≥ c0‖u‖p

−−1,

from which we have the coercivity of T . Since T is the Fréchet derivative of Φ,
T is continuous. Thus in view of the well known Minty-Browder theorem T is a
surjection and so T−1 : V ′ → V and it is bounded.

Now we prove the continuity of T−1. First, we verify that T is of type (S+).In
fact, if uν ⇀ u in V (so there exists R > 0 such that ‖uν‖ ≤ R ) and the strict
monotonicity of T we have

0 = lim sup
ν→∞

〈Tuν − Tu, uν − u〉 = lim
ν→∞

〈Tuν − Tu, uν − u〉

Then
lim
ν→∞

〈Tuν , uν − u〉 = 0

That is,

lim
ν→∞

M
(
L(uν)

)[ ∫
Ω

(
|∇uν |p(x)−2∇uν

+
|∇uν |2p(x)−2∇uν√

1 + |∇uν |2p(x)

)
(∇uν −∇u) dx+

∫
Ω

|uν |p(x)−2uν(uν − u) dx
]

= 0
(3.2)

Now, we have

|L(uν)| ≤ 1
p−

∫
Ω

(2|∇uν |p(x) + 1 + |uν |p(x)) dx

≤ 1
p−

(|Ω|+ Cp0
(3.3)

where p0 = p+ if ‖uν‖ ≤ 1, p0 = p− if ‖uν‖ > 1. So,
(
L(uν)

)
ν≥1

is bounded. Then,
since M is continuous, up to a subsequence, there is t0 ≥ 0 such that

M
(
L(uν)

)
→M(t0) ≥ m0 as ν →∞
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This and (3.2) imply

lim
ν→∞

[ ∫
Ω

(
|∇uν |p(x)−2∇uν +

|∇uν |2p(x)−2∇uν√
1 + |∇uν |2p(x)

)
(∇uν −∇u) dx

+
∫

Ω

|uν |p(x)−2uν(uν − u) dx
]

= 0

Using a similar method as in [37], we have

lim
ν→∞

∫
Ω

(
|∇uν −∇u|p(x) + |uν − u|p(x)

)
dx = 0.

Therefore,
uν → u strongly in W 1,p(x)(Ω)as ν →∞

Since (uν) ⊆ V and V is a closed subspace of W 1,p(x)(Ω), we have u ∈ V , so uν → u
in V .

Let (gν)ν≥1 be a sequence of V ′ such that gν → g in V ′.Let uν = T−1gν ,
u = T−1g, then Tuν = gν , Tu = g. By the coercivity of T , we deduce that (uν)ν≥1

is bounded in V ;up to a subsequence , we can assume that uν ⇀ u in V . Since
gn → g,

lim
n→+∞

〈Tun − Tu, un − u〉 = lim
n→+∞

〈gn − g, un − u〉 = 0.

Since T is of type (S+), un → u, so T−1 is continuous.
Step 3. We prove that S is a compact operator.

1. S is well defined. Indeed, using (H1) and t ∈ C(Ω), for all u, v in V we have

|〈Su, v〉| ≤
∫

Ω

|f(x, u)||u|t(x)
s(x)|v| dx

≤ C|f(x, u)| α(x)
α(x)−1

|v|α(x) ≤ C|f(x, u)| α(x)
α(x)−1

‖v‖ <∞
(3.4)

2. S is continuous on V . Let uν → u in V . Then proposition (2.3) implies that
uν → u in Ls(x)(Ω) and Lα(x)(Ω) So, up to a subsequence we deduce

uν → u a.e. in Ω (3.5)

|uν(x)|α(x) ≤ k(x) a.e. x ∈ Ω for some k ∈ L1(Ω) (3.6)

Since t ∈ C(Ω),
|uν |t(x)

s(x) → |u|
t(x)
s(x) a.e. x ∈ Ω.

Furthermore,
f(x, uν)→ f(x, u) a.e. x ∈ Ω,

Thus, we have
f(x, uν)|uν |t(x)

s(x) → f(x, u)|u|t(x)
s(x) a.e. x ∈ Ω.

But, it follows from (F1) and (3.6) that∣∣∣f(x, uν)|uν |t(x)
s(x) − f(x, u)|u|t(x)

s(x)

∣∣∣α′(x)

≤ C2(α′)+
[
|f(x, uν)|(α

′)+ + |f(x, u)|(α
′)+
]

≤ C(1 + k(x) + |u|α(x))

Note that C(1 + k(x) + |u|α(.)) ∈ L1(Ω). Applying the Dominated Convergence
Theorem with (3.5), we obtain

lim
ν→∞

∫
Ω

∣∣∣f(x, uν)|uν |t(x)
s(x) − f(x, u)|u|t(x)

s(x)

∣∣∣α′(x)

dx = 0
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This implies that

lim
ν→∞

∣∣∣f(x, uν)|uν |t(x)
s(x) − f(x, u)|u|t(x)

s(x)

∣∣∣
α′(x)

= 0 (3.7)

By direct computations we obtain

|〈Suν , v〉 − 〈Su, v〉| ≤
∫

Ω

∣∣∣f(x, uν)|uν |t(x)
s(x) − f(x, u)|u|t(x)

s(x)

∣∣∣|v| dx
≤ C

∣∣f(x, uν)|uν |t(x)
s(x) − f(x, u)|u|t(x)

s(x)

∣∣
α′(x)
‖v‖;

therefore, from (3.7)

|Suν − Su| ≤ C
∣∣f(x, uν)|uν |t(x)

s(x) − f(x, u)|u|t(x)
s(x)

∣∣
α′(x)

→ 0 (3.8)

So, Suν → Su in V ′.
3. Every bounded sequence (uν)ν has a subsequence (still denoted by (uν)ν )

for which (Suν)ν converges. Let (uν)ν be a bounded sequence of V , there exists a
subsequence again denoted by (uν)ν and u in V , such that

uν ⇀ u weakly in W 1,p(x)(Ω)

and by the compact embedding W 1,p(x)(Ω) ↪→ Lα(x)(Ω) , we have

uν → u in Lα(x)(Ω).

Hence, similarly to the proof of (3.8) we obtain

|Suν − Su| ≤ C
∣∣f(x, uν)|uν |t(x)

s(x) − f(x, u)|u|t(x)
s(x)

∣∣
α′(x)

→ 0

So Suν → Su.
Step 4.

‖(T − S)(u)‖ → ∞ as ‖u‖ → ∞ for u ∈ V.
In fact, after some computations we obtain

‖Tu‖ ≥ C0‖u‖p
−−1 for all u ∈ V with ‖u‖ > 1

and

‖Su‖ ≤ C1‖u‖θ + C2 for all u ∈ V , and some θ ∈ [α− − 1, α+ − 1]

Combining the above inequalities, we obtain

‖(T − S)(u)‖ ≥ ‖Tu‖ − ‖Su‖ ≥ C0‖u‖p
−−1 − C ′1‖u‖α

+−1 − C2 (3.9)

Since
lim
t→∞

(C0t
p−−1 − C ′1tα

+−1 − C2) =∞,

from (3.9) we conclude that ‖(T − S)(u)‖ → ∞ as ‖u‖ → ∞. Moreover, there
exists r0 > 1 such that ‖(T − S)(u)‖ > 1 for all u ∈ V , with ‖u‖ > r0.
Step 5. Set

W = {u ∈ V : ∃t ∈ [0, 1] such that u = tT−1(Su)}
Next,we prove that W is bounded in V . For u ∈W \ 0, i.e. u = tT−1(Su) for some
t ∈ [0, 1] we have

‖T (
u

t
)‖ = ‖Su‖ ≤ C1‖u‖θ + C2with t > 0 (3.10)

Then there exist two constants a, b > 0 such that

m0‖u‖p
+−1 ≤ a‖u‖α

−−1 + b if 0 < ‖u‖ < t,
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m0‖u‖p
−−1 ≤ a‖u‖α

−−1 + b if t ≤ ‖u‖ ≤ 1,

m0‖u‖p
−−1 ≤ a‖u‖α

+−1 + b if 1 < ‖u‖

Let g1, g2 : [0, 1]→ R and g3 :]1,∞[→ R be defined by

g1(t) = m0t
p+−1 − atα

−−1 − b, g2(t) = m0t
p−−1 − atα

−−1 − b,

g3(t) = m0t
p−−1 − atα

+−1 − b.

The sets {t ∈ [0, 1] : g1(t) ≤ 0}, {t ∈ [0, 1] : g2(t) ≤ 0} and {t ∈]1,∞[: g3(t) ≤ 0}
are bounded in R.

From the above inequalities and (3.10) we infer that W is bounded in V , so

W ⊆ B(0, r1) for some r1 > 0

Now, taking r = max{r0, r1}, it follows from [32, theorem 1.8] that

dLS(I − tT−1(S), B(0, r), 0) = 1 for all t ∈ [0, 1].

In particular
dLS(I − T−1(S), B(0, r), 0) = 1, .

Thus, the couple of nonlinear operators (T, S) satisfies the hypotheses of theorem
(2.5) for λ = 1. Then T − S : V → V ′ is surjective. Therefore, there exists u ∈ V
such that

(T − S)u = 0 in V ′

This completes the proof. �
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E-mail address: jquiqueb@unmsm.edu.pe


	1. Introduction
	2. Preliminaries
	3. Existence of solutions
	Acknowledgments

	References

