Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 191, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

CORDES NONLINEAR OPERATORS IN CARNOT GROUPS

GIUSEPPE DI FAZIO, MARIA STELLA FANCIULLO

Abstract

Our aim is to obtain L^{p} estimates for the second-order horizontal derivatives of the solutions for a nondivergence form nonlinear equation in Carnot groups.

1. Introduction

The $W^{2, p}$ estimates for elliptic differential equations and systems is a very interesting problem and many Authors have given several contributions to this problem from several different points of view (see [5, 4, 7]) using different approaches. There are essentially two main approaches to the problem: assuming on the coefficients of the equation the Cordes condition or the VMO condition. The first one consists of a geometric condition on the eigenvalues of linear operators. Cordes condition was introduced in 6 and studied by many authors (in the cases of nonlinear nonvariational equations and systems we quote [3, 4]). The second technique consists in assuming the coefficients of the operator to be in VMO-type classes (see [5, 7, 9, 10, and for more general setting see [1, [2]).

Here we obtain $W^{2, p}$ estimates for the following nonlinear nondivergence form equation

$$
a\left(x, u, X u, X^{2} u\right)=f
$$

where $X=\left(X_{1}, X_{2}, \ldots, X_{l}\right)$ is a system of Hörmander's vector fields on a Carnot group, and we assume a condition that in the particular case of a linear equation gives back the Cordes condition (see [8] for the case of the Heisenberg group).

Namely, we show that there exists a critical exponent $p_{0}>2$ such that if the datum f belongs to L^{p}, with $2<p<p_{0}$, then the second derivatives $X^{2} u$ of the solutions u have the same integrability as f.

2. Preliminaries

Let \mathcal{G} be a finite-dimensional, stratified, nilpotent Lie algebra. We assume $\mathcal{G}=$ $\oplus_{i=1}^{s} V_{i}$, where $\left[V_{i}, V_{j}\right] \subset V_{i+j}$ for $i+j \leq s$ and $\left[V_{i}, V_{j}\right]=0$ for $i+j>s$. Let X_{1}, \ldots, X_{l} be a basis for V_{1} and suppose that X_{1}, \ldots, X_{l} generate \mathcal{G} as a Lie algebra. Then for $2 \leq j \leq s$ we choose a basis $\left\{X_{i j}\right\}, 1 \leq i \leq k_{j}$, for V_{j} consisting of commutators of length j. We set $X_{i 1}=X_{i}, i=1, \ldots, l$ and $k_{1}=l$, and we call $X_{i 1}$ a commutator of length 1 . If \mathbb{G} is the simply connected Lie group associated to \mathcal{G} then

[^0]\mathbb{G} is called Carnot group. It is well known that the exponential mapping is a global diffeomorphism from \mathcal{G} to \mathbb{G} and then for any $g \in \mathbb{G}$ there exists $x=\left(x_{i j}\right) \in \mathbb{R}^{n}$, $1 \leq i \leq k_{j}, 1 \leq j \leq s, n=\sum_{j=1}^{s} k_{j}$, such that $g=\exp \left(\sum x_{i j} X_{i j}\right)$.

We now recall the definition of polynomials on the Carnot group \mathbb{G} given by Folland and Stein in [15].

A function P on \mathbb{G} is said to be a polynomial on \mathbb{G} if $P \circ \exp$ is a polynomial on the Lie algebra \mathcal{G}.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a basis of \mathbb{G} and $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ be the dual basis for \mathcal{G}^{*} we set $\eta_{i}=\xi_{i} \circ \exp ^{-1}$. Each η_{i} is a polynomial on \mathbb{G}, and $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ form a system of global coordinates on \mathbb{G}. Then every polynomial on \mathbb{G} can be written uniquely as

$$
P(x)=\sum_{I} a_{I} \eta^{I}(x), \quad \eta^{I}=\eta_{1}^{i_{1}} \cdots \eta_{n}^{i_{n}}, a_{I} \in \mathbb{R}
$$

where all but finitely many of the coefficients a_{I} vanish. Clearly η^{I} is homogeneous of degree $d(I)=\sum_{j=1}^{n} i_{j} d_{j}$, where d_{j} is the length of X_{j} as a commutator. We define the homogeneous degree of the polynomial P as $\max \left\{d(I): a_{I} \neq 0\right\}$.

Here we recall the definition of the Carnot-Carathéodory metric. An absolutely continuous curve $\gamma:[0, \tau] \rightarrow \mathbb{R}^{n}$ is called subunitary if there exists a measurable function $c=\left(c_{1}, c_{2}, \ldots, c_{l}\right):[0, \tau] \rightarrow \mathbb{R}^{l}$ such that $\gamma^{\prime}(t)=\sum_{j=1}^{l} c_{j}(t) X_{j}(\gamma(t))$, for a.e. $t \in[0, \tau]$, and $\|c\|_{\infty} \leq 1$. The Carnot-Carathéodory distance $d\left(x^{\prime}, x^{\prime \prime}\right)$ is defined as the infimum of those $\tau>0$ for which there exists a subunitary curve $\gamma:[0, \tau] \rightarrow \mathbb{R}^{n}$ with $\gamma(0)=x^{\prime}$ and $\gamma(\tau)=x^{\prime \prime}$.

We set $B_{r}\left(x_{0}\right)=\left\{x \in \mathbb{R}^{n}: d\left(x, x_{0}\right)<r\right\}$. When it is clear from the setting we will omit x_{0} or r. It is well known that the Carnot-Carathéodory balls satisfy a doubling condition, that is

$$
\left|B_{2 r}\left(x_{0}\right)\right| \leq 2^{Q}\left|B_{r}\left(x_{0}\right)\right|
$$

for all $r>0$ and $x_{0} \in \mathbb{R}^{n}$. The constant Q is the homogeneous dimension of \mathbb{G}.
We define the intrinsic Sobolev spaces for a bounded domain Ω in \mathbb{R}^{n}. Let $k \in \mathbb{N}$ and $p \geq 1$ we set

$$
W^{k, p}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R}: u, X_{i_{1}} \ldots X_{i_{j}} u \in L^{p}(\Omega), 1 \leq j \leq k\right\}
$$

endowed with the norm

$$
\|u\|_{W^{k, p}(\Omega)}=\|u\|_{L^{p}(\Omega)}+\sum_{h=1}^{k} \sum_{i_{j}=1}^{l}\left\|X_{i_{1}} X_{i_{2}} \ldots X_{i_{h}} u\right\|_{L^{p}(\Omega)}
$$

We define $W_{0}^{k, p}(\Omega)$ as the closure of $C_{0}^{\infty}(\Omega)$ in $W^{k, p}(\Omega)$ with respect to the above norm.

For $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ we denote the differential operator $X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{n}^{i_{n}}$ by X^{I} and $d(I)$ the homogeneous degree of X^{I}. We denote by $X u$ the gradient of u $\left(X_{1} u, X_{2} u, \ldots, X_{l}\right)$ and by $X^{2} u$ the hessian matrix $\left\{X_{i j} u\right\}_{i, j=1, \ldots, l}$.

In [17] the existence of approximation polynomials of Sobolev functions in Carnot groups and related Poincaré-type inequalities have been obtained. Here we state some results [17, Theorems 2.7 and 5.1], that we will use in the sequel.
Theorem 2.1. Let k be a positive integer and u a function in $W^{k, 1}(\Omega)$. Then there exists a polynomial P of degree less than k such that $\int_{\Omega} X^{I}(u-P) d x=0$ for any $0 \leq d(I)<k$.

Choosing first $q_{10}=p=2$ and $q_{21}=2, p=\frac{2 Q}{Q+2}$ in [17, Theorem 5.1], we obtain the following two inequalities that we collect in the same statement.

Theorem 2.2. Let B_{r} be a ball of \mathbb{R}^{n} and $u \in W^{2, \frac{2 Q}{Q+2}}\left(\bar{B}_{r}\right)$. Then there exists a polynomial of degree ≤ 1 such that

$$
\begin{gather*}
\int_{B_{r}}|u-P|^{2} d x \leq c r^{2} \int_{B_{r}}|X(u-P)|^{2} d x \tag{2.1}\\
\int_{B_{r}}|X(u-P)|^{2} d x \leq c\left(\int_{B_{r}}\left|X^{2} u\right|^{\frac{2 Q}{Q+2}} d x\right)^{\frac{Q+2}{Q}} \tag{2.2}
\end{gather*}
$$

where the constant c is independent of B_{r} and u. (The polynomial P is the same as in Theorem 2.1).

The following Theorem has been proved in [14], (for different cases see [13, 11, 12]).
Theorem 2.3. There exists a constant $C_{G} \geq 1$ such that for every $u \in W_{0}^{2,2}(\Omega)$ the following inequality holds

$$
\begin{equation*}
\int_{\Omega}\left|X^{2} u\right|^{2} d x \leq C_{G} \int_{\Omega}|\Delta u|^{2} d x \tag{2.3}
\end{equation*}
$$

where $\Delta u=\sum_{i=1}^{l} X_{i} X_{i} u$.

3. CaCCIOPPOLI-TYPE INEQUALITY AND $W^{2, p}$ ESTIMATES

Let Ω be a bounded domain in \mathbb{R}^{n}. Let $a(x, u, p, m): \Omega \times \mathbb{R} \times \mathbb{R}^{l} \times \mathbb{R}^{l^{2}} \rightarrow \mathbb{R}$ be a Carathéodory function satisfying the condition
(A) there exist three positive constants, α, γ and δ such that $C_{G} \gamma+\delta<1$, for all $M=\left\{m_{i j}\right\}_{i, j=1, \ldots, l} \in \mathbb{R}^{l} \times \mathbb{R}^{l}, u \in \mathbb{R}, p \in \mathbb{R}^{l}$,

$$
\left|\sum_{i=1}^{l} m_{i i}-\alpha[a(x, u, p, m)]\right|^{2} \leq \gamma|M|^{2}+\delta\left|\sum_{i=1}^{l} m_{i i}\right|^{2}, \quad \text { a.e. } x \in \Omega
$$

We consider the nonlinear nonvariational elliptic equation

$$
\begin{equation*}
a\left(x, u, X, X^{2} u\right)=f \tag{3.1}
\end{equation*}
$$

where $f \in L^{2}(\Omega)$.
Definition 3.1. A function $u \in W^{2,2}(\Omega)$ is called a solution of (3.1) if u satisfies (3.1) for a.e. x in Ω.

Remark 3.2. In the case of linear equation, i.e.

$$
\sum_{i, j=1}^{l} a_{i j}(x) X_{i} X_{j} u(x)=f
$$

condition (A) is stronger than the following Cordes condition (see [6, 18] for a comparison between condition (A) and Cordes condition in Euclidean setting).

Definition 3.3. The linear operator $L \equiv a_{i j}(x) X_{i} X_{j}$ satisfies the Cordes condition $K_{\epsilon, \sigma, \theta}$ if there exist $\epsilon \in(0,1], \sigma>0$ and $\theta>0$ such that for a.e. $x \in \Omega$, $\sum_{i=1}^{l} a_{i i}(x)>0$ and

$$
0<\frac{1}{\sigma} \leq \sum_{i, j=1}^{l} a_{i j}^{2}(x) \leq \frac{1}{l-1+\epsilon}\left(\sum_{i=1}^{l} a_{i i}(x)\right)^{2} \leq \frac{\theta^{2}}{l-1+\epsilon}
$$

Now we prove a Caccioppoli type inequality for solutions of (3.1).
Theorem 3.4. Let condition (A) hold true and $f \in L^{2}(\Omega)$. Then for any $u \in$ $W^{2,2}(\Omega)$ solution of (3.1), for any $r>0$ such that $B_{2 r} \Subset \Omega$, there exists a polynomial P of degree less than 2 such that $\int_{B_{2 r}} X^{I}(u-P) d x=0$ for any $0 \leq d(I)<2$, and

$$
\begin{equation*}
\int_{B_{r}}\left|X^{2} u\right|^{2} d x \leq c r^{-2} \int_{B_{2 r}}|X(u-P)|^{2} d x+c \int_{B_{2 r}} f^{2} d x \tag{3.2}
\end{equation*}
$$

Proof. Let $B_{2 r} \Subset \Omega$. From Theorem 2.1 there exists a polynomial P of degree less than two such that $\int_{B_{2 r}} X^{I}(u-P) d x=0$, for I with $d(I)<2$.

Let η be a $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with the properties $0 \leq \eta \leq 1, \eta=1$ in $B_{r}, \eta=0$ in $\mathbb{R}^{n} \backslash B_{2 r}$ and $|X \eta| \leq \frac{c}{r}$.

If we set $\mathcal{U}=\eta(u-P) \in W_{0}^{2,2}\left(B_{2 r}\right)$, since $X^{2} P=0$ (see the proof of [17, Theorem 2.7]), we have $X^{2}(u-P)=X^{2} u$ and $X^{2} \mathcal{U}=X^{2} u$ in B_{r}. We have

$$
\eta \Delta u=\eta\left(\Delta u-\alpha a\left(x, u, X u, X^{2} u\right)\right)+\eta \alpha f,
$$

which implies

$$
\begin{aligned}
|\eta \Delta u| & \leq \eta\left|\Delta u-\alpha a\left(x, u, X u, X^{2} u\right)\right|+|\eta \alpha f| \\
& \leq \eta\left[\gamma\left|X^{2} u\right|^{2}+\delta|\Delta u|^{2}\right]^{1 / 2}+\eta \alpha|f|
\end{aligned}
$$

Note that

$$
\begin{gather*}
\Delta \mathcal{U}=\eta \Delta u+A(u-P) \tag{3.3}\\
\eta X^{2} u=X^{2} \mathcal{U}-B(u-P) \tag{3.4}
\end{gather*}
$$

where

$$
\begin{equation*}
A(u-P)=(u-P) \Delta \eta+2 \sum X_{i} \eta X_{i}(u-P) \tag{3.5}
\end{equation*}
$$

and

$$
B(u-P)=\left\{(u-P) X_{i} X_{j} \eta+X_{i} \eta X_{j}(u-P)+X_{j} \eta X_{i}(u-P)\right\}_{i j}
$$

Then for $x \in B_{2 r}$,

$$
|\Delta \mathcal{U}| \leq|\eta \Delta u|+|A(u-P)| \leq \eta\left(\gamma\left|X^{2} u\right|^{2}+\delta|\Delta u|^{2}\right)^{1 / 2}+\eta \alpha|f|+|A(u-P)|
$$

from which it follows that for all $\epsilon>0$,

$$
\begin{aligned}
|\Delta \mathcal{U}|^{2} \leq & \eta^{2}\left(\gamma\left|X^{2} u\right|^{2}+\delta|\Delta u|^{2}\right)+(\eta \alpha|f|+|A(u-P)|)^{2} \\
& +2 \eta\left(\gamma\left|X^{2} u\right|^{2}+\delta|\Delta u|^{2}\right)^{1 / 2}(\eta \alpha|f|+|A(u-P)|) \\
\leq & \eta^{2}\left(\gamma\left|X^{2} u\right|^{2}+\delta|\Delta u|^{2}\right)+(\eta \alpha|f|+|A(u-P)|)^{2} \\
& +\epsilon \eta^{2}\left(\gamma\left|X^{2} u\right|^{2}+\delta|\Delta u|^{2}\right)+\frac{1}{\epsilon}(\eta \alpha|f|+|A(u-P)|)^{2} \\
= & (1+\epsilon) \eta^{2}\left(\gamma\left|X^{2} u\right|^{2}+\delta|\Delta u|^{2}\right)+\left(1+\frac{1}{\epsilon}\right)(\eta \alpha|f|+|A(u-P)|)^{2}
\end{aligned}
$$

$$
\leq(1+\epsilon) \eta^{2}\left(\gamma\left|X^{2} u\right|^{2}+\delta|\Delta u|^{2}\right)+2\left(1+\frac{1}{\epsilon}\right)\left(\eta^{2} \alpha^{2}|f|^{2}+|A(u-P)|^{2}\right)
$$

Then from 3.3 and 3.4,

$$
\begin{aligned}
|\Delta \mathcal{U}|^{2} \leq & (1+\epsilon) \gamma\left|X^{2}(\mathcal{U})-B(u-P)\right|^{2}+(1+\epsilon) \delta|\Delta \mathcal{U}-A(u-P)|^{2} \\
& +2\left(1+\frac{1}{\epsilon}\right) \eta^{2} \alpha^{2}|f|^{2}+2\left(1+\frac{1}{\epsilon}\right)|A(u-P)|^{2} \\
\leq & (1+\epsilon) \gamma\left(\left|X^{2}(\mathcal{U})\right|^{2}+|B(u-P)|^{2}+2\left|X^{2}(\mathcal{U})\right||B(u-P)|\right) \\
& +(1+\epsilon) \delta\left(|\Delta \mathcal{U}|^{2}+|A(u-P)|^{2}+2|\Delta \mathcal{U}||A(u-P)|\right) \\
& +2\left(1+\frac{1}{\epsilon}\right) \eta^{2} \alpha^{2}|f|^{2}+2\left(1+\frac{1}{\epsilon}\right)|A(u-P)|^{2} \\
\leq & (1+\epsilon) \gamma\left[(1+\epsilon)\left|X^{2}(\mathcal{U})\right|^{2}+\left(1+\frac{1}{\epsilon}\right)|B(u-P)|^{2}\right] \\
& +(1+\epsilon) \delta\left[(1+\epsilon)|\Delta \mathcal{U}|^{2}+\left(1+\frac{1}{\epsilon}\right)|A(u-P)|^{2}\right] \\
& +2\left(1+\frac{1}{\epsilon}\right) \eta^{2} \alpha^{2}|f|^{2}+2\left(1+\frac{1}{\epsilon}\right)|A(u-P)|^{2} \\
\leq & (1+\epsilon)^{2} \gamma\left|X^{2}(\mathcal{U})\right|^{2}+(1+\epsilon)^{2} \delta|\Delta \mathcal{U}|^{2} \\
& +c(\epsilon, \alpha, \gamma, \delta)\left[|A(u-P)|^{2}+|B(u-P)|^{2}+|f|^{2}\right] .
\end{aligned}
$$

We integrate on $B_{2 r}$ and apply 2.3 in Theorem 2.3 to obtain

$$
\begin{aligned}
\int_{B_{2 r}}|\Delta \mathcal{U}|^{2} d x \leq & (1+\epsilon)^{2} \gamma \int_{B_{2 r}}\left|X^{2}(\mathcal{U})\right|^{2} d x+(1+\epsilon)^{2} \delta \int_{B_{2 r}}|\Delta \mathcal{U}|^{2} d x \\
& +c \int_{B_{2 r}}\left(|f|^{2}+|A(u-P)|^{2}+|B(u-P)|^{2}\right) d x \\
\leq & (1+\epsilon)^{2}\left(\gamma C_{G}+\delta\right) \int_{B_{2 r}}|\Delta \mathcal{U}|^{2} d x \\
& +c \int_{B_{2 r}}\left(|f|^{2}+|A(u-P)|^{2}+|B(u-P)|^{2}\right) d x
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& {\left[1-(1+\epsilon)^{2}\left(\gamma C_{G}+\delta\right)\right] \int_{B_{2 r}}|\Delta \mathcal{U}|^{2} d x} \\
& \leq c \int_{B_{2 r}}\left(|f|^{2}+|A(u-P)|^{2}+|B(u-P)|^{2}\right) d x
\end{aligned}
$$

and then

$$
\int_{B_{2 r}}|\Delta \mathcal{U}|^{2} d x \leq c \int_{B_{2 r}}\left(|f|^{2}+|A(u-P)|^{2}+|B(u-P)|^{2}\right) d x
$$

Finally, we get that

$$
\begin{aligned}
\int_{B_{r}}\left|X^{2} u\right|^{2} d x & \leq \int_{B_{2 r}}\left|X^{2} \mathcal{U}\right|^{2} d x \leq C_{G} \int_{B_{2 r}}|\Delta \mathcal{U}|^{2} d x \\
& \leq c \int_{B_{2 r}}\left(|f|^{2}+|A(u-P)|^{2}+|B(u-P)|^{2}\right) d x
\end{aligned}
$$

Now we observe that from (3.5 and Poincaré inequality (2.1) we obtain

$$
\begin{aligned}
& \int_{B_{2 r}}|A(u-P)|^{2} d x \\
& \leq c \int_{B_{2 r}}|\Delta \eta|^{2}|u-P|^{2} d x+c \int_{B_{2 r}} \sum\left|X_{i} \eta\right|^{2}\left|X_{i}(u-P)\right|^{2} d x \\
& \leq c r^{-2}\left\{r^{-2} \int_{B_{2 r}}|u-P|^{2} d x+\int_{B_{2 r}}|X(u-P)|^{2} d x\right\} \\
& \leq c r^{-2} \int_{B_{2 r}}|X(u-P)|^{2} d x
\end{aligned}
$$

In the same way, we find that

$$
\int_{B_{2 r}}|B(u-P)|^{2} d x \leq c r^{-2} \int_{B_{2 r}}|X(u-P)|^{2} d x
$$

from which the Caccioppoli type inequality follows.
Next we state [19, Theorem 3.3] which is a generalization of the Gehring lemma 16.

Lemma 3.5. Let U and G be non-negative functions in Ω such that

$$
U \in L_{\mathrm{loc}}^{t}(\Omega), \quad G \in L_{\mathrm{loc}}^{s}(\Omega), \quad 1<t<s
$$

If there exists $c>1$ such that for every $B_{2 r} \Subset \Omega, r<1$,

$$
f_{B_{r}} U^{t} d x \leq c\left(f_{B_{2 r}} U d x\right)^{t}+c f_{B_{2 r}} G^{t} d x
$$

then there exists $\epsilon \in(0, s-t]$ such that $U \in L_{\mathrm{loc}}^{p}(\Omega)$, for all $p \in[t, t+\epsilon)$ and, for every $B_{2 r} \Subset \Omega$, with $r<1$, we have

$$
\left(f_{B_{r}} U^{p} d x\right)^{1 / p} \leq K\left[\left(f_{B_{2 r}} U^{t} d x\right)^{1 / t}+\left(f_{B_{2 r}} G^{p} d x\right)^{1 / p}\right]
$$

where the constant K depends on c, t and Q.
Our main Theorem is now an easy consequence of Caccioppoli-type inequality (3.2) and Lemma 3.5

Theorem 3.6. Let $u \in W^{2,2}(\Omega)$ be a solution of (3.1) then there exists $p_{0}>2$ such that, if $f \in L^{p}(\Omega)$, with $2 \leq p<p_{0}$, then $u \in W_{\operatorname{loc}}^{2, p}(\Omega)$ and for all $B_{2 r} \subset \subset \Omega$ we have

$$
\left(f_{B_{r}}\left|X^{2} u\right|^{p} d x\right)^{1 / p} \leq c\left(f_{B_{2 r}}\left|X^{2} u\right|^{2} d x\right)^{1 / 2}+\left(f_{B_{2 r}}|f|^{p} d x\right)^{1 / p}
$$

Proof. Let $B_{2 r} \subset \subset \Omega$, from the Caccioppoli-type inequality 3.2 and Poincaré inequality 2.2 it follows

$$
\int_{B_{r}}\left|X^{2} u\right|^{2} d x \leq c r^{-2}\left(\int_{B_{2 r}}\left|X^{2} u\right|^{\frac{2 Q}{Q+2}} d x\right)^{\frac{Q+2}{Q}}+\int_{B_{2 r}} f^{2} d x
$$

from which

$$
\begin{equation*}
f_{B_{r}}\left|X^{2} u\right|^{2} d x \leq c\left(f_{B_{2 r}}\left|X^{2} u\right|^{\frac{2 Q}{Q+2}} d x\right)^{\frac{Q+2}{Q}}+f_{B_{2 r}} f^{2} d x \tag{3.6}
\end{equation*}
$$

Now we can apply Lemma 3.5 with $U=\left|X^{2} u\right|^{\frac{2 Q}{Q+2}}, t=\frac{Q+2}{Q}, G=|f|^{\frac{2 Q}{Q+2}}$ and $s=\frac{p(Q+2)}{2 Q}$, to obtain the thesis.

References

[1] M. Bramanti, L. Brandolini; L^{p}-estimates for nonvariational hypoelliptic operators with VMO coefficients. Trans. Amer. Math. Soc., 352, n. 2 (2000), 781-822.
[2] M. Bramanti, M. S. Fanciullo; BMO estimates for nonvariational operators with discontinuous coefficients structured on Hormander's vector fields on Carnot groups, Advances in Diff. Eq., 18, 9-10, (2013), 955-1004.
[3] S. Campanato; Sistemi ellitticiin forma di divergenza. Regolaritá all'interno, Quaderni SNS di Pisa, (1980).
[4] S. Campanato; $\mathcal{L}^{2, \lambda}$ theory for nonlinear nonvariational differential systems, Rend. Mat. Appl., 10 (1990), 531-549.
[5] F. Chiarenza, M. Frasca, P. Longo; Interior $W^{2, p}$ estimates for non divergence elliptic equations with discontinuous coefficients, Ric. di Mat., 60, (1991), 149-168.
[6] H. O. Cordes; Zero order a priori estimates for solutions of elliptic differential equations, Proceedings of Symposia in Pure Mathematics IV (1961).
[7] G. Di Fazio; L^{p} estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7) 10, n.2, (1996) 409-420.
[8] G. Di Fazio, M. S. Fanciullo; $W_{\mathrm{loc}}^{2, p}$ estimates for Cordes nonlinear operators in the Heisenberg group, J. of Math. Analysis and Appl., 411, 947-052, (2014).
[9] G. Di Fazio, M. S. Fanciullo, P. Zamboni; Interior L^{p} estimates for degenerate elliptic equations in divergence form with VMO coefficients, Differential and Integral Equations, 25, 7-8 (2012), 619-628.
[10] G. Di Fazio, M. S. Fanciullo, P. Zamboni; L^{p} estimates for degenerate elliptic systems with VMO coefficients, St. Petersburg Math. J., 25, 6 (2014).
[11] G. Di Fazio, A. Domokos, M. S. Fanciullo, J. J. Manfredi; Subelliptic Cordes estimates in the Grushin plane, Manuscripta Mathematica, 120, 419-433 (2006).
[12] A. Domokos, M. S. Fanciullo; On the best constant for the Friedrichs-Knapp-Stein inequality in free nilpotent Lie groups of step two and applications to subelliptic PDE, J. of Geometric Analysis, 17,2, (2007), 245-252.
[13] A. Domokos, J. J. Manfredi; Subelliptic Cordes estimates, Proc. AMS, 133, no. 4, 1047-1056 (2005).
[14] G. B. Folland; Applications of analysis on nilpotent groups to partial differential equations, Bull. Amer. Math. Soc. 83 (1977) 912-930.
[15] G. B. Folland, E. M. Stein; Hardy spaces on homogeneous groups, Mathematical Notes 28, Princeton Univ. Press and Univ. of Tokyo Press 1982.
[16] M. Giaquinta; Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies No. 105, Princeton Univ. Press, Princeton 1983.
[17] G. Lu; Polynomials, Higher Order Sobolev Extension Theorems and Interpolation Inequalities on Weighted Folland-Stein Spaces on Stratified group, Acta Mathematica Sinica 16, n. 3, (2000), 405-444.
[18] A. Tarsia; On Cordes and Campanato conditions, Arch. of Inequalities and Applications, 2, (2004), 25-40.
[19] A. Zatorska-Goldstein; Very weak solutions of nonlinear subelliptic equations, Annales Acc. Scientiarum Fennicae, 30, (2005), 407-436.

Giuseppe Di Fazio
Dipartimento di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy

E-mail address: difazio@dmi.unict.it
Maria Stella Fanciullo
Dipartimento di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy

E-mail address: fanciullo@dmi.unict.it

[^0]: 2010 Mathematics Subject Classification. 35H20.
 Key words and phrases. Cordes condition; Carnot groups; nonlinear equations.
 (C) 2015 Texas State University - San Marcos.

 Submitted April 8, 2015. Published July 20, 2015.

