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A MATHEMATICAL MODEL FOR SUSPENSION BRIDGES
WITH ENERGY DEPENDENT BOUNDARY CONDITIONS

YONGDA WANG

Abstract. We suggest a new mathematical model for dynamical suspension

bridge with energy dependent boundary conditions. The roadway of the bridge

is viewed as a long-narrow thin rectangular plate. After reducing the evolution
problem corresponding to the model to a variational problem, we show that

the original evolution problem admits a unique solution. Moreover, the unique

solution is explicitly represented.

1. Introduction

In a recent paper, Ferrero-Gazzola [3] suggested a rectangular plate model for
the description of dynamical suspension bridges. The two short edges of the plate
are hinged and the remaining two edges are assumed to be free with no physical
constraints. Under these boundary conditions, the problem they derived has a
global variational structure. Then according to variational principles, they showed
that there exists a unique solution to the evolution problem with suitable initial
data. Subsequently, the same problem but not coercive was investigated by Wang
in [12], where global existence and finite time blow-up of solutions for different
initial data are obtained.

Several decades ago, Pugsley in his monograph [10] analyzed the theory on the
oscillations of suspension bridges under lateral winds. He stated that

in a complete bridge the wind forces are resisted partly by the
elastic flexure of the deck structure in a horizontal plane and partly
by gravity action induced by the cables.

In order to understand the nature and origin of various oscillations like purely
vertical type and purely torsional type, Pugsley gave an explanation by regarding
the deck as a flat plate and by considering the action of a lateral airstream upon
a section of its length, see [10, pp. 123-125]. As the lateral wind blows harder in
speed, the magnitude and frequency of the fluctuating air force on the deck will
increase, and the bridge deck will gradually start to oscillate in vertical type. The
behavior is more sensitive to the wind speed, and oscillations tend to change at
some critical wind speed, which is usually called in literature flutter speed.
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About 10 years later than Pugsley [10] and Scanlan [11] pointed out that

With such bridges natural structural vibration modes tend no longer
to be simply into “bending” and “torsion” but to be fully three-
dimensional in character, with components of vertical, torsional and
lateral sway motion . . .

The term “lateral sway motion” implies that the unsteady lateral force acting on the
plate has a crucial effect on the oscillation of the bridge. For this reason, Gazzola
[4] recently suggested to study models with dynamical boundary conditions in order
to display the oscillations appearing in the actual suspension bridges. And indeed,
it appears necessary to combine variational methods arising from energy balance
with aerodynamics effects due to the lateral wind.

For a different model of suspension bridges, Bleich-McCullough-Rosecrans-Vin-
cent [2] referred to the energies involved in the structure. They made a careful
quantitative analysis of the energies, such as the kinetic energy, the potential energy
and the elastic energy. Concerning the qualitative analysis on the energies, Gazzola
[4] claims that the flutter speed should be seen as a critical energy threshold which,
if exceeded, gives rise to uncontrolled phenomenon. Moreover, Arioli-Gazzola [1]
recently pointed out that

if the total energy increases over the critical energy threshold, then
tiny torsional oscillations may suddenly become, without interme-
diate stages, wider oscillations.

This implies that “the total energy of the system” and “the critical energy thresh-
old” have a direct influence on the oscillations of the plate. Therefore, it is necessary
to assume that the total energy of the system and the critical energy threshold ap-
pear explicitly in the model.

Motivated by these remarks, in this paper we suggest a new mathematical model
for dynamical suspension bridges. In this model, the differential equation is deduced
by applying a variational principle to the energy functional A (u) given in [3].
However, since we mainly focus on the effects of the unsteady lateral wind acting
on the edges of the bridge, the boundary conditions we established are dynamical
and depend on the energy of the system and on the critical energy threshold. This
paper could be considered as a first step in order to obtain more interesting and
challenging results.

This article is organized as follows. In Section 2 a new mathematical model
is suggested for dynamical suspension bridges. The boundary conditions we es-
tablished depends on the energy and then we derive the corresponding evolution
problem to be solved. An auxiliary problem is introduced in Section 3. The aux-
iliary problem, which admits a unique solution, plays a crucial role in solving our
original problem. In Section 4, we first transfer the original problem to the type
of the auxiliary problem. Then we show that there exists a unique solution to
the original problem, see Theorem 4.1. Moreover, the unique solution is explicitly
represented, see Theorem 4.2. Finally, we list several possible future developments
about the model in the last section.

2. The new mathematical model

Assume that an open rectangular domain Ω = (0, π) × (−l, l) ⊂ R2 represents
the roadway of a suspension bridge, where π is the length of the roadway and 2l is
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its width. A realistic assumption is that 2l � π. We recall the energy functional
A (u) given in [3] (see also [5, 7]):

A (u) =
∫ ∞

0

∫
Ω

(1
2
u2
t −

(1
2

(∆u)2 + (1− σ)(u2
xy − uxxuyy) +H − ϕu

))
dx dy dt,

where u = u(x, y, t) denotes the displacement of the plate in the vertical direction
at the point (x, y) and at time t > 0, σ ∈ (0, 1/2) is the Poisson ratio that depends
on the material of the roadway of the bridges,

∫
Ω
H dxdy is a potential energy

due to the restoring force h produced by the hangers of the suspension bridge,
ϕ = ϕ(x, y, t) represents an external source, such as the wind and the weight of the
plate.

By applying variational principles to the energy functional A (u) in the function
space C∞c (Ω), we obtain the following fourth order equation by adding a damping
term µut(µ ≥ 0) representing the positive structural damping of the structure,
including internal frictions

utt + ∆2u+ µut + h = ϕ, in Ω× (0,+∞). (2.1)

Since the plate is very narrow (compared to its length), we may assume that the
restoring elastic force due to the hangers acts on every point of the plate and has
the linear form h = ku with an elasticity constant k > 0. Then we have an initial
value problem

utt + ∆2u+ µut + ku = ϕ, (x, y) ∈ Ω, t > 0,

u(x, y, 0) = u0, (x, y) ∈ Ω,

ut(x, y, 0) = u1, (x, y) ∈ Ω,

(2.2)

which is to be complemented with some suitable boundary conditions. Here, u0 =
u0(x, y) is the initial position of the plate, u1 = u1(x, y) is the initial vertical velocity
of the plate.

As well-known, the external force ϕ acting on the bridge inserts an energy into
the structure. We denote it by

E(t) =
∫

Ω

ϕ(x, y, t)2 dx dy.

Assume that Eµ > 0 is given and represents the critical energy threshold (see
Arioli-Gazzola [1]) above which the bridge displays self-excited oscillations and it
increasingly depends on the damping parameter µ: for instance, Eµ = E0 + cµ for
some c > 0 and E0 > 0 being the threshold of the undamped problem.

Now, we turn to set up the boundary conditions to be associated to the initial
value problem (2.2). Due to several physical constraints being present on the sides
of the plate, we seek the boundary conditions which describe the physical situation
appearing in the actual suspension bridges. On the two short edges x = 0 and
x = π, which are connected with the ground, we assume that they are hinged and
then

u(x, y, t) = uxx(x, y, t) = 0, for (x, y) ∈ {0, π} × (−l, l), t > 0, (2.3)
which is the same as any other model we met. While on the other two sides y = ±l,
due to the continuous impact from the external forces occurring on them, it is
quite delicate to choose a kind of “stationary” boundary conditions. Hence, in the
present paper, we try to provide several suitable dynamical boundary conditions
which describes the situation more closely.
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At first, since the plate is very narrow, it is natural to assume that the cross
section of the plate tends to remain straight. But due to the appearance of the
torsional oscillation, the cross section cannot always be in a horizontal position.
Therefore, we assume that these two boundaries satisfy

uy(x,−l, t)− uy(x, l, t) = 0, x ∈ (0, π), t > 0,

uy(x,−l, t) + uy(x, l, t) = α, x ∈ (0, π), t > 0,
(2.4)

where α = α(x, t) is a real function, which depends on ϕ and u0 for y = ±l.
Furthermore, for any cross section of the bridge, the vertical displacements at the
two endpoints also depend on the initial position and the external forces acting
on these two points. Thus, it is reasonable to assume that the sum of the two
displacements fulfills

u(x,−l, t) + u(x, l, t) = β, for x ∈ (0, π), t > 0, (2.5)

where β = β(x, t) is a real function, which depends on ϕ(x, t) and u0(x) with

ϕ(x, t) =
ϕ(x, l, t) + ϕ(x,−l, t)

2
, u0(x) =

u0(x, l) + u0(x,−l)
2

.

Moreover, the vibration of the cross section will switch to some different kind of
oscillations, such as the torsional oscillation, when the inserted energy E(t) exceeds
Eµ. Therefore, as long as E(t) ≤ Eµ, we assume that there is only vertical vibration
appearing in the motion, then the difference between the two displacements should
be zero, that is,

u(x,−l, t)− u(x, l, t) = 0, for x ∈ (0, π). (2.6)

While if E(t) > Eµ, the torsional oscillation begins to arise and its amplitude
increases as the energy E(t) → ∞, which means that the difference between the
two displacements is related to the energy E(t). Concretely, if E(t) ↓ Eµ, then the
motion tends to vertical-type so that

u(x,−l, t)− u(x, l, t)→ 0,

while if E(t) → ∞, then the difference also increases. But it cannot increase to
infinity because the bridge will collapse earlier. Therefore, as long as E(t) > Eµ,
the boundaries are assumed to satisfy the equation

d

dt

{
[u(x,−l, t)− u(x, l, t)]

E(0)− Eµ
E(t)− Eµ

exp
(E(0)
Eµ
− E(t)

Eµ

)}
= γ, for x ∈ (0, π),

(2.7)
here we assume E(0) > Eµ and γ = γ(x, t) is a real function satisfying

γ has the same sign as (u0(x,−l)− u0(x, l)).

In this case, the conditions (2.6)-(2.7) can be combined into

ut(x,−l, t)− ut(x, l, t)− η(t)(u(x,−l, t)− u(x, l, t)) = θ(t)γ, for x ∈ (0, π), t > 0,
(2.8)

where

θ(t) =
(E(t)− Eµ)+

E(0)− Eµ
exp

(E(t)
Eµ
− E(0)

Eµ

)
, (2.9)

η(t) = E ′(t)E(t)
( 1
Eµ

+
1

(E(t)− Eµ)+

)
(2.10)
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with (E(t)− Eµ)+ = max{E(t)− Eµ, 0}, E ′(t) = d
dtE(t) and

E(t) =

{
−1, E(t) ≤ Eµ,
1, E(t) > Eµ.

(2.11)

Summarizing, the boundary conditions for a rectangular plate Ω modeling dy-
namical suspension bridges are (2.3)-(2.5) and (2.8), which together with (2.2) yield
an evolution problem

utt + ∆2u+ µut + ku = ϕ, (x, y) ∈ Ω, t > 0,

u(x, y, 0) = u0, (x, y) ∈ Ω,

ut(x, y, 0) = u1, (x, y) ∈ Ω,

(2.12)

with the boundary conditions: for every t > 0,
u(x, y, t) = uxx(x, y, t) = 0, (x, y) ∈ {0, π} × (−l, l),

uy(x,−l, t)− uy(x, l, t) = 0, x ∈ (0, π),

uy(x,−l, t) + uy(x, l, t) = α, x ∈ (0, π),

u(x,−l, t) + u(x, l, t) = β, x ∈ (0, π),

ut(x,−l, t)− ut(x, l, t)− η(t)(u(x,−l, t)− u(x, l, t)) = θ(t)γ, x ∈ (0, π).

(2.13)

The dynamical boundary conditions (2.13) are energy dependent boundary condi-
tions since the energy E(t) appears explicitly.

3. An Auxiliary Problem

In this section we give an auxiliary problem which plays a crucial role in solving
the original problem (2.12)-(2.13). We first introduce a subspace of H2(Ω) denoted
by

V := {u ∈ H2(Ω) : u = 0 on ∂Ω and uy = 0 on (0, π)× {−l, l}}.
Clearly, H2

0 (Ω) ⊂ V ⊂ H1
0 (Ω)∩H2(Ω). Hence, one may define a scalar product on

the space V by

(u, v)V =
∫

Ω

∆u∆v dx dy, for any u, v ∈ V,

which induces the norm

‖u‖V =
(∫

Ω

|∆u|2 dx dy
)1/2

, for all u ∈ V.

Now we consider the nonhomogeneous linear problem

vtt + ∆2v + µvt + kv = f, (x, y) ∈ Ω, t > 0,

v(x, y, t) = vxx(x, y, t) = 0, (x, y) ∈ {0, π} × (−l, l), t > 0,

v(x, y, t) = vy(x, y, t) = 0, (x, y) ∈ (0, π)× {−l, l}, t > 0,

v(x, y, 0) = v0, (x, y) ∈ Ω,

vt(x, y, 0) = v1, (x, y) ∈ Ω,

(3.1)

where f = f(x, y, t) ∈ C0([0,∞);L2(Ω)), v0 = v0(x, y) ∈ V and v1 = v1(x, y) ∈
L2(Ω).
Claim. Problem (3.1) admits a unique weak solution

v ∈ C0([0,∞);V ) ∩ C1([0,∞);L2(Ω)).
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Actually, the variational problem (3.1) is very analogous to [3, problem (22)]
if we take the nonlinear term h = kv. The only difference lies in the boundary
conditions on (0, π)×{−l, l}, but this has no influence when we solve it by following
the procedure in [3]. Hence, we only list the key steps, for details see [3, Section 8].

Step 1. Consider the approximated problems for m ≥ 1

v′′m + Lvm + µv′m + Pm(kvm) = Pm(f), t ∈ [0, τm)

v(0) = vm0 , v′(0) = vm1
(3.2)

where L is defined by 〈Lu, v〉 := (u, v)V for any u, v ∈ V , Pm : V → Wm is the
orthogonal projection onto Wm, which is spanned by the eigenfunctions {wm}m≥1

of the problem

∆2w = λw, (x, y) ∈ Ω,

w(x, y) = wxx(x, y) = 0, (x, y) ∈ {0, π} × (−l, l),
w(x, y) = wy(x, y) = 0, (x, y) ∈ (0, π)× {−l, l}.

By Galerkin-type procedure, we obtain that problem (3.2) has a unique local so-
lution vm ∈ C2([0, τm);V ), where [0, τm) is the maximal interval of the continuation
of vm.

Step 2. The solution sequence {vm} is uniform bounded.
Indeed, testing (3.2) with v′m and integrating over (0, t), we have by several

estimates
‖vm‖2V + ‖v′m‖2L2 ≤ C for any t ∈ [0, τm) and m ≥ 1,

where C is independent of m and t. Hence, the solution vm is globally defined in
[0,∞) and the sequence {vm} is bounded in C0([0,∞);V ) ∩ C1([0,∞);L2(Ω)).

Step 3. {vm} admits a strongly convergent subsequence in the set C0([0,∞);V )∩
C1([0,∞);L2(Ω)).

By Ascoli-Arzelà Theorem, we deduce that, up to subsequences, there exists a
function v ∈ C0([0,∞);L2(Ω)) such that vm → v strongly in C0([0,∞);L2(Ω)).

On the other hand, the sequence {vm} is a Cauchy sequence in the space
C0([0,∞);V ) ∩ C1([0,∞);L2(Ω)). Hence, up to subsequences,

vm → v in C0([0,∞);V ) ∩ C1([0,∞);L2(Ω)) as m→∞.

Step 4. Take the limit in (3.2) and then we prove the existence of solution to (3.1).

Step 5. The solution to (3.1) is unique.
Assume that v1, v2 are two solutions of (3.1), denote v = v1 − v2. Then using v′

as a test function, we obtain after integration over (0, t)

‖v′‖2L2 + ‖v‖2V = −2µ
∫ t

0

‖v′(s)‖2L2ds ≤ 0,

from which it immediately follows that v = 0. Therefore, the problem (3.1) admits
a unique weak solution v ∈ C0([0,∞);V ) ∩ C1([0,∞);L2(Ω)).
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4. Main Results

Due to the dynamical boundary conditions (2.13), it is not easy to solve the
original problem (2.12)-(2.13) directly. Hence, we first transfer it to a simpler case,
which uses the auxiliary problem. Recalling the boundary conditions (2.4), we have

uy(x, l, t) = uy(x,−l, t) = α/2, for any x ∈ (0, π), t > 0.

Moreover, let β be a C1 function in t, then we obtain by (2.5) and (2.8) for any
x ∈ (0, π)

ut(x, l, t)− η(t)u(x, l, t) = g1(x, t), t > 0,

u(x, l, 0) = u0(x, l),

and

ut(x,−l, t)− η(t)u(x,−l, t) = g2(x, t), t > 0,

u(x,−l, 0) = u0(x,−l),

where g1(x, t) = 1
2 (βt(x, t) − η(t)β(x, t)) − 1

2θ(t)γ(x, t) and g2(x, t) = 1
2 (βt(x, t) −

η(t)β(x, t)) + 1
2θ(t)γ(x, t). For any fixed x ∈ (0, π), they are first order ordi-

nary differential problems with respect to t, and then one gets the explicit rep-
resentation of the values of u on (0, π) × {−l, l}, which we denote by (h1, h2) =
(u(x, l, t), u(x,−l, t)). Then the problem (2.12)-(2.13) reduces to an evolution lin-
ear problem

utt + ∆2u+ µut + ku = ϕ, (x, y) ∈ Ω, t > 0,

u(x, y, 0) = u0, (x, y) ∈ Ω,

ut(x, y, 0) = u1, (x, y) ∈ Ω

(4.1)

with nonhomogeneous boundary conditions

u(x, y, t) = uxx(x, y, t) = 0, (x, y) ∈ {0, π} × (−l, l), t > 0,

u(x, y, t) = h1, uy(x, y, t) = α/2, (x, y) ∈ (0, π)× {l}, t > 0,

u(x, y, t) = h2, uy(x, y, t) = α/2, (x, y) ∈ (0, π)× {−l}, t > 0.
(4.2)

Now we want to reduce the boundary conditions (4.2) to the homogeneous case.
To this end, it is necessary to construct a suitable inverse trace operator. Note that
Ω ⊂ R2 is a rectangular domain. Let us define the space

H4
∗ (Ω) := {u ∈ H4(Ω) : u = uxx = 0 on {0, π} × (−l, l)}

and a continuous map

T : H4
∗ (Ω)→

2∏
i=1

(
H7/2(Σi)×H5/2(Σi)×H3/2(Σi)×H1/2(Σi)

)
φ 7→

2∏
i=1

(
φ|Σi , (φy)|Σi , (φyy)|Σi , (φyyy)|Σi

)
where Σ1 := (0, π)× {l}, Σ2 := (0, π)× {−l}. For more details, see [8, Section 2.5]
or [6, Chapter 1].

Denote the range of T by R(T ) := T (H4
∗ (Ω)) and define the following norm on

R(T ),

‖v‖R(T ) := inf{‖w‖H4(Ω) : w ∈ H4
∗ (Ω), T (w) = v} for any v ∈ R(T ),
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then R(T ) is a Banach space with the norm ‖ · ‖R(T ). Therefore, the restriction of
the previous map T to (ker(T ))⊥, i.e, T|(ker(T ))⊥ : (ker(T ))⊥ → R(T ) is an isometric
isomorphism.

Since R(T ) ⊂
∏2
i=1

(
H7/2(Σi)×H5/2(Σi)×H3/2(Σi)×H1/2(Σi)

)
, one may

represent T as (T1, T2, T3, T4) with

T1 : H4
∗ (Ω)→

2∏
i=1

H7/2(Σi), T2 : H4
∗ (Ω)→

2∏
i=1

H5/2(Σi),

T3 : H4
∗ (Ω)→

2∏
i=1

H3/2(Σi), T4 : H4
∗ (Ω)→

2∏
i=1

H1/2(Σi),

which are continuous maps from H4
∗ (Ω) to the respective spaces each of them en-

dowed with its normal norm. Then one may define the four subspaces

V1 := {v ∈ R(T ) : v = (T1(w), 0, 0, 0), w ∈ H4
∗ (Ω)},

V2 := {v ∈ R(T ) : v = (0, T2(w), 0, 0), w ∈ H4
∗ (Ω)},

V3 := {v ∈ R(T ) : v = (0, 0, T3(w), 0), w ∈ H4
∗ (Ω)},

V4 := {v ∈ R(T ) : v = (0, 0, 0, T4(w)), w ∈ H4
∗ (Ω)}.

Concerning the fact that T|(ker(T ))⊥ is an isometric isomorphism and the continuity
of the map T , one can show that Vi (i = 1, 2, 3, 4) are closed in R(T ) endowed with
‖ · ‖R(T ).

Now, let α ∈ C2([0,∞);V2), β ∈ C1([0,∞);V1), γ ∈ C0([0,∞);V1) and h1, h2

be in C2([0,∞);V1). Then one may define the map

w := T−1
|(kerT )⊥

((h1, α/2, 0, 0)× (h2, α/2, 0, 0))

with w = hi, wy = α/2, wyy = 0 and wyyy = 0 on the boundary Σi. In this way
we have that w ∈ C2([0,∞);H4

∗ (Ω)). Then putting u = v + w (v to be fixed) into
the problem (4.1)-(4.2), we obtain the following variational problem

vtt + ∆2v + µvt + kv = ϕ̃, (x, y) ∈ Ω, t > 0,

v(x, y, t) = vxx(x, y, t) = 0, (x, y) ∈ {0, π} × (−l, l), t > 0,

v(x, y, t) = vy(x, y, t) = 0, (x, y) ∈ (0, π)× {−l, l}, t > 0,

v(x, y, 0) = v0, (x, y) ∈ Ω,

vt(x, y, 0) = v1, (x, y) ∈ Ω,

(4.3)

where ϕ̃ = ϕ−wtt−∆2w−µwt−kw, v0 = u0(x, y)−w(x, y, 0) and v1 = u1(x, y)−
wt(x, y, 0).

Recalling the function space

H2
∗ (Ω) := {u ∈ H2(Ω) : u = 0 on {0, π} × (−l, l)},

which is defined in [3], we have the uniqueness result.

Theorem 4.1. Assume that ϕ ∈ C0([0,∞);L2(Ω)), u0 ∈ H2
∗ (Ω) and u1 ∈ L2(Ω).

Then there exists a unique solution to the problem (2.12)-(2.13).

Proof. It is easy to see that the functions ϕ̃, v0 and v1 satisfy

ϕ̃ ∈ C0([0,∞);L2(Ω)), v0 ∈ V, v1 ∈ L2(Ω).
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Hence, we obtain from Section 3 that the problem (4.3) has a unique solution

v ∈ C0([0,∞);V ) ∩ C1([0,∞);L2(Ω)).

Then, according to the arguments above,

u = v + w ∈ C0([0,∞);H2
∗ (Ω)) ∩ C1([0,∞);L2(Ω))

is the unique solution of the original problem (2.12)-(2.13) with the initial conditions
u(x, y, 0) = u0, ut(x, y, 0) = u1 and the boundary conditions (2.3), (2.4), (2.5),
(2.8). �

Since (2.12)-(2.13) is a linear problem, it is possible to find an explicit form of
the unique solution. We first consider an initial value problem for S = S(t)

S′′ + µS′ + aS = f(t), t > 0,

S(0) = A, S′(0) = B
(4.4)

where f(t) is a given function, µ and a are positive constants, A,B are constants.
We know that (4.4) is a second-order ordinary differential problem. According to

the eigenvalue method, we have the following three cases if we denote δ = µ2 − 4a:

Case 1. If δ < 0, then the two eigenvalues are λ1 = −µ2 +
√
−δ
2 i and λ2 = −µ2−

√
−δ
2 i.

Hence, we have

S(t) = exp
(
− µ

2
t
)

cos
(√−δ

2
t
)(
A+

2√
−δ

∫ t

0

exp
(µ

2
s
)

cos
(√−δ

2
s
)
f(s)ds

)
− 2√
−δ

exp
(
− µ

2
t
)

sin
(√−δ

2
t
)(
B +

µ

2
A

+
∫ t

0

exp
(µ

2
s
)

sin
(√−δ

2
s
)
f(s)ds

)
;

Case 2. If δ = 0, then the two eigenvalues are λ1 = λ2 = −µ2 . Therefore,

S(t) =
(
A+

(
B +

µ

2
A
)
t
)

exp
(
− µ

2
t
)
− exp

(
− µ

2
t
) ∫ t

0

(s− t) exp
(µ

2
s
)
f(s)ds;

Case 3. If δ > 0, then the two eigenvalues are λ1 = −µ2 +
√
δ

2 and λ2 = −µ2 −
√
δ

2 .
Therefore,

S(t) = exp
((
− µ

2
+

√
δ

2

)
t
)(µ+

√
δ

2
√
δ
A+

1√
δ
B

+
1√
δ

∫ t

0

exp
(
−
(
− µ

2
+

√
δ

2

)
s
)
f(s)ds

)
+ exp

((
− µ

2
−
√
δ

2

)
t
)(√δ − µ

2
√
δ
A

− 1√
δ
B − 1√

δ

∫ t

0

exp
(
−
(
− µ

2
−
√
δ

2

)
s
)
f(s)ds

)
.
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To obtain a Fourier series, we introduce the following

u0m(y) =
2
π

∫ π

0

u0(x, y) sin(mx)dx, u1m(y) =
2
π

∫ π

0

u1(x, y) sin(mx)dx,

αm(t) =
2
π

∫ π

0

α(x, t) sin(mx)dx, βm(t) =
2
π

∫ π

0

β(x, t) sin(mx)dx

γm(t) =
2
π

∫ π

0

γ(x, t) sin(mx)dx, ϕm(y, t) =
2
π

∫ π

0

ϕ(x, y, t) sin(mx)dx

(4.5)

and define a function by

Rm(t) = θ(t)
(u0m(l)− u0m(−l)

2l
−
∫ t

0

γm(s)
2l

ds
)
, t > 0, (4.6)

here θ(t) is as in (2.9).
Then the unique solution to the original problem (2.12)-(2.13) can be explicitly

represented.

Theorem 4.2. Assume that the functions ϕ ∈ C0([0,∞);L2(Ω)), u0 ∈ H2
∗ (Ω) and

u1 ∈ L2(Ω). Then the unique solution to (2.12)-(2.13) is given by

u(x, y, t) =
∞∑
m=1

Um(y, t) sin(mx) (4.7)

with

Um(y, t) =
∞∑
n=1

(Tm)n(t) sin
(nπ
l
y
)

+
∞∑
n=1

(Sm)n(t) cos
(nπ
l
y
)

+ Cm(t)y +Dm(t),

(4.8)
where (Tm)n(t), (Sm)n(t) and Dm(t) are in the form of S(t), the solution of (4.4),
Cm(t) is as in (4.6).

Proof. According to the boundary conditions for x = 0, π, we seek the solution u
of the problem (2.12)-(2.13) in the form

u(x, y, t) =
∞∑
m=1

Um(y, t) sin(mx). (4.9)

Inserting (4.9) in (2.12)-(2.13) and recalling (4.5), for every m ≥ 1, we have

(Um)tt + (Um)yyyy − 2m2(Um)yy + (m4 + k)Um + µ(Um)t
= ϕm(y, t), y ∈ (−l, l), t > 0,

Um(y, 0) = u0m(y), y ∈ (−l, l),
(Um)t(y, 0) = u1m(y), y ∈ (−l, l),

(4.10)

with the boundary conditions

(Um)y(−l, t)− (Um)y(l, t) = 0, t > 0,

(Um)y(−l, t) + (Um)y(l, t) = αm(t), t > 0,

Um(−l, t) + Um(l, t) = βm(t), t > 0,

(Um)t(−l, t)− (Um)t(l, t)− η(t)(Um(−l, t)− Um(l, t)) = γm(t)θ(t), t > 0.
(4.11)
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Now, we look for the solution to (4.10)-(4.11) in the form of (4.8); that is,

Um(y, t) =
∞∑
n=1

(Tm)n(t) sin
(nπ
l
y
)

+
∞∑
n=1

(Sm)n(t) cos
(nπ
l
y
)

+ Cm(t)y +Dm(t).

Putting it into the equation in (4.10), we obtain

∞∑
n=1

(
(Tm)′′n(t) + µ(Tm)′n(t) +

((
m2 +

(nπ
l

)2 )2

+ k
)

(Tm)n(t)
)

sin
(nπ
l
y
)

+
∞∑
n=1

(
(Sm)′′n(t) + µ(Sm)′n(t) +

((
m2 +

(nπ
l

)2)2

+ k
)

(Sm)n(t)
)

cos
(nπ
l
y
)

+ C ′′m(t)y + µC ′m(t)y + (m4 + k)Cm(t)y +D′′m(t) + µD′m(t) + (m4 + k)Dm(t)

= ϕm(y, t).

For Cm(t) being as in the form in (4.6), we define the function

φm(y, t) = C ′′m(t)y + (m4 + k + µη(t))Cm(t)y − µγm(t)θ(t)
2l

y

and let ϕm(y, t) = ϕm(y, t)− φm(y, t) + φm(y, t), then it follows that

C ′m(t)− η(t)Cm(t) = −γm(t)θ(t)
2l

, (4.12)

and

∞∑
n=1

(
(Tm)′′n(t) + µ(Tm)′n(t) +

((
m2 +

(nπ
l

)2)2

+ k
)

(Tm)n(t)
)

sin
(nπ
l
y
)

+
∞∑
n=1

(
(Sm)′′n(t) + µ(Sm)′n(t) +

((
m2 +

(nπ
l

)2
)2

+ k

)
(Sm)n(t)

)
cos
(nπ
l
y
)

+D′′m(t) + µD′m(t) + (m4 + k)Dm(t)

=
∞∑
n=1

(ϕ1m)n (t) sin
(nπ
l
y
)

+
∞∑
n=1

(ϕ2m)n (t) cos
(nπ
l
y
)

+ ϕm(t),

(4.13)
where

(ϕ1m)n (t) =
1
l

∫ l

−l
(ϕm(y, t)− φm(y, t)) sin

(nπ
l
y
)
dy,

(ϕ2m)n (t) =
1
l

∫ l

−l
(ϕm(y, t)− φm(y, t)) cos

(nπ
l
y
)
dy,

ϕm(t) =
1
2l

∫ l

−l
ϕm(y, t)dy.
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The initial conditions yield

∞∑
n=1

(Tm)n(0) sin
(nπ
l
y
)

+
∞∑
n=1

(Sm)n(0) cos
(nπ
l
y
)

+Dm(0)

=
∞∑
n=1

(A1m)n sin
(nπ
l
y
)

+
∞∑
n=1

(A2m)n cos
(nπ
l
y
)

+Am, y ∈ (−l, l),

∞∑
n=1

(Tm)′n(0) sin
(nπ
l
y
)

+
∞∑
n=1

(Sm)′n(0) cos
(nπ
l
y
)

+D′m(0)

=
∞∑
n=1

(B1m)n sin
(nπ
l
y
)

+
∞∑
n=1

(B2m)n cos
(nπ
l
y
)

+Bm, y ∈ (−l, l),

(4.14)

where

(A1m)n =
1
l

∫ l

−l
(u0m(y)− Cm(0)y) sin

(nπ
l
y
)
dy,

(A2m)n =
1
l

∫ l

−l
(u0m(y)) cos

(nπ
l
y
)
dy,

(B1m)n =
1
l

∫ l

−l
(u1m(y)− C ′m(0)y) sin

(nπ
l
y
)
dy,

(B2m)n =
1
l

∫ l

−l
(u1m(y)) cos

(nπ
l
y
)
dy,

Am =
1
2l

∫ l

−l
u0m(y)dy, Bm =

1
2l

∫ l

−l
u1m(y)dy.

Assume that the functions αm(t), βm(t) and γm(t) are given by

αm(t) = 2
∞∑
n=1

nπ

l
(Tm)n(t) cos(nπ), t > 0,

βm(t) = 2
∞∑
n=1

(Sm)n(t) cos(nπ) + 2Dm(t), t > 0,

γm(t) = −2l(C ′m(t)− η(t)Cm(t))/θ(t), t > 0,

(4.15)

then the boundary conditions are satisfied. Moreover, we are led to the several
ordinary differential problems

C ′m(t)− η(t)Cm(t) = −γm(t)θ(t)
2l

, t > 0,

Cm(t) =
u0m(l)− u0m(−l)

2l
, t = 0 ;

(4.16)

D′′m(t) + µD′m(t) + (m4 + k)Dm(t) = ϕm(t), t > 0,

Dm(t) = Am, t = 0,

D′m(t) = Bm, t = 0 ;

(4.17)
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(Tm)′′n(t) + µ(Tm)′n(t) +
(

(m2 +
(nπ
l

)2

)2 + k
)

(Tm)n(t) = (ϕ1m)n (t), t > 0,

(Tm)n(t) = (A1m)n, t = 0,

(Tm)′n(t) = (B1m)n, t = 0 ;
(4.18)

(Sm)′′n(t) + µ(Sm)′n(t) +
(

(m2 +
(nπ
l

)2

)2 + k
)

(Sm)n(t) = (ϕ2m)n (t), t > 0,

(Sm)n(t) = (A2m)n, t = 0,

(Sm)′n(t) = (B2m)n, t = 0.
(4.19)

To complete the proof, we need to check that problem (4.16) admits a solution
in the form Rm(t) and that the problems (4.17)-(4.19) have solutions in the form of
S(t). Since the last three problems depend on Cm(t), we first consider the problem
(4.16). In fact, this is a first order ordinary differential problem and we know that
the solution is

Cm(t) = Cm(0) exp
(∫ t

0

η(s)ds
)

− exp
(∫ t

0

η(s)ds
)∫ t

0

γm(s)θ(s)
2l

exp
(
−
∫ s

0

η(τ)dτ
)
ds.

Since η(t) is not a continuous function, see (2.10), to compute conveniently, we
denote E(t) given in (2.11) here by

E(t) =


−1, E(t) ≤ Eµ − ε,
1
ε

(
E(t)− Eµ

)
, Eµ − ε < E(t) ≤ Eµ + ε,

1, E(t) > Eµ + ε.

(4.20)

Then we consider the exponential function exp
( ∫ t

0
η(s)ds

)
. There are three cases:

(1) If E(t) > Eµ + ε, then

exp
(∫ t

0

η(s)ds
)

= exp
(E(t)
Eµ
− E(0)

Eµ
+ ln

E(t)− Eµ
E(0)− Eµ

)
;

(2) If Eµ < E(t) ≤ Eµ + ε, then

exp
(∫ t

0

η(s)ds
)

= exp
( (E(t)− Eµ)2

2εEµ
+
ε− 2E(0)

2Eµ
+ ln

ε

E(0)− Eµ
+

1
ε

(E(t)− Eµ)
)

;

(3) If E(t) ≤ Eµ, then

exp
(∫ t

0

η(s)ds
)

= exp
(ε− 2E(0)

2Eµ
+ ln

ε

E(0)− Eµ
+
∫ t

tµ

η(s)ds
)
,

where tµ satisfies E(tµ) = Eµ.
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Let ε→ 0, we have

exp
(∫ t

0

η(s)ds
)

=

{
0, E(t) ≤ Eµ,
E(t)−Eµ
E(0)−Eµ

exp
(
E(t)

Eµ
− E(0)

Eµ

)
, E(t) > Eµ.

Therefore,

Cm(t) =

{
0, E(t) ≤ Eµ,
E(t)−Eµ
E(0)−Eµ

exp
(
E(t)

Eµ
− E(0)

Eµ

)(
u0m(l)−u0m(−l)

2l −
∫ t

0
γm(s)

2l ds
)
, E(t) > Eµ,

which is as in (4.6) if one recalls that (2.9).
Next, for every n ≥ 1 and m ≥ 1, we solve the other three ordinary differential

problems (4.17), (4.18) and (4.19). Recalling the initial value problem (4.4) and let

a = m4 +k for (4.17), a =
(
m2 +

(
nπ
l

)2)2

+k for (4.18) and (4.19), we obtain that
there exists a unique solution for (4.17), (4.18) and (4.19) separately in the form of
S(t) with the constants A,B replaced by Am, Bm, (A1m)n, (B1m)n, (A2m)n, (B2m)n.
That is, if we denote δ = µ2 − 4(m4 + k), then:
Case 1. If δ < 0, then we have

Dm(t) = exp
(
− µ

2
t
)

cos
(√−δ

2
t
)(
Am +

2√
−δ

∫ t

0

exp
(µ

2
s
)

cos
(√−δ

2
s
)
ϕm(s)ds

)
− 2√
−δ

exp
(
− µ

2
t
)

sin
(√−δ

2
t
)(Bm + µAm

2

+
∫ t

0

exp
(µ

2
s
)

sin
(√−δ

2
s
)
ϕm(s)ds

)
;

Case 2. If δ = 0, then

Dm(t) = exp
(
− µ

2
t
)(
Am +

(
Bm +

µ

2
Am

)
t−
∫ t

0

(s− t) exp
(µ

2
s
)
ϕm(s)ds

)
;

Case 3. If δ > 0, the two eigenvalues are λ1 = −µ2 +
√
δ

2 and λ2 = −µ2 −
√
δ

2 , then

Dm(t) = exp (λ1t)
(Bm − λ2Am√

δ
+

1√
δ

∫ t

0

exp (−λ1s)ϕm(s)ds
)

+ exp(λ2t)
(λ1Am −Bm√

δ
− 1√

δ

∫ t

0

exp (−λ2s)ϕm(s)ds
)
.

For (4.18) and (4.19), denote γ = µ2 − 4
((
m2 +

(
nπ
l

)2)2 + k
)
, then we have:

Case 1. If γ < 0, then

(Tm)n(t)

= (A1m)n exp
(
− µ

2
t
)

cos
(√−γ

2
t
)

− 2(B1m)n + µ(A1m)n√
−γ

exp
(
− µ

2
t
)

sin
(√−γ

2
t
)

+
2√
−γ

exp
(
− µ

2
t
)

cos
(√−γ

2
t
)∫ t

0

exp
(µ

2
s
)

cos
(√−γ

2
s
)

(ϕ1m)n (s)ds
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− 2√
−γ

exp
(
− µ

2
t
)

sin
(√−γ

2
t
)∫ t

0

exp
(µ

2
s
)

sin
(√−γ

2
s
)

(ϕ1m)n (s)ds;

(Sm)n(t)

= (A2m)n exp
(
− µ

2
t
)

cos
(√−γ

2
t
)

− 2(B2m)n + µ(A2m)n√
−γ

exp
(
− µ

2
t
)

sin
(√−γ

2
t
)

+
2√
−γ

exp
(
− µ

2
t
)

cos
(√−γ

2
t
)∫ t

0

exp
(µ

2
s
)

cos
(√−γ

2
s
)

(ϕ2m)n (s)ds

− 2√
−γ

exp
(
− µ

2
t
)

sin
(√−γ

2
t
)∫ t

0

exp
(µ

2
s
)

sin
(√−γ

2
s
)

(ϕ2m)n (s)ds;

Case 2. If γ = 0, then

(Tm)n(t)

=
(

(A1m)n +
(

(B1m)n +
µ

2
(A1m)n

)
t
)

exp
(
− µ

2
t
)

− exp
(
− µ

2
t
)( ∫ t

0

s exp
(µ

2
s
)

(ϕ1m)n (s)ds− t
∫ t

0

exp
(µ

2
s
)

(ϕ1m)n (s)ds
)

;

(Sm)n(t)

=
(

(A2m)n +
(

(B2m)n +
µ

2
(A2m)n

)
t
)

exp
(
− µ

2
t
)

− exp
(
− µ

2
t
)( ∫ t

0

s exp
(µ

2
s
)

(ϕ2m)n (s)ds− t
∫ t

0

exp
(µ

2
s
)

(ϕ2m)n (s)ds
)

;

Case 3. If γ > 0, the two eigenvalues are λ1 = −µ2 +
√
γ

2 and λ2 = −µ2 −
√
γ

2 , then

(Tm)n(t)

= exp (λ1t)
( (B1m)n − λ2(A1m)n√

γ
+

1
√
γ

∫ t

0

exp (−λ1s) (ϕ1m)n (s)ds
)

+ exp (λ2t)
(
λ1(A1m)n − (B1m)n√

γ
− 1
√
γ

∫ t

0

exp (−λ2s) (ϕ1m)n (s)ds
)

;

(Sm)n(t)

= exp (λ1t)
( (B2m)n − λ2(A2m)n√

γ
+

1
√
γ

∫ t

0

exp (−λ1s) (ϕ2m)n (s)ds
)

+ exp (λ2t)
(λ1(A2m)n − (B2m)n√

γ
− 1
√
γ

∫ t

0

exp (−λ2s) (ϕ2m)n (s)ds
)
.

Therefore, the solution to (2.12)-(2.13) has the form of (4.7) with Um(y, t) being
given in (4.8). And then the proof is finished. �

Finally, by using the explicit form of the solution to (2.12)-(2.13), we are able to
analyze the amplitude of the torsional oscillation appearing in suspension bridges.
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Corollary 4.3. Assume that u is the unique solution to the original problem (2.12)-
(2.13). Then the amplitude of the torsional oscillation on the two sides y = ±l reads

|u(x,−l, t)− u(x, l, t)| = θ(t)
∣∣u0(x,−l)− u0(x, l) + 2l

∫ t

0

γ(x, s)ds
∣∣,

where θ(t) is given in (2.9).

By (2.9), if E(t) ≤ Eµ, then θ(t) = 0, which yields that |u(x, l, t)− u(x,−l, t)| =
0 by Corollary 4.3. That is, when E(t) ≤ Eµ, there is no torsional oscillation
appearing in the bridge structure. However, once the energy E(t) exceeds Eµ, then
θ(t) > 0 and |u(x, l, t) − u(x,−l, t)| 6= 0, which show that the torsional oscillation
appears. Since θ(t) is an increasing function with respect to E(t) and by Corollary
4.3, if the energy E(t) (E(t) > Eµ) increases, then the amplitude of the torsional
oscillation will go up till the bridges collapse.

5. Future developments

In this article, a new mathematical model for dynamical suspension bridges is
suggested. We solve the evolution problem corresponding to the model and obtain
a unique explicit solution which is to display the behavior appearing in actual
suspension bridges. In this section, we indicate two possible future developments.

5.1. Quantitative results. In this article, we suggest a dynamical model for sus-
pension bridges and obtain an explicit solution from a theoretical point of view. In
this model, ϕ(x, y, t), u0(x, y), u1(x, y), α(x, t), β(x, t) and γ(x, t) are assumed to be
real functions, but we gave no hint on their explicit forms. Therefore, one can carry
out several numerical experiments to estimate them approximately. Once they are
given explicitly, an exact solution is to be expected and one can even calculate the
blow-up time of the solution, namely, the time when the bridge collapses.

5.2. Nonlinear restoring force. The model we suggested in this paper is a linear
model. According to the opinion of McKenna [9]

We doubt that a bridge oscillating up and down by about 10 meters
every 4 seconds obeys Hooke’s law.

it may be not suitable to assume the restoring force h due to the hangers to be in
a linear case, see also [4]. Therefore, it could be better to consider the model with
nonlinear restoring force h = h(x, y, u)

utt + ∆2u+ µut + h = ϕ, in Ω× (0, T ).

However, this problem appears significantly more difficult.

Acknowledgments. The author is grateful to the anonymous referee for his useful
suggestions on the proper definition of the weak solution to the original problem.
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