Electron. J. Diff. Equ., Vol. 2015 (2015), No. 171, pp. 1-12.

Existence and asymptotic behavior of solutions to nonlinear radial p-Laplacian equations

Syrine Masmoudi, Samia Zermani

Abstract:
This article concerns the existence, uniqueness and boundary behavior of positive solutions to the nonlinear problem
$$\displaylines{
 \frac{1}{A}(A\Phi _p(u'))'+a_1(x)u^{\alpha_1}+a_2(x)u^{\alpha_2}=0, \quad 
 \text{in } (0,1), \cr
 \lim_{x\to 0}A\Phi _p(u')(x)=0,\quad u(1)=0,
 }$$
where $p>1$, $\alpha _1,\alpha _2\in (1-p,p-1)$, $\Phi_p(t)=t|t|^{p-2}$, $t\in \mathbb{R}$, $A$ is a positive differentiable function and $a_1,a_2$ are two positive measurable functions in $(0,1)$ satisfying some assumptions related to Karamata regular variation theory.

Submitted February 2, 2015. Published June 22, 2015.
Math Subject Classifications: 34B18, 35J66.
Key Words: p-Laplacian problem; positive solution; boundary behavior; Schauder fixed point theorem

Show me the PDF file (254 KB), TEX file, and other files for this article.

Syrine Masmoudi
Département de Mathématiques, Faculté des Sciences de Tunis
Campus Universitaire, 2092 Tunis, Tunisia
email: syrine.sassi@fst.rnu.tn
Samia Zermani
Département de Mathématiques, Faculté des Sciences de Tunis
Campus Universitaire, 2092 Tunis, Tunisia
email: zermani.samia@yahoo.fr

Return to the EJDE web page