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EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS FOR
FRACTIONAL SEMILINEAR DIFFERENTIAL EQUATIONS

BAMBANG HENDRIYA GUSWANTO, TAKASHI SUZUKI

Abstract. In this article, we study the existence and uniqueness of a local
mild solution for a class of semilinear differential equations involving the Ca-

puto fractional time derivative of order α (0 < α < 1) and, in the linear part,

a sectorial linear operator A. We put some conditions on a nonlinear term
f and an initial data u0 in terms of the fractional power of A. By applying

Banach’s Fixed Point Theorem, we obtain a unique local mild solution with

smoothing effects, estimates, and a behavior at t close to 0. An example as an
application of our results is also given.

1. Introduction

Some existing researches showed that, in diffusion process, there are particle’s
movements that can be no longer modelled by the (normal) diffusion equation. To
see these phenomenons, one can refer to [1, 3, 8, 16] observing the dispersion in a
heterogeneous aquifer, the transport of contaminants in geological formations, the
dispersive transport of ions in column experiments, and the diffusion of water in
sand, respectively. All of these processes follow the pattern

〈x2(t)〉 ∼ tα, 0 < α < 1, (1.1)

where 〈x2(t)〉 is the mean square displacement at time t. These processes are called
subdiffusion and can be modelled by the equation

Dα
t u(x, t) = Dα∆u(x, t), x ∈ Rn, t > 0, (1.2)

where 0 < α < 1, Dα is a subdiffusion coeficient, and Dα
t is the Caputo fractional

derivative of order α. Reaction subdiffusion equation was also derived (see [2, 9,
10, 11, 17, 18, 22, 27, 28]). Subdifusion model can also be a formula for memory
phenomenon (see [13, 21]). In [5], Du et al. also found that the order of fractional
derivative is an index of memory. Thus a study to investigate a solution to this
model is very useful. Recently, there are some researches studying a solution to
fractional evolution equations, for instance, see [4, 6, 19, 20, 24, 26, 29, 31, 32, 33].
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In this article, we show the existence and uniqueness of a local mild solution to
the fractional abstract Cauchy problem

Dα
t u = Au+ f(u), t > 0, 0 < α < 1,

u(0) = u0,
(1.3)

where H is a Banach space, Dα
t is the Caputo fractional derivative of order α,

A : D(A) → H is a sectorial linear operator, u0 ∈ H, and f : H → H. We use
some conditions on f and u0 in terms of the fractional power of A. The conditions
are

(i) f(0) = 0,
(ii) there exist C0 > 0, ϑ > 1, and 0 < β < 1 such that

‖f(u)− f(v)‖ ≤ C0(‖Aβu‖+ ‖Aβv‖)ϑ−1‖Aβu−Aβv‖

for all u, v ∈ D(Aβ),
(iii) u0 ∈ D(Aν) for some 0 < ν < 1.

These conditions are used to study the solvability and smoothing effect for some
class of semilinear parabolic equations (see [14]). As in [14], we apply Banach’s
Fixed Point Theorem to construct a local mild solution to the problem (1.3) by
employing the properties of solution operators generated by A and the fractional
power of A. In this paper, we obtain the existence and uniqueness of the local mild
solution with smoothing effects, estimates, and a behaviour at t close to 0 as the
advantages of our results compared with the preceding related results.

This article is composed of four sections. In section 2, we introduce briefly the
fractional integration and differentiation of Riemann-Liouville and Caputo opera-
tors. In this section, we also provides some properties of analytic solution operators
for fractional evolution equations including some estimates involving the fractional
power of sectorial operators. In next section, our main results are showed. Finally,
in the last section, an application of our main results is given.

2. Preliminaries

2.1. Fractional time derivative. Let 0 < α < 1, a ≥ 0 and I = (a, T ) for some
T > 0. The Riemann-Liouville fractional integral of order α is defined by

Jαa,tf(t) =
∫ t

a

(t− s)α−1

Γ(α)
f(s)ds, f ∈ L1(I), t > a. (2.1)

We set J0
a,tf(t) = f(t). The fractional integral operator (2.1) obeys the semigroup

property

Jαa,tJ
β
a,t = Jα+β

a,t , 0 ≤ α, β < 1. (2.2)

The Riemann-Liouville fractional derivative of order α is defined by

Dαa,tf(t) = Dt

∫ t

a

(t− s)−α

Γ(1− α)
f(s)ds, f ∈ L1(I), t−α ∗ f ∈W 1,1(I), t > a, (2.3)

where ∗ denotes the convolution of functions

(f ∗ g)(t) =
∫ t

a

f(t− τ)g(τ)dτ, t > a,
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and W 1,1(I) is the set of all functions u ∈ L1(I) such that the distributional
derivative of u exists and belongs to L1(I). The operator Dαa,t is a left inverse of
Jαa,t; that is,

Dαa,tJαa,tf(t) = f(t), t > a,

but it is not a right inverse, that is

Jαa,tDαa,tf(t) = f(t)− (t− a)α−1

Γ(α)
J1−α
a,t f(a), t > a.

The Caputo fractional derivative of order α is defined by

Dα
a,tf(t) = Dt

∫ t

a

(t− s)−α

Γ(1− α)
(f(s)− f(0))ds, t > a, (2.4)

if f ∈ L1(I), t−α ∗ f ∈W 1,1(I), or

Dα
a,tf(t) =

∫ t

a

(t− s)−α

Γ(1− α)
Dsf(s)ds, t > a, (2.5)

if f ∈W 1,1(I). The operator Dα
a,t is also a left inverse of Jαa,t, that is

Dα
a,tJ

α
a,tf(t) = f(t), t > a, (2.6)

but it is not also a right inverse, that is

Jαa,tD
α
a,tf(t) = f(t)− f(a), t > a. (2.7)

The relation between the Riemann-Liouville and Caputo fractional derivative is

Dα
a,tf(t) = Dαa,tf(t)− (t− a)−α

Γ(1− α)
f(a), t > a. (2.8)

For a = 0, we set Jαa,t = Jαt , Dαa,t = Dαt , and Dα
a,t = Dα

t . We refer to Kilbas
et al [15] or Podlubny [25] for more details concerning the fractional integrals and
derivatives.

2.2. Analytic solution operators. In this section, we provide briefly some results
concerning solution operators for the fractional Cauchy problem

Dα
t u(t) = Au(t) + f(t), t > 0,

u(0) = u0.
(2.9)

For more details, we refer to Guswanto [7].
Henceforth, we assume that the linear operator A : D(A) ⊂ H → H satisfies the

properties that there is a constant θ ∈ (π/2, π) such that

ρ(A) ⊃ Sθ = {λ ∈ C : λ 6= 0, | arg(λ)| < θ}, (2.10)

‖R(λ;A)‖ ≤ M

|λ|
, λ ∈ Sθ, (2.11)

where R(λ;A) = (λ − A)−1 and ρ(A) are the resolvent operator and resolvent set
of A, respectively. We call A as a sectorial operator. Every operator satisfying
this property is closed since its resolvent set is not empty. The linear operator A
generates solution operators for the problem (2.9), those are

Sα(t) =
1

2πi

∫
Γr,ω

eλtλα−1R(λα;A)dλ, t > 0, (2.12)

Pα(t) =
1

2πi

∫
Γr,ω

eλtR(λα;A)dλ, t > 0, (2.13)
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where r > 0, π/2 < ω < θ, and

Γr,ω = {λ ∈ C : | arg(λ)| = ω, |λ| ≥ r} ∪ {λ ∈ C : | arg(λ)| ≤ ω, |λ| = r}
is oriented counterclockwise. By the Cauchy’s theorem, the integral form (2.12)
and (2.13) are independent of r > 0 and ω ∈ (π/2, θ).

Let B(H) be the set of all bounded linear operators on H. The properties of the
families {Sα(t)}t>0 and {Pα(t)}t>0 are given in the following theorems.

Theorem 2.1. Let A be a sectorial operator and Sα(t) be an operator defined by
(2.12). Then the following statements hold.

(i) Sα(t) ∈ B(H) and there exists a constant C1 = C1(α) > 0 such that

‖Sα(t)‖ ≤ C1, t > 0,

(ii) Sα(t) ∈ B(H;D(A)) for t > 0, and if x ∈ D(A) then ASα(t)x = Sα(t)Ax.
Moreover, there exists a constant C2 = C2(α) > 0 such that

‖ASα(t)‖ ≤ C2t
−α, t > 0,

(iii) The function t 7→ Sα(t) belongs to C∞((0,∞);B(H)) and it holds that

S(n)
α (t) =

1
2πi

∫
Γr,ω

etλλα+n−1R(λα;A)dλ, n = 1, 2, . . .

and there exist constants Mn = Mn(α) > 0, n = 1, 2, . . . such that

‖S(n)
α (t)‖ ≤Mnt

−n, t > 0,

Moreover, it has an analytic continuation Sα(z) to the sector Sθ−π/2 and,
for z ∈ Sθ−π/2, η ∈ (π/2, θ), it holds that

Sα(z) =
1

2πi

∫
Γr,η

eλzλα−1R(λα;A)dλ.

Theorem 2.2. Let A be a sectorial operator and Pα(t) be an operator defined by
(2.13). Then the following statements hold.

(i) Pα(t) ∈ B(H) and there exists a constant L1 = L1(α) > 0 such that

‖Pα(t)‖ ≤ L1t
α−1, t > 0,

(ii) Pα(t) ∈ B(H;D(A)) for all t > 0, and if x ∈ D(A) then APα(t)x =
Pα(t)Ax. Moreover, there exists a constant L2 = L2(α) > 0 such that

‖APα(t)‖ ≤ L2t
−1, t > 0,

(iii) The function t 7→ Pα(t) belongs to C∞((0,∞);B(H)) and it holds that

P (n)
α (t) =

1
2πi

∫
Γr,ω

etλλnR(λα;A)dλ, n = 1, 2, . . .

and there exist constants Kn = Kn(α) > 0, n = 1, 2, . . . such that

‖P (n)
α (t)‖ ≤ Knt

α−n−1, t > 0,

Moreover, it has an analytic continuation Pα(z) to the sector Sθ−π/2 and,
for z ∈ Sθ−π/2, η ∈ (π/2, θ), it holds that

Pα(z) =
1

2πi

∫
Γr,η

eλzR(λα;A)dλ.
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The following theorem states some identities concerning the operators Sα(t) and
Pα(t) including the semigroup-like property.

Theorem 2.3. Let A be a sectorial operator, Sα(t) and Pα(t) be operators defined
by (2.12) and (2.13), respectively. Then the following statements hold.

(i) For x ∈ H and t > 0,

Sα(t)x = J1−α
t Pα(t)x, DtSα(t)x = APα(t)x,

(ii) For x ∈ D(A) and s, t > 0,

Dα
t Sα(t)x = ASα(t)x,

Sα(t+ s)x = Sα(t)Sα(s)x−A
∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)x dr dτ.

The next theorem shows us the behavior of the operator Sα(t) at t close to 0+.

Theorem 2.4. Let A be a sectorial operator and Sα(t) be an operator defined by
(2.12). Then the following statements hold.

(i) If x ∈ D(A) then limt→0+ Sα(t)x = x.
(ii) For every x ∈ D(A) and t > 0,∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ ∈ D(A),∫ t

0

(t− τ)α−1

Γ(α)
ASα(τ)xdτ = Sα(t)x− x,

(iii) If x ∈ D(A) and Ax ∈ D(A) then

lim
t7→0+

Sα(t)x− x
tα

=
1

Γ(α+ 1)
Ax.

The representation of the solution to (2.9) in term of Sα(t) and Pα(t) is given in
the following theorem.

Theorem 2.5. Let u ∈ C1((0,∞);H)∩L1((0,∞);H), u(t) ∈ D(A) for t ∈ [0,∞),
Au ∈ L1((0,∞);H), f ∈ L1((0,∞);D(A)), and Af ∈ L1((0,∞);H). If u is a
solution to the problem (2.9) then

u(t) = Sα(t)u0 +
∫ t

0

Pα(t− s)f(s)ds, t > 0. (2.14)

Now, we consider the fractional power of operator A

A−βx =
1

2πi

∫
Γr,ω

λ−βR(λ;A)xdλ, x ∈ H, β > 0,

and

Aβx = A(Aβ−1x) =
1

2πi

∫
Γr,ω

λβ−1R(λ;A)Axdλ, x ∈ D(A), 0 < β < 1.

Some estimates involving Aβ and the operators families {Sα(t)}t>0, {Pα(t)}t>0 gen-
erated by the sectorial operator A are provided by the following theorem. These
estimates are analogous to those as stated in [23, Theorem 6.13] for analytic semi-
groups.
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Theorem 2.6. For each 0 < β < 1, there exist positive constants C ′1 = C ′1(α, β),
C ′2 = C ′2(α, β), and C ′3 = C ′3(α, β) such that for all x ∈ H,

‖AβSα(t)x‖ ≤ C ′1t−α(t−α(β−1) + 1)‖x‖, t > 0, (2.15)

‖AβPα(t)x‖ ≤ C ′2t−α(β−1)−1‖x‖, t > 0. (2.16)

Moreover, for all x ∈ D(Aβ),

‖Sα(t)x− x‖ ≤ C ′3tαβ‖Aβx‖, t > 0. (2.17)

Now, let ξζ = α(ζ − 1) + 1, for 0 < ζ < 1, and x+ = max{0, x}, for x ∈ R. Thus
we have the following result.

Corollary 2.7. For each β > (2− 1/α)+ or β = 2− 1/α > 0 and x ∈ H,

tξβ‖AβSα(t)x‖ ≤ 2C ′1‖x‖, 0 < t ≤ 1, (2.18)

tξβ‖AβSα(t)x‖ ≤ 2C ′1t
1−α‖x‖, t > 1, (2.19)

tξβ‖AβPα(t)x‖ ≤ C ′2‖x‖, t > 0, (2.20)

tξβ‖AβSα(t)x‖ → 0, as t→ 0+. (2.21)

Furthermore, we have the same result as Theorem 2.3 (ii) with weaker condition.

Theorem 2.8. Let 0 < β < 1. Then, for x ∈ D(Aβ) and s, t > 0,

Dα
t Sα(t)x = ASα(t)x, (2.22)

Sα(t+ s)x = Sα(t)Sα(s)x−A
∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)x dr dτ. (2.23)

3. Main results

In this section, we show the existence and uniqueness of a mild solution for the
problem (1.3) under certain conditions by applying Banach’s Fixed Point Theorem.
Based on Theorem 2.5, we define a mild solution to the problem (1.3) as follows.

Definition 3.1. A continuous function u : (0, T ] → H is a mild solution to the
problem (1.3) if it satisfies

u(t) = Sα(t)u0 +
∫ t

0

Pα(t− s)f(u(s))ds, 0 < t ≤ T.

The conditions on f are:
(i) f(0) = 0,
(ii) there exist C0 > 0, ϑ > 1, and 0 < β < 1 such that

‖f(u)− f(v)‖ ≤ C0(‖Aβu‖+ ‖Aβv‖)ϑ−1‖Aβu−Aβv‖,
for all u, v ∈ D(Aβ).

Let BC((0, T ];D(Aβ)) be the set of all bounded and continuous functions w :
(0, T ]→ D(Aβ). Under the conditions on f above, we obtain the following results.

Theorem 3.2. Let u0 ∈ D(Aν) with

β − ν > (2− 1/α)+, 1− αν − ϑξβ−ν ≥ 0, 0 < ϑξβ−ν < 1, (3.1)

where
ξζ = α(ζ − 1) + 1, 0 < ζ < 1; x+ = max{0, x}, x ∈ R.
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Then there exits T > 0 sufficiently small such that the problem (1.3) has a unique
mild solution u satisfying

tξη−νu ∈ BC((0, T ];D(Aη)), lim
t→0+

tξη−νAηu(t) = 0,

‖Aηu(t)‖ ≤ Ct−ξη−ν‖Aνu0‖, t ∈ (0, T ],

for every η ∈ (ν + (2− 1/α)+, β].

Theorem 3.3. Let u be the mild solution to the problem (1.3) in Theorem 3.2. If
f(u(t)) ∈ D(A), for t ∈ (0,∞), then

tξ1−νu ∈ BC((0, T ];D(A))

with
‖Au(t)‖ ≤ Ct−ξ1−ν‖Aνu0‖, t ∈ (0, T ].

3.1. Proof of Theorem 3.2. We define first the Banach space

Eβ,T = {u : [0, T ]→ H : tξβ−νu ∈ BC((0, T ];D(Aβ))}

equipped with the norm

‖|u|‖β,T = sup
0<t≤T

tξβ−ν‖Aβu(t)‖, (3.2)

and define a closed ball Bβ,T in Eβ,T by

Bβ,T = {u ∈ Eβ,T : ‖|u|‖β,T ≤ K},

where T and K are some constants which will be specified later.
Next, we define a mapping F on Bβ,T by

Fu(t) = Sα(t)u0 +
∫ t

0

Pα(t− s)f(u(s))ds.

First, we prove the continuity of AβFu(t) with respect to t in (0, T ]. Since Aβ is a
bounded operator on D(A) and, for each x ∈ H, Sα(t)x is continuous with respect
to t in (0,∞), then, for each x ∈ H, AβSα(t)x is continuous with respect to t in
(0,∞). Thus it remains to show the continuity of

Aβ
∫ t

0

Pα(t− s)f(u(s))ds, 0 < t ≤ T.

Note that

Aβ
∫ t+h

0

Pα(t+ h− s)f(u(s))ds−Aβ
∫ t

0

Pα(t− s)f(u(s))ds

= Aβ
∫ t

−h
Pα(t− s)f(u(s+ h))ds−Aβ

∫ t

0

Pα(t− s)f(u(s))ds

= Aβ
∫ t

0

Pα(t− s)(f(u(s+ h))− f(u(s)))ds

+Aβ
∫ h

0

Pα(t+ h− s)f(u(s))ds.

Observe that, for u ∈ Eβ,T ,

‖f(u(t+ h))− f(u(t))‖ ≤ C02ϑ−1Kϑ−1t−(ϑ−1)ξβ−ν‖Aβu(t+ h)−Aβu(t)‖ (3.3)
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and

‖f(u(t))‖ ≤ C0‖Aβu(t)‖ϑ ≤ C0t
−ϑξβ−ν‖|u|‖ϑβ,T ≤ C0K

ϑt−ϑξβ−ν , (3.4)

for 0 < t ≤ T . Next, we have∫ t

0

‖AβPα(t− s)(f(u(s+ h))− f(u(s)))‖ds

≤ 2ϑ−1C0C2K
ϑ−1

∫ t

0

(t− s)−ξβs−(ϑ−1)ξβ−ν‖Aβu(s+ h)−Aβu(s)‖ds.

Now, consider that, for 0 < s < t ≤ T ,

(t− s)−ξβs−(ϑ−1)ξβ−ν‖Aβu(s+ h)−Aβu(s)‖ ≤ 2K(t− s)−ξβs−ϑξβ−ν ,

s 7→ 2K(t− s)−ξβs−ϑξβ−ν ∈ L1((0, t);H), 0 < t ≤ T,

‖Aβu(s+ h)−Aβu(s)‖ → 0, ash→ 0.

Hence, by the Dominated Convergence theorem,∫ t

0

(t− s)−ξβs−(ϑ−1)ξβ−ν‖Aβu(s+ h)−Aβu(s)‖ds→ 0, as h→ 0.

This implies∫ t

0

‖AβPα(t− s)(f(u(s+ h))− f(u(s)))‖ds→ 0, as h→ 0.

Next, observe that∫ h

0

‖AβPα(t+ h− s)‖‖f(u(s)‖)ds

≤ C0C
′
2(α, β)Kϑ

∫ h

0

(t+ h− s)−ξβs−ϑξβ−νds

= C0C
′
2(α, β)Kϑ(t+ h)1−ξβ−ϑξβ−ν

∫ h
t+h

0

(1− r)−ξβr−ϑξβ−νdr

= C0C
′
2(α, β)Kϑ(t+ h)1−ξβ−ϑξβ−ν 1

1− ϑξβ−ν

×
( h

t+ h

)1−ϑξβ−ν
H
(

1− ϑξβ−ν , ξβ ; 2− ϑξβ−ν ;
h

t+ h

)
=
C0C

′
2(α, β)Kϑ

1− ϑξβ−ν
h1−ϑξβ−ν (t+ h)−ξβH

(
1− ϑξβ−ν , ξβ ; 2− ϑξβ−ν ;

h

t+ h

)
,

where

H(a, b; c;x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− xt)a
, c− b− a > 0, |x| ≤ 1

is hypergeometric function (see [15]). Thus∫ h

0

‖AβPα(t+ h− s)‖‖f(u(s)‖ds→ 0, as h→ 0.

Therefore the continuity of AβFu(t) with respect to t in (0, T ] is obtained.
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Next, we prove that the mapping F is well-defined and maps Bβ,T into itself.
Consider ∫ t

0

‖AβPα(t− s)‖‖f(u(s))‖ds

≤ C0C
′
2(α, β)Kϑ−1‖|u|‖β,T

∫ t

0

(t− s)−ξβs−ϑξβ−νds

≤ C0C
′
2(α, β)Kϑ−1B(1− ϑξβ−ν , 1− ξβ)‖|u|‖β,T t1−ξβ−ϑξβ−ν ,

where

B(a, b) =
∫ 1

0

ra−1(1− r)b−1dr, a, b > 0,

is Beta function. Therefore

tξβ−ν‖AβFu(t)‖ ≤ tξβ−ν‖AβSα(t)u0‖+ C4K
ϑ−1‖|u|‖β,T t1−ξβ−ϑξβ−ν+ξβ−ν , (3.5)

where C4 = C0C
′
2(α, β)B(1− ξβ , 1− ϑξβ−ν), implying

‖|Fu|‖β,T ≤ sup
0<t≤T

tξβ−ν‖AβSα(t)u0‖+ C4K
ϑ−1T 1−ξβ−ϑξβ−ν+ξβ−ν‖|u|‖β,T . (3.6)

Note that 1− ξβ − ϑξβ−ν + ξβ−ν = 1−αν − ϑξβ−ν ≥ 0 by (3.1). By (2.18), we can
find 0 < T ≤ 1 such that

tξβ−ν‖Aβ−νSα(t)Aνu0‖ ≤ 2C ′1(α, β − ν)‖Aνu0‖, 0 < t ≤ T.

Then, for u ∈ Bβ,T , we have

‖|Fu|‖β,T ≤ sup
0<t≤T

tξβ−ν‖Aβ−νSα(t)Aνu0‖+ C4K
ϑT 1−αν−ϑξβ−ν

≤ 2C ′1(α, β − ν)‖Aνu0‖+ C4K
ϑT 1−αν−ϑξβ−ν .

(3.7)

Next, we choose K > 0 such that

2C ′1(α, β − ν)‖Aνu0‖+ C4K
ϑT 1−αν−ϑξβ−ν ≤ K. (3.8)

For the case 1−αν−ϑξβ−ν > 0, we can get such a K by taking T sufficiently small.
For the case 1− αν − ϑξβ−ν = 0, we choose K > 0 sufficiently small such that

C4K
ϑ < K,

and then take T such that

sup
0<t≤T

tξβ−ν‖Aβ−νSα(t)Aνu0‖ ≤ K − C4K
ϑ. (3.9)

Note that in both cases, we can find C = C(α, β) > 0 such that

K ≤ C‖Aνu0‖. (3.10)

Hence ‖|Fu|‖β,T ≤ K. Thus the mapping F is well-defined and maps Bβ,T into
itself.

Next, we show that the mapping F : Bβ,T → Bβ,T is a strict contraction. Note
that, if u, v ∈ Bβ,T , we have

‖AβFu(t)−AβFv(t)‖

≤
∫ t

0

‖AβPα(t− s)‖‖f(u(s))− f(v(s))‖ds
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≤ C0C
′
2(α, β)

∫ t

0

(t− s)−ξβ
(
‖|u|‖β,T + ‖|v|‖β,T

)ϑ−1

× s−(ϑ−1)ξβ−ν‖|u− v|‖β,T s−ξβ−νds

≤ C0C
′
2(α, β)2ϑ−1Kϑ−1

∫ t

0

(t− s)−ξβs−ϑξβ−νds‖|u− v|‖β,T

≤ C42ϑ−1Kϑ−1‖|u− v|‖β,T t1−ξβ−ϑξβ−ν .

Then

tξβ−ν‖AβFu(t)−AβFv(t)‖ ≤ C42ϑ−1Kϑ−1‖|u− v|‖β,T t1−αν−ϑξβ−ν

≤ C42ϑ−1Kϑ−1‖|u− v|‖β,TT 1−αν−ϑξβ−ν .

Note that we can select K > 0 and T > 0 sufficiently small such that

C5 = C42ϑ−1Kϑ−1T 1−αν−ϑξβ−ν < 1. (3.11)

Consequently,
‖|Fu− Fv|‖ ≤ C5‖|u− v|‖β,T .

It means the mapping F : Bβ,T → Bβ,T is a strict contraction. Thus, by Banach’s
Fixed Point Theorem, we can get a unique u ∈ Bβ,T which is a mild solution to the
problem (1.3). Furthermore, by (3.7), (3.8), (3.9), and (3.10), for this u, we have

‖|u|‖β,T ≤ sup
0<t≤T

tξβ−ν‖Aβ−νSα(t)Aνu0‖+ C4K
ϑT 1−ξβ−ϑξβ−ν+ξβ−ν ≤ C‖Aνu0‖.

Then, by (3.2),
‖Aβu(t)‖ ≤ Ct−ξβ−ν‖Aνu0‖, 0 < t ≤ T.

Now, we check the continuity of u at t = 0. Note that

tξβ−ν‖Aβu(t)‖ ≤ tξβ−ν‖AβSα(t)u0‖+ tξβ−ν
∫ t

0

‖AβPα(t− s)‖‖f(u(s))‖

≤ tξβ−ν‖Aβ−νSα(t)Aνu0‖+ C4K
ϑt1−αν−ϑξβ−ν .

(3.12)

Thus, if 1− αν − ϑξβ−ν > 0, letting t→ 0+ on both sides of (3.12), we obtain

lim
t→0+

tξβ−νAβu(t) = 0.

For the case 1− αν − ϑξβ−ν = 0, consider first that, from (3.6), we have

‖|u|‖β,T ′ ≤ sup
0<t≤T ′

tξβ−ν‖Aβ−νSα(t)Aνu0‖+ C4K
ϑ−1‖|u|‖β,T ′ ,

for any 0 < T ′ ≤ T . Since C5 < 1, then C4K
ϑ−1 < 1. Hence there exists C6 > 0

such that
‖|u|‖β,T ′ ≤ C6 sup

0<t≤T ′
tξβ−ν‖Aβ−νSα(t)Aνu0‖.

By taking T ′ → 0, thus we also have

lim
t→0+

tξβ−νAβu(t) = 0,

for the case 1− αν − ϑξβ−ν = 0. We can also conclude that the results above also
hold for every η ∈ (ν + (2− 1/α)+, β) since such a η satisfies the condition (3.1).
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Remark 3.4. From (2.19), for T > 1, we have

tξβ−ν‖AβSα(t)u0‖ ≤ 2C ′1(α, β − ν)t1−α‖Aνu0‖, t ∈ (0, T ].

Then, it follows that (3.8) becomes

2C ′1(α, β − ν)‖Aνu0‖T 1−α + C4K
ϑT 1−αν−ϑξβ−ν ≤ K. (3.13)

Observe that we can not get K > 0 satisfying (3.11) and (3.13) for T sufficiently
large although K is taken to be sufficiently small. Thus the problem (1.3) has no
a global mild solution u on (0,∞).

Remark 3.5. If we assume that f is a nonlinear operator in H satisfying
(i) f(0) = 0,
(ii) there exist C0 > 0, ϑ > 1, and 0 < β < 1 such that

‖f(u)− f(v)‖ ≤ C0(1 + (‖Aβu‖+ ‖Aβv‖)ϑ−1)‖Aβu−Aβv‖,
for all u, v ∈ D(Aβ),

then Theorem 3.2 remains valid.

3.2. Proof of Theorem 3.3. We verify first the following lemma.

Lemma 3.6. Let u ∈ Bβ,T be a mild solution to (1.3). Then, by the condition
(3.1), Aβu(t) is Hölder continuous in [ε, T ] for each ε > 0.

Proof. First, consider that, by (2.23),

AβSα(t+ h)u0 −AβSα(t)u0

= Aβ(Sα(h)− I)Sα(t)u0 −Aβ
∫ t

0

∫ h

0

(t+ h− τ − r)−α

Γ(1− α)
APα(τ)Pα(r)u0 dr dτ

and

Aβ
∫ t+h

0

Pα(t+ h− s)f(u(s))ds−Aβ
∫ t

0

Pα(t− s)f(u(s))ds

= Aβ
∫ t

−h
Pα(t− s)f(u(s+ h))ds−Aβ

∫ t

0

Pα(t− s)f(u(s))ds

= Aβ
∫ t

0

Pα(t− s)(f(u(s+ h))− f(u(s)))ds

+Aβ
∫ h

0

Pα(t+ h− s)f(u(s))ds.

Now, let ε ≤ t < t+ h ≤ T with ε > 0. Observe that∫ h

0

(t+ h− τ − r)−α

Γ(1− α)
τ−ξ1−δdτ

=
h1−ξ1−δ(t+ h− r)−α

Γ(1− α)(1− ξ1−δ)
H
(

1− δ, α; 2− δ; h

t+ h− r

)
≤ Γ(2− ξ1−δ)B(α, 1− α)

(1− ξ1−δ)Γ(1− α)Γ(α)Γ(2− ξ1−δ − α)
h1−ξ1−δ(t+ h− r)−α

implying∫ t

0

∫ h

0

(t+ h− τ − r)−α

Γ(1− α)
τ−ξ1−δr−ξβ+δ−ν dr dτ
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≤ Γ(2− ξ1−δ)B(α, 1− α)h1−ξ1−δ

(1− ξ1−δ)Γ(1− α)Γ(α)Γ(2− ξ1−δ − α)

∫ t

0

(t+ h− r)−αr−ξβ+δ−νdr

=
Γ(2− ξ1−δ)B(α, 1− α)h1−ξ1−δ(t+ h)1−α−ξβ+δ−ν

(1− ξ1−δ)Γ(1− α)Γ(α)Γ(2− ξ1−δ − α)

∫ t
t+h

0

(1− s)−αs−ξβ+δ−νds

≤ C7h
1−ξ1−δ(t+ h)1−α−ξβ+δ−ν

where

C7 =
Γ(2− ξ1−δ)B(α, 1− α)B(1− ξβ+δ−ν , 1− α)

(1− ξ1−δ)Γ(1− α)Γ(α)Γ(2− ξ1−δ − α)
.

Then, for every 0 < δ < 1− β,

‖AβSα(t+ h)u0 −AβSα(t)u0‖

≤ ‖(Sα(h)− I)AβSα(t)u0‖

+
∫ t

0

∫ h

0

(t+ h− τ − r)−α

Γ(1− α)
‖A1−δPα(τ)Aβ+δ−νPα(r)Aνu0‖ dr dτ

≤ C ′3(α, δ)hαδ‖Aβ+δ−νSα(t)Aνu0‖+ C ′2(α, 1− δ)C ′2(α, β + δ − ν)

×
∫ t

0

∫ h

0

(t+ h− τ − r)−α

Γ(1− α)
τ−ξ1−δr−ξβ+δ−ν dr dτ‖Aνu0‖

≤ C ′1(α, β + δ − ν)C ′3(α, δ)h1−ξ1−δ t−α(t1−ξβ+δ−ν + 1)‖Aνu0‖

+ C ′2(α, 1− δ)C ′2(α, β + δ − ν)C7h
1−ξ1−δ t1−α−ξβ+δ−ν‖Aνu0‖

≤ C ′1(α, β + δ − ν)C ′3(α, δ)h1−ξ1−δ t−α(t1−ξβ+δ−ν + 1)‖Aνu0‖

+ C8h
1−ξ1−δ t−α(t1−ξβ+δ−ν + 1)‖Aνu0‖

≤ C9h
1−ξ1−δ t−α(t1−ξβ+δ−ν + 1)‖Aνu0‖,

for some constants C8, C9 > 0. Next, note that∫ t

0

‖AβPα(t− s)(f(u(s+ h))− f(u(s)))‖ds

≤ 2ϑ−1C0C
′
2(α, β)Kϑ−1

∫ t

0

(t− s)−ξβs−(ϑ−1)ξβ−ν‖Aβu(s+ h)−Aβu(s)‖ds

and∫ h

0

‖AβPα(t+ h− s)f(u(s))‖ds

≤ C0C
′
2(α, β)Kϑ

∫ h

0

(t+ h− s)−ξβs−ϑξβ−νds

≤ C10(t+ h)1−ξβ−ϑξβ−ν
∫ h

t+h

0

(1− r)−ξβr−ϑξβ−νdr

≤ C10

1− ϑξβ−ν
(t+ h)1−ξβ−ϑξβ−ν

( h

t+ h

)1−ϑξβ−ν
H
(

1− ϑξβ−ν , ξβ ; 2− ϑξβ−ν ;
h

t+ h

)
≤ C11h

1−ϑξβ−ν t−ξβ ,

for some constants C10, C11 > 0. Thus we obtain

‖Aβu(t+ h)−Aβu(t)‖

≤ C9h
1−ξ1−δ t−α(t1−ξβ+δ−ν + 1)‖Aνu0‖+ C11h

1−ϑξβ−ν t−ξβ
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+ 2C0C2K
ϑ−1

∫ t

0

(t− s)−ξβs−(ϑ−1)ξβ−ν‖Aβu(s+ h)−Aβu(s)‖ds

By the Gronwall’s inequality, it implies that Aβu(t) is Hölder continuous on [ε, T ]
for any ε > 0. �

Next, by the Lemma 3.6, f(u(t)) is also Hölder continuous on [ε, T ] for any ε > 0;
that is,

‖f(u(t+ h))− f(u(t))‖ ≤ C12

{
h1−ξ1−δ t−α−(ϑ−1)ξβ−ν (t1−ξβ+δ−ν + 1)‖Aνu0‖

+ h1−ϑξβ−ν t−ξβ−(ϑ−1)ξβ−ν
}
,

for some constant C12 > 0. Note that the assumption (3.1) assures that 0 <
1 − ϑξβ−ν and, for each 0 < δ < 1 − β, it holds that 0 < 1 − ξ1−δ. Furthermore,
consider that, for t ∈ (0, T ], we have

tξ1−ν‖ASα(t)u0‖ ≤ C ′1(α, 1− ν)tξ1−ν−α(t1−ξ1−ν + 1)‖Aνu0‖
with

ξ1−ν − α > 0, ξ1−ν − α+ 1− ξ1−ν = 1− α > 0.
It follows, for T sufficiently small, that

tξ1−ν‖ASα(t)u0‖ ≤ 2C ′1(α, 1− ν)‖Aνu0‖.
Now, observe that

A

∫ t

0

Pα(t− s)f(u(s))ds

=
∫ t/2

0

APα(t− s)f(u(s))ds

+
∫ t

t/2

APα(t− s)(f(u(s))− f(u(t)))ds+ (Sα(t/2)− I)f(u(t))

= I1 + I2 + I3.

Next, we note that

tξ1−ν‖(Sα(t/2)− I)f(u(t))‖ ≤ C13t
ξ1−ν‖f(u(t))‖ ≤ C0C13K

ϑtξ1−ν−ϑξβ−ν ,

for some constant C13 > 0, and

ξ1−ν − ϑξβ−ν = 1− αν − ϑξβ−ν .
Therefore, for t ∈ (0, T ] with T > 0 sufficiently small, we have

tξ1−ν‖(Sα(t/2)− I)f(u(t))‖ ≤ 2C0C14K
ϑt1−αν−ϑξβ−ν ,

for some constant C14 > 0. Hence, by (3.10), we obtain

tξ1−ν‖I3‖ ≤ C15‖Aνu0‖,
for some constant C15 > 0. Furthermore,

tξ1−ν‖I1‖ ≤ L2(α)C0K
ϑtξ1−ν

∫ t/2

0

(t− s)−1s−ϑξβ−νds

≤ C16t
ξ1−ν−ϑξβ−ν ≤ C16t

1−αν−ϑξβ−ν ,

for some constant C16 > 0. Thus, for T sufficiently small, we find that

tξ1−ν‖I1‖ ≤ C17‖Aνu0‖,



14 B. H. GUSWANTO, T. SUZUKI EJDE-2015/168

for some constant C17 > 0. Now, consider

‖APα(t− s)(f(u(s))− f(u(t)))‖

≤ L2(α)C12

{
(t− s)−ξ1−δs−α−(ϑ−1)ξβ−ν (s1−ξβ+δ−ν + 1)‖Aνu0‖

+ (t− s)−ϑξβ−νs−ξβ−(ϑ−1)ξβ−ν
}
.

Therefore,∫ t

t/2

‖APα(t− s)(f(u(s))− f(u(t)))‖ds

≤ C18

{
t1−ξ1−δ−α−(ϑ−1)ξβ−ν (t1−ξβ+δ−ν + 1)‖Aνu0‖+ t1−ϑξβ−ν−ξβ−(ϑ−1)ξβ−ν

}
,

for some constant C18 > 0. Furthermore, by using the assumption (3.1),

ξ1−ν + 1− ξ1−δ − α− (ϑ− 1)ξβ−ν > 1− αν − ϑξβ−ν ≥ 0,

1− ϑξβ−ν − ξβ − (ϑ− 1)ξβ−ν = 2(1− αν − ϑξβ−ν) ≥ 0.

Note also that 1− ξβ+δ−ν > 0. Then, for T sufficiently small,

tξ1−ν‖I2‖ ≤ C19‖Aνu0‖,
for some constant C19 > 0. Thus we conclude that

‖Au(t)‖ ≤ C20t
−ξ1−ν‖Aνu0‖, t ∈ (0, T ],

for some constant C20 > 0.

4. Applications

We consider the parabolic initial-value problem

Dα
t u = ∆u+ |u|p−1u, in Ω× (0, T )

u|∂Ω = 0,

u(0) = u0, in Ω

(4.1)

where Ω ∈ RN with C2 boundary and p > 1. The abstract formulation of the
problem (4.1) is

Dα
t u = Au+ f(u), in Ω× (0, T )

u(0) = u0, in Ω,
(4.2)

where
A = ∆, f(u) = |u|p−1u.

Here, we set H = L2(Ω) and D(A) = H2
D = {u ∈ H2(Ω) : u = 0 on ∂Ω}. Note that

A is sectorial in H.
Next, for β ≥ N(1− 1/p)/4 and p > 1, we have

‖u‖2p ≤ C‖Aβu‖2, u ∈ D(Aβ)

(see [12] for more details). By the mean value theorem and the Hölder inequality,
for u, v ∈ D(Aβ), one can obtain that

‖f(u)− f(v)‖22 ≤ p2(‖u‖(p−1)q + ‖v‖(p−1)q)2(p−1)‖u− v‖2r
where 2/p+ 2/r = 1. It implies

‖f(u)− f(v)‖2 ≤ p(‖u‖2p + ‖v‖2p)p−1‖u− v‖2p
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by taking r = 2p such that (p− 1)q = 2p. Thus we get

‖f(u)− f(v)‖2 ≤ p(‖Aβu‖2 + ‖Aβv‖2)p−1‖Aβu−Aβv‖2
for u, v ∈ D(Aβ). We find that

D(Aβ) = H2β
D , H2β

D = {u ∈ H2β(Ω) : u|∂Ω = 0}, 1/4 < β < 1

(see [30] for more details). Thus, for
1
4
< β < 1, if N

(
1− 1

p

)
≤ 1,

N

4
(
1− 1

p

)
≤ β < 1, if 1 < N

(
1− 1

p

)
< 4,

and u0 ∈ D(Aν) with
pξβ − 1
α(p− 1)

≤ ν < β − (2− 1
α

)+, if pξβ > 1,

0 < ν < β − (2− 1
α

)+, if pξβ ≤ 1,

by Theorem 3.2, problem (4.1) has a unique mild solution u satisfying

tξη−νu ∈ BC((0, T ];D(Aη)), lim
t→0+

tξη−νAηu(t) = 0,

‖Aηu(t)‖H ≤ Ct−ξη−ν‖Aνu0‖H , t ∈ (0, T ]

for every η ∈ (ν + (2− 1/α)+, β] with T sufficiently small.
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