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HOMOCLINIC AND QUASI-HOMOCLINIC SOLUTIONS FOR
DAMPED DIFFERENTIAL EQUATIONS

CHUAN-FANG ZHANG, ZHI-QING HAN

Abstract. We study the existence and multiplicity of homoclinic solutions
for the second-order damped differential equation

ü + cu̇− L(t)u + Wu(t, u) = 0,

where L(t) and W (t, u) are neither autonomous nor periodic in t. Under certain
assumptions on L and W , we obtain infinitely many homoclinic solutions when

the nonlinearity W (t, u) is sub-quadratic or super-quadratic by using critical
point theorems. Some recent results in the literature are generalized, and the

open problem proposed by Zhang and Yuan is solved. In addition, with the

help of the Nehari manifold, we consider the case where W (t, u) is indefinite
and prove the existence of at least one nontrivial quasi-homoclinic solution.

1. Introduction

In this article, we study the existence and multiplicity of homoclinic solutions
for the damped problem

ü+ cu̇− L(t)u+Wu(t, u) = 0, (1.1)

where c ≥ 0 is a constant, L ∈ C(R,RN2
) is a symmetric matrix for all t ∈ R and

W ∈ C1(R × RN ,R). We say that a solution u of (1.1) is a nontrivial homoclinic
solution (to 0) if u(t) 6≡ 0, u ∈ C2(R,RN ), u(t)→ 0 as |t| → ∞ (see [12]).

When c = 0, equation (1.1) is reduced to the second-order Hamiltonian system

ü− L(t)u+Wu(t, u) = 0. (1.2)

In the past two decades, by critical point theory the existence and multiplicity of
homoclinic solutions of (1.2) have been extensively investigated by many authors;
see e.g. [7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30]
and the references therein.

When c 6= 0, little work has been done about the existence and multiplicity of
homoclinic solutions for (1.1). In the recent paper [1], by solving a minimum or con-
strained minimum problem, the authors considered the existence of fast heteroclinic
solutions of the damped ODE

ü+ cu̇+ f(u) = 0,
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which arises from investigating travelling waves with speed c of Fisher-Kolmogorov’s
equation. In [4], the authors studied the existence of homoclinic solutions of prob-
lem (1.1) when c = c(t) is continuous and W (t, u) is singular, where the upper and
lower solution method and fixed point theorems are used in the proof. In [31], by
using a minimizing method, Zhang and Yuan obtained the existence of homoclinic
solutions for (1.1) in the case where W (t, u) is sub-quadratic and c ≥ 0. But, they
didn’t obtain the multiplicity of homoclinic solutions for (1.1), although W (t, u) is
even with respect to u.

Inspired by the works mentioned above, we discuss the existence and multiplicity
of homoclinic solutions for (1.1). In Theorems 1.10–1.14, we are interested in the
case where c ≥ 0. To the best of our knowledge, even for c = 0, our results
when W (t, u) is indefinite and sub-quadratic at infinity are new. We mention an
open problem proposed in [31]. The open problem is how to prove the existence of
homoclinic solutions for (1.1) by the mountain pass theorem when c > 0 and W is
super-quadratic at infinity. This problem is solved in Theorems 1.16–1.17. Finally,
by using the Nehari manifold, we also obtain the existence of homoclinic solutions
for (1.1) in the case where W (t, u) is indefinite.

The first aim of this paper is to study the existence of infinitely many homoclinic
solutions for (1.1) under conditions similar to those introduced in [31]. Consider
two scenarios on L:

(L0) L(t) is a positive definite symmetric matrix for all t ∈ R and there is a
continuous function l : R→ R+ such that

〈L(t)u, u〉 ≥ l(t)|u|2, ∀(t, u) ∈ R× RN ,

where l(t) → ∞ as |t| → ∞ and 〈·, ·〉 denotes the standard inner product
in RN ;

(L0’) There exist two constants −∞ < l1 < l2 < +∞ such that

l1|u|2 ≤ 〈L(t)u, u〉 ≤ l2|u|2, ∀(t, u) ∈ R× RN .

For convenience, we first describe some weighted spaces. If 1 ≤ p < +∞, let

Lp(ect) =
{
u ∈ Lploc(R,RN ) : |u|p =

(∫
R
ect|u(t)|pdt

)1/p

< +∞
}
.

Then, Lp(ect) is a reflexive Banach space (see [19]).
When c > 0 and L satisfies (L0), we define the weighted space

E =
{
u ∈ H1

loc(R,RN ) :
∫

R
ect(|u̇|2 + 〈L(t)u, u〉)dt < +∞

}
endowed with the norm

‖u‖ = (u, u)1/2 =
(∫

R
ect(|u̇|2 + 〈L(t)u, u〉)dt

)1/2

.

Then, it is not difficult to prove that E is a Hilbert space.
When c > 0 and L satisfies (L0’), then E is a Hilbert space if we take l1 > 0.

When c = 0 and L satisfies (L0) or (L0’) with l1 > 0, consider the space

E0 =
{
u ∈ H1(R,RN ) : ‖u‖ =

(∫
R
|u̇|2 + 〈L(t)u, u〉dt

)1/2

< +∞
}
.

Then, it is easy to show that E0 is also a Hilbert space.
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Remark 1.1. In [31], the authors defined the weighted Sobolev space

Ec =
{
u ∈ H1(R,RN ) : ‖u‖ =

(∫
R
ect(|u̇|2 + 〈L(t)u, u〉)dt

)1/2

< +∞
}
.

It seems that Ec is not complete when c > 0. For example, take c = 1, L(t) = eθ|t|.
Any function u ∈ H1

loc(R,RN ) such that∫
R
et|u̇|2 + et+θ|t||u|2dt < +∞

(e.g. u ∈ C∞ with u(t) = 1 for t < 0 and u(t) = 0 for t > 1) can be approximated
by functions in C∞0 (R,RN ) in the strong topology induced by the previous norm,
even if might not belong to H1(R,RN ), hence to Ec. We thank an anonymous
referee for making this remark.

Definition 1.2. Given a function g ∈ C(R,R) and g 6≡ 0, a solution u of (1.1) is
called a nontrivial g-quasi-homoclinic solution, if u ∈ C2(R,RN ), u(t) 6≡ 0, u(t)→ 0
as t→ +∞ and g(t)u(t)→ 0 as t→ −∞.

Remark 1.3. If g(t) ≡ 1, then a g-quasi-homoclinic solution is a usual homoclinic
solution. Particularly, c = 0 for g(t) = ect/2 is the case. In this paper, we always
take g(t) = ect/2.

Remark 1.4. In [31], Zhang and Yuan introduced the so-called fast homoclinic
solution, that is, a homoclinic solution u of (1.1) with u ∈ Ec and c > 0. However,
in [9], the authors pointed out that solutions in Ec are not suitable because a
solution in Ec is not fast homoclinic to 0 as t → −∞. In fact, if u is a solution of
(1.1) in E, then u(t) → 0 as t → +∞ and ect/2u(t) → 0 as t → −∞. It seems to
be reasonable to call such a solution as a g-quasi-homoclinic one.

In [31], the following conditions are assumed:
(W0) W (t, u) = α(t)|u|ς , where α : R → R is a continuous function such that

α(t0) > 0 for some t0 ∈ R, α ∈ L2/(2−ς)(ect) and 1 < ς < 2 is a constant;
(W0’) W (t, u) = β(t)V (u), where β : R → R is a continuous function such that

β(t′0) > 0 for some t′0 ∈ R and β ∈ L2(ect), V ∈ C1(RN ,R) and V (0) = 0.
Furthermore, there exist constants M1 > 0,M2 > 0, 1 < ξ < 2 and 0 <
r1 ≤ 1 such that

V (u) ≥M2|u|ξ, ∀u ∈ RN with |u| ≤ r1, (1.3)

|Vu(u)| ≤M1,∀u ∈ RN . (1.4)

Theorem 1.5 ([31, Theorem 1.1]). If c > 0 and the assumptions (L0) and (W0) are
satisfied, then (1.1) has at least one nontrivial fast homoclinic solution. If c = 0
and the assumptions (L0) and (W0) hold, then (1.1) has at least one nontrivial
homoclinic solution.

Theorem 1.6 ([31, Theorem 1.2]). If c > 0 and the assumptions (L0) and (W0’)
are satisfied, then (1.1) has at least one nontrivial fast homoclinic solution. If c = 0
and the assumptions (L0) and (W0’) hold, then (1.1) has at least one nontrivial
homoclinic solution.

Theorem 1.7 ([31, Theorem 1.3]). For c > 0, under the conditions (W0) and (L0’)
with l1 > − c

2

4 , (1.1) has at least one nontrivial fast homoclinic solution. For c = 0,
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if (W0) and (L0’) with l1 > 0 are satisfied, then (1.1) has at least one nontrivial
homoclinic solution.

Theorem 1.8 ([31, Theorem 1.4]). For c > 0, under the conditions (W0’) and
(L0’) with l1 > 0, (1.1) has at least one nontrivial fast homoclinic solution. For
c = 0, if (W0’) and (L0’) with l1 > 0 are satisfied, then (1.1) has at least one
nontrivial homoclinic solution.

Remark 1.9. In [31], the embedding of Ec in L2(ect) is not compact under the con-
ditions of Theorems 1.7–1.8. The authors seem to have to show that the functional
I is weakly lower semi-continuous. In addition, under the assumptions of Theorems
1.5 and 1.7, they did not give whether or not (1.1) has infinitely many homoclinic
solutions, although W (t, u) is even with respect to u. One of the aims of the pa-
per is to study the existence of infinitely many homoclinic or g-quasi-homoclinic
solutions for (1.1) under the same conditions.

Theorem 1.10. If c > 0 and the assumptions (L0) and (W0) hold, then (1.1) has
infinitely many g-quasi-homoclinic solutions. If c = 0 and the conditions (L0) and
(W0) are satisfied, then (1.1) has infinitely many homoclinic solutions.

Theorem 1.11. If c > 0 and the assumptions (L0) and (W0’) with V (u) = V (−u)
for all u ∈ RN hold, then (1.1) has infinitely many g-quasi-homoclinic solutions. If
c = 0 and the conditions (L0) and (W0’) with V (u) = V (−u) for all u ∈ RN are
satisfied, then (1.1) has infinitely many homoclinic solutions.

Remark 1.12. Assumption (W0) or (W0’) implies that W (t, u) can be sign-chang-
ing. For c = 0, in [26, 20, 28], the authors investigate the existence of infinitely
many homoclinic solutions of (1.1) with sub-quadratic W (t, u). However, they
require that W (t, u) ≥ 0 for all (t, u) ∈ R× RN .

Theorem 1.13. If c > 0, under the conditions (W0) and (L0’) with l1 > 0, then
(1.1) has infinitely many g-quasi-homoclinic solutions. If c = 0 and the assump-
tions (W0) and (L0’) with l1 > 0 hold, then (1.1) has infinitely many homoclinic
solutions.

Theorem 1.14. If c > 0, under the conditions (L0’) with l1 > 0 and (W0’) with
V (u) = V (−u) for all u ∈ RN , then (1.1) has infinitely many g-quasi-homoclinic
solutions. If c = 0 and the assumptions (L0’) with l1 > 0 and (W0’) with V (u) =
V (−u) for all u ∈ RN hold, then (1.1) has infinitely many homoclinic solutions.

Remark 1.15. When c = 0, the authors in [7, 11, 10, 23, 21, 27, 29] considered
the case where W (t, u) is sub-quadratic as |u| → ∞. They obtained that (1.1) has
infinitely many homoclinic solutions. But they all require that α(t) has a positive
lower bound. Obviously, for c = 0, we have inft∈R |α(t)| = 0 since α ∈ L2/(2−ς)(ect)
is continuous. Hence, W (t, u) = α(t)|u|ς does not satisfy the conditions in [7, 10,
11, 21, 23, 27, 29]. Therefore, our results complement theirs.

Next, for c > 0, we consider the case where W (t, u) is super-quadratic growth
as |u| → ∞. In this case, the problem is quite different from the sub-quadratic
case, because E can not be continuously embedded into L∞(R,RN ). In order to
overcome the difficulty, we have to strengthen the condition (L0). Suppose that W
and L satisfy the following hypotheses:

(W1) Wu(t, u) = o(|u|) as u→ 0 uniformly for t ∈ R;
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(W2) There exists a µ > 2 such that

0 < µW (t, u) ≤ 〈Wu(t, u), u〉, ∀(t, u) ∈ R× RN\{0};
(W3) There are constants a1 > 0 and p ∈ (2,+∞) such that

|Wu(t, u)| ≤ a1(1 + |u|p−1), ∀(t, u) ∈ R× RN .
(L1) There is r ∈ (2p− 2,+∞) such that

1
l(t)e(r−2)ct

∈ L1(R,R),

where l(t) is defined in (L0).

Theorem 1.16. Suppose (L0), (L1), (W1)–(W3) hold. Then (1.1) has at least one
nontrivial g-quasi-homoclinic solution.

If the following symmetric condition holds, we can consider multiplicity results
of homoclinic solutions for (1.1),

(W4) W (t,−u) = W (t, u) for all (t, u) ∈ R× RN .

Theorem 1.17. If (L0), (L1), (W1)–(W4) are satisfied, then (1.1) has an un-
bounded sequence of g-quasi-homoclinic solutions.

Remark 1.18. Under conditions (L0), (W1)–(W3) or (W1)–(W4), the authors in
[15] proved Theorems 1.16-1.17 for c = 0. Therefore our results are extensions of
theirs.

Remark 1.19. In [8, 9], the authors studied the existence and multiplicity of
homoclinic solutions of the damped problem

ü+ q(t)u̇− L(t)u+Wu(t, u) = 0,

with the condition
lim

|t|→+∞
Q(t) = +∞, (1.5)

where q ∈ C(R,R) and Q(t) =
∫ t

0
q(s)ds. Evidently, q(t) ≡ c does not satisfy (1.5).

Lastly, motivated by [3], we consider the case where W (t, u) is indefinite in sign;
that is, W satisfies the following condition:

(W5) W (t, u) = 1
θa(t)|u|θ − 1

ϑb(t)|u|
ϑ, where 2 < ϑ < θ ≤ r (r is defined in (L1))

and a, b ∈ C(R,R+) ∩ L∞(R,R+).

Theorem 1.20. If (L0), (L1), (W5) are satisfied, then (1.1) has at least one non-
trivial g-quasi-homoclinic solution.

The rest of this article is organized as follows. In section 2, we introduce some
lemmas and preliminary results. In sections 3, 4 and 5, the main results are proved.

2. Preliminary results

It is well-known that (1.1) has a variational functional I defined on E

I(u) =
1
2

∫
R
ect(|u̇|2 + 〈L(t)u, u〉)−

∫
R
ectW (t, u)

=
1
2
‖u‖2 −

∫
R
ectW (t, u)

= I1(u)− I2(u),
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where I1(u) = 1
2‖u‖

2 and I2(u) =
∫

R e
ctW (t, u).

We give some lemmas which will be used later. Using the similar idea of [15,
Lemma 1], we can obtain the following compact embedding lemma.

Lemma 2.1. Suppose that L(t) satisfies (L0), then E ↪→↪→ L2(ect) for c > 0.

Lemma 2.2 ([11, 15]). If c = 0 and suppose that L(t) satisfies (L0), then E0 ↪→↪→
Lp(R,RN ) for p ∈ [2,∞].

Throughout this article, the letter C denotes positive (possibly different) con-
stants. The next lemma is a technical result.

Lemma 2.3. If L(t) satisfies (L0), then E ↪→↪→ L∞(ect/2).

Proof. For any R > 0, denote β(R) = inf |t|≥R l(t). We have β(R)→∞ as R→∞
from (L0). Let K ⊂ E be a bounded set such that ‖u‖ ≤ M, ∀ u ∈ K. We shall
show that K is precompact in L∞(ect/2).

For any n ∈ N, u ∈ E and τ ∈ R, writing

ect/2u(t) =
∫ t

τ

(ecs/2u(s))′
(s− τ)n+1

(t− τ)n
+ ecs/2u(s)

(n+ 1)(s− τ)n

(t− τ)n
ds

−
∫ τ+1

t

(ecs/2u(s))′
(τ + 1− s)n+1

(τ + 1− t)n
+ ecs/2u(s)

(n+ 1)(τ + 1− s)n

(τ + 1− t)n
ds

for all τ ≤ t ≤ τ + 1, we have

ect/2|u(t)| ≤ 2√
2n+ 3

(∫ τ+1

τ

ecs|u̇(s)|2
)1/2

+
2n+ 2 + c√

2n+ 1

(∫ τ+1

τ

ecs|u(s)|2
)1/2

(2.1)
for all τ ≤ t ≤ τ + 1. Particularly, for any R > 0 and u, v ∈ K, we can derive the
estimates as follows:

ect/2|u(t)− v(t)|

≤ 2√
2n

(∫
|s|≥R

ecs|u̇− v̇|2
)1/2

+
4n+ c√

2n

(∫
|s|≥R

ecs|u− v|2
)1/2

≤ 4(‖u‖+ ‖v‖)√
2n

+
4n+ c√

2n

(∫
|s|≥R

ecs〈L(s)(u− v), (u− v)〉
l(s)

)1/2

≤ 8M√
2n

+
4n+ c√

2n
2M√
β(R)

, ∀|t| ≥ R.

(2.2)

For any ε > 0, taking first n large enough such that

8M√
2n

<
ε

2
,

and R0 large enough such that

4n+ c√
2n

2M√
β(R0)

<
ε

2
,

we see from (2.2) that

max
|t|≥R0

ect/2|u(t)− v(t)| < ε (2.3)
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for all u, v ∈ K. Obviously, E ↪→↪→ L∞loc(ect/2). There exist u1, . . . , um ∈ K such
that ∀u ∈ K, there exists ui(1 ≤ i ≤ m) satisfying

max
|t|≤R0

ect/2|u(t)− ui(t)| < ε,

which jointly with (2.3) implies |ect/2(u − ui)|∞ < ε. Hence, K is precompact in
L∞(ect/2). �

Remark 2.4. If c > 0, by (2.1), we obtain that ect/2|u(t)| → 0 as |t| → ∞ for
u ∈ E. Therefore, we have u(t) → 0 as t → +∞ and ect/2u(t) → 0 as t → −∞.
Hence, by Definition 1.2, a solution of (1.1) with u ∈ E is g-quasi-homoclinic.

The following embedding theorem is crucial for the investigation of the existence
of homoclinic solutions of (1.1) with a super-quadratic condition.

Lemma 2.5. Suppose that (L0) and (L1) hold. Then the embedding of E into
Lr(ect) is compact, where r is defined in (L1).

Proof. For u ∈ E, by (L1) and Lemma 2.2, we have∫
R
ect|u|r ≤ |ect/2u|r−1

∞

(∫
R
ectl(t)|u(t)|2

)1/2(∫
R

1
l(t)e(r−2)ct

)1/2

≤ C|ect/2u|r−1
∞ ‖u‖,

which means that E is compactly embedded in Lr(ect). �

Remark 2.6. As a consequence of Lemmas 2.1 and 2.5, we have E ↪→↪→ Lq(ect)
for any q ∈ [2, r]. Hence, there exists a constant Cq > 0 such that

|u|q ≤ Cq‖u‖, ∀q ∈ [2, r]. (2.4)

To prove Theorems 1.10–1.17, we need some definitions and theorems introduced
in [17] and [2, 5, 13].

Definition 2.7 ([17]). The functional I ∈ C1(E,R) satisfies the (PS)-condition if
any sequence {uk} ⊂ E such that {I(uk)} is bounded and I ′(uk) → 0 as k → ∞
contains a convergent subsequence.

We restate a version of the mountain pass theorem due to [2] and [5]. It can also
be found in [13]. We first recall the definition of genus. Let E be a Banach space
and

Γ := {A ⊂ E \ {0} : A is closed and symmetric with respect to the origin}.

Define Γk := {A ∈ Γ : γ(A) ≤ k}, where

γ(A) := inf{n ∈ N : ∃f ∈ C(A,Rn\{0}),−f(x) = f(−x)}.

If there is no such mapping f for any n ∈ N, we set γ(A) = +∞.

Theorem 2.8 ([2, 5, 13]). Let E be an infinite dimensional Banach space and
I ∈ C1(E,R) be even, I(0) = 0 and I satisfies the following two conditions:

(I1) I is bounded from below and satisfies (PS)-condition;
(I2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak I(u) < 0.

Then cn = infA∈Γn supu∈A I(u) < 0 is a critical value of I for every n ∈ N and
cn → 0− as n→∞.
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Theorem 2.9 (Mountain pass theorem [17]). Let E be a real Banach space and
I ∈ C1(E,R) satisfying (PS)-condition. Suppose I(0) = 0 and

(I3) there are constants ρ, α > 0 such that I|∂Bρ ≥ α;
(I4) there is an e ∈ E\Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

Theorem 2.10 ([17]). Let E be an infinite dimensional real Banach space. Suppose
I ∈ C1(E,R) be even, satisfies (PS)-condition and I(0) = 0. If E = V

⊕
X, where

V is finite dimensional, and I satisfies
(I5) there are constants ρ, α > 0 such that I|∂Bρ∩X ≥ α;
(I6) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(Ẽ) such

that I(e) ≤ 0 on Ẽ\BR(Ẽ),
then I possesses an unbounded sequence of critical values.

3. The sub-quadratic case

Proof of Theorem 1.10. When c > 0, similar to [31, Lemmas 2.6 and 3.1], we can
prove that I ∈ C1(E,R) and I satisfies (PS)-condition. By Remark 2.4, any critical
point of I in E is a g-quasi-homoclinic solution of (1.1). It follows from (W0) that
I(0) = 0 and I is even. Moreover, by (W0), it is easy to prove that I is bounded
from below. Hence, to obtain Theorem 1.10, it is sufficient to show that I(u)
satisfies (I2) of Theorem 2.8. By (W0), there exist δ0 > 0 and α0 > 0 such that
α(t) ≥ α0 > 0 for all t ∈ [t0 − δ0, t0 + δ0]. Therefore, we have

lim
u→0

min
|t−t0|≤δ0

ectW (t, u)
|u|2

≥ min
|t−t0|≤δ0

ectα(t) lim
u→0

1
|u|2−ς

= +∞, (3.1)

where 1 < ς < 2. For simplicity, we assume that t0 = 0 in (W0). For r > 0, let
Jr = [0, r]. Fix r > 0 small enough such that Jr ⊂ [−δ0, δ0]. By (3.1), there exist
two sequences {εm}, {Mm} and constants ε > 0, C > 0 such that εm > 0, Mm > 0
and

lim
m→∞

εm = 0, lim
m→∞

Mm =∞,

ectW (t, εm)
ε2
m

≥Mm for t ∈ Jr, (3.2)

ectW (t, u)
u2

≥ −C for t ∈ Jr, u ∈ RN . (3.3)

For any fixed k ∈ N, we construct an Ak ∈ Γk satisfying supu∈Ak I(u) < 0. We
divide Jr equally into k small closed subintervals and denote them by Ji with
1 ≤ i ≤ k. Then the length of each Ji is a = r/k. We make an interval Ei ⊂ Ji(i =
1, 2, . . . , k) such that Ei has the same center as that of Ji and the length of Ei is a/2.
Define a function ψ ∈ C∞0 (R, [0, 1]) such that ψ(t) = 1 for t ∈ [a/4, 3a/4], ψ(t) = 0
for t ∈ (−∞, 0] ∪ [a,+∞). Then suppψ ⊂ [0, a]. Now for each i ∈ {1, 2, . . . , k}, we
define ψi(t) by a parallel translation ψ(t− yi) with a suitable yi ∈ R such that

suppψi ⊂ Di, suppψi ∩ suppψj = φ (i 6= j) (3.4)
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ψi(t) = 1 (t ∈ Ei), 0 ≤ ψi(t) ≤ 1 (t ∈ R). (3.5)

Set

Vk = {(t1, t2, . . . , tk) ∈ Rk : max
1≤i≤k

|ti| = 1}, (3.6)

Wk = {
k∑
i=1

tiψi(t) : (t1, t2, . . . , tk) ∈ Vk}. (3.7)

Evidently, Vk is homeomorphic to the sphere Sk−1 by an odd mapping. There-
fore, γ(Vk) = γ(Sk−1) = k. Moreover, γ(Wk) = γ(Vk) = k because the mapping
(t1, . . . , tk) 7→

∑
tiψi is odd and homeomorphic. It is clear that Wk is compact. So

there is a constant Ck > 0 such that

‖u‖ ≤ Ck, ∀u ∈Wk. (3.8)

For s > 0 and u =
∑k
i=1 tiψi(t) ∈Wk, by (3.4) and (3.8), we obtain

I(su) ≤ s2

2
C2
k −

k∑
i=1

∫
Di

ectW (t, stiψi(t))dt. (3.9)

By (3.6), there exists j ∈ {1, 2, . . . , k} such that |tj | = 1 and |ti| ≤ 1 for the others
i. It follows that

k∑
i=1

∫
Di

ectW (t, stiψi(t))dt

=
∫
Ej

ectW (t, stiψi(t))dt+
∫
Dj\Ej

ectW (t, stiψi(t))dt

+
∑
i 6=j

∫
Di

ectW (t, stiψi(t))dt.

(3.10)

Since |tj | = 1, ψj(t) ≡ 1 on Ej and W (t, u) = W (t, |u|), so we have∫
Ej

ectW (t, stiψi(t))dt =
∫
Ej

ectW (t, s)dt. (3.11)

By (3.3), the second and the third terms are estimated as∫
Dj\Ej

ectW (t, stiψi(t))dt+
∑
i 6=j

∫
Di

ectW (t, stiψi(t))dt ≥ −Crs2. (3.12)

Combining (3.9)–(3.12), we have

I(su) ≤ C2
k

2
s2 + Crs2 −

∫
Ej

ectW (t, s)dt.

Substituting s by εm and using (3.2), we obtain

I(εmu) ≤ ε2
m(
C2
k

2
+ Cr −Mm

a

2
). (3.13)

Since Mm → ∞ as m → ∞, we choose m0 large enough such that the right-hand
side of (3.13) is negative. Take Ak = εm0Wk. Then we have

γ(Ak) = γ(Wk) = k, sup{I(u) : u ∈ Ak} < 0.

Consequently, (I2) holds. Therefore, by Theorem 2.8, (1.1) has infinitely many
g-quasi-homoclinic solutions {un} satisfying I(un)→ 0− as n→∞.
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When c = 0, by Lemma 2.2 and Remark 1.3, it is not difficult to obtain that
that I ∈ C1(E,R), I satisfies (PS)-condition and any critical point of I on E is a
homoclinic solution of (1.1). Clearly I(0) = 0 and I is even via (W0). Moreover,
by (W0), we can easily prove that I is bounded from below. It suffices to verify
that I satisfies (I2) of Theorem 2.8. By (W0), there exist δ1 > 0 and α1 > 0 such
that α(t) ≥ α1 > 0 for all t ∈ [t0 − δ1, t0 + δ1]. Hence, we have

lim
u→0

min
|t−t0|≤δ1

W (t, u)
|u|2

≥ min
|t−t0|≤δ1

α(t) lim
u→0

1
|u|2−ς

= +∞,

The rest of the proof is done by repeating the above argument; so we omit it. �

Proof of Theorem 1.11. When c > 0, similar to [31, Lemmas 2.7 and 3.2], we can
prove that I ∈ C1(E,R) satisfying (PS)-condition and any critical point of I on
E is a g-quasi-homoclinic solution of (1.1). By (W0’) and V (u) = V (−u) for all
u ∈ RN , we obtain that I(0) = 0 and I(u) is even. Moreover, by (W0’), it is easy
to prove that I is coercive, i.e. I(u) → +∞ as ‖u‖ → +∞. Hence, I is bounded
from below. It is sufficient to show that I satisfies (I2) of Theorem 2.8. By (W0’),
there exist δ′0 > 0 and β0 > 0 such that β(t) ≥ β0 > 0 for all t ∈ [t′0 − δ′0, t′0 + δ′0].
Therefore, by (1.3), we have

lim
u→0

min
|t−t′0|≤δ′0

ectW (t, u)
|u|2

≥ min
|t−t′0|≤δ′0

ectβ(t) lim
u→0

V (u)
|u|2

= +∞.

The rest of the proof is similar to that of Theorem 1.10; we omit it. �

Proof of Theorem 1.13. When c > 0, similar to [31, Lemma 2.8], we obtain that
I ∈ C1(E,R) and any critical point of I on E is a g-quasi-homoclinic solution of
(1.1). By (W0), we obtain I(0) = 0 and I is even. It follows from [31, Lemma 3.3]
that I is coercive. So I is bounded from below. To get Theorem 1.13, it is then
sufficient to show that I(u) satisfies the (PS)-condition and (I2) of Theorem 2.8.

However, under condition (L0’), it is not easy to show the (PS)-condition for I
since we can not prove compactness of the embedding E into L2(ect). To overcome
this difficulty, We adopt some arguments similar to those in [6]. Firstly, we claim
that if un ⇀ u in E, then I ′2(un)→ I ′2(u) as n→∞. Actually, it suffices to verify
that

ϕ(n, h) :=
∫

R
ect|Wu(t, un)−Wu(t, u)||h|dt→ 0 as n→∞,

uniformly for h ∈ E with ‖h‖ = 1. Let R > 0 and JR = [−R,R]. We rewrite
ϕ(n, h) as follows

ϕ(n, h) =
∫
JR

ect|Wu(t, un)−Wu(t, u)||h|+
∫

R\JR
ect|Wu(t, un)−Wu(t, u)||h|

= ϕ1(n, h,R) + ϕ2(n, h,R).

The term ϕ2(n, h,R) can be estimated as

ϕ2(n, h,R) ≤
∫

R\JR
ectα(t)(|un|ς−1 + |u|ς−1)|h|dt

≤
(∫

R\JR
ect|α(t)|

2
2−ς dt

) 2−ς
2

(|un|ς−1
2 + |u|ς−1

2 )|h|2

≤ C
(∫

R\JR
ect|α(t)|

2
2−ς dt

) 2−ς
2
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uniformly for ‖h‖ = 1. Note that this last expression can be made arbitrarily small
by taking R > 0 large enough. For given R > 0, Sobolev’s theorem implies that
un → u on Lp(JR,R), p ∈ [2,+∞]. Therefore, un → u uniformly on JR. So

ϕ1(n, h,R) =
∫
JR

ect|Wu(t, un)−Wu(t, u)||h|dt→ 0 as n→∞

uniformly for ‖h‖ = 1.
Next, we verify the (PS)-condition. Assume that {uj} ⊂ E is a sequence such

that {I(uj)} is bounded and I ′(uj)→ 0 as j → +∞. Then, there exists a constant
C > 0 such that

2− ς
2
‖uj‖2 = I ′(uj)uj − ςI(uj) ≤ C‖uj‖+ C. (3.14)

Since 1 < ς < 2, the inequality (3.14) shows that {uj} is bounded in E. There
exists a subsequence of {uj}, again denoted by {uj}, and u ∈ E such that uj ⇀ u
in E. By the claim, I ′2(uj)→ I ′2(u) as j →∞. Therefore,

‖uj − u‖2 = (I ′(uj)− I ′(u), uj − u) + (I ′2(uj)− I ′2(u), uj − u)→ 0, as j →∞.
Consequently, {uj} converges strongly to u in E.

The rest of the proof is analogous to that in Theorem 1.10; so we omit it. �

Proof of Theorem 1.14. When c > 0, similar to [31, Lemma 2.8], we conclude that
I ∈ C1(E,R) and any critical point of I on E is a g-quasi-homoclinic solution of
(1.1). By (W0’) and V (u) = V (−u), we obtain I(0) = 0 and I is even. It follows
from [31, Lemma 3.4] that I is coercive. So I is bounded from below. To prove
Theorem 1.14, it is then sufficient to show that I(u) satisfies the (PS)-condition
and (I2) of Theorem 2.8.

Firstly, similar to the proof of Theorem 1.13, we claim that if un ⇀ u in E,
then I ′2(un) → I ′2(u) as n → ∞. It suffices to verify that φ(n, h) → 0 as n → ∞
uniformly for h ∈ E with ‖h‖ = 1. By (W0’), we can estimate φ2(n, h,R) as follows

φ2(n, h,R) ≤
∫

R\JR
ectβ(t)(|Vu(un)|+ |Vu(u)|)|h|dt ≤ C

(∫
R\JR

ect|β(t)|2dt
)1/2

uniformly for ‖h‖ = 1. Note that this last term can be made arbitrarily small by
taking R > 0 large. For given R > 0, similar to Theorem 1.13, we can derive that
φ1(n, h,R) → 0 as n → ∞ uniformly for ‖h‖ = 1. So φ(n, h) → 0 as n → ∞
uniformly for h ∈ E with ‖h‖ = 1 and the claim holds.

Next, we verify the (PS)-condition. Assume that {uj} ⊂ E is a sequence such
that {I(uj)} is bounded and I ′(uj)→ 0 as j → +∞. Then, by (W0’), we obtain

1
2
‖uj‖2 = I(uj) +

∫
R
ectβ(t)|V (uj)| ≤ C + C|β|2|uj |2 ≤ C + C‖uj‖,

which implies that {uj} is bounded in E.
The rest part of the proof is similar to those of Theorems 1.13 and 1.11; so we

omit it. �

4. The super-quadratic case

Using a similar idea to one in [15, Lemma 2], we obtain the following result.

Lemma 4.1. Suppose that (L0), (L1), (W1), (W3) are satisfied. If uk ⇀ u (weakly)
in E, then Wu(t, uk)→Wu(t, u) in L2(ect).
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Proof. For all k ∈ N and t ∈ R, from (W1)− (W2), we obtain

|Wu(t, uk(t))| ≤ |uk(t)|+ C|uk(t)|p−1.

Recalling Lemma 2.1, Lemma 2.5 and Remark 2.6, we have uk → u in L2(ect) and
uk → u in L2p−2(ect). So we can assume uk → u a.e. t ∈ R up to a subsequence.
Then by [22, Lemma A.1], there exists a function h ∈ L2(ect) ∩ L2p−2(ect) such
that

|uk(t)|, |u(t)| ≤ h(t) a.e. t ∈ R.
Therefore,

ect|Wu(t, uk(t))−Wu(t, u(t))|2 ≤ Cect(|h(t)|2 + |h(t)|2p−2) ∈ L1(R,R).

Hence, the lemma is proved by Lebesgue’s dominated convergence theorem. �

The proof of the next lemma is standard and we omit it.

Lemma 4.2. If (L0), (L1), (W1), (W3) are satisfied, then I ∈ C1(E,R) and

I ′(u)v =
∫

R
ect(〈u̇(t), v̇(t)〉+ 〈L(t)u(t), v(t)〉 − 〈Wu(t, u(t)), v(t)〉)dt,

for all u, v ∈ E. Furthermore, any critical point of I on E is a g-quasi-homoclinic
solution of (1.1).

The following result ensures the compactness of the functional I.

Lemma 4.3. Assume that (L0), (L1), (W1)–(W3) hold. Then I satisfies the (PS)-
condition.

Proof. Let {uj} ⊂ E be such that {I(uj)} is bounded and I ′(uj) → 0 as j → ∞.
Then there exists a constant M3 > 0 such that

M3 + ‖uj‖ ≥ I(uj)−
1
µ
I
′
(uj)uj ≥ (

1
2
− 1
µ

)‖uj‖2.

The sequence {uj} is bounded in E since µ > 2. Without loss of generality, we
assume uj ⇀ u for some u ∈ E as j →∞. It follows from the definition of I that

‖uj − u‖2 = (I
′
(uj)− I

′
(u), uj − u) +

∫
R
ect〈Wu(t, uj)−Wu(t, u), uj − u〉.

By Lemma 4.1 and Hölder inequality, one immediately has uj → u in E as j →
∞. �

With the help of the preceding three lemmas we can now complete the proofs of
Theorems 1.16 and 1.17.

Proof of Theorem 1.16. We use Theorem 2.9 to prove the existence of a nontrivial
critical point of I.

Step 1. It is clear that I(0) = 0 via (W1)–(W2) and by Lemmas 4.2 and 4.3,
I ∈ C1(E,R) and I satisfies the (PS)-condition.

Step 2. We now prove that there exist constants ρ, α > 0 such that I satisfies
condition (I3) of Theorem 2.9. By (W1) and (W3), given ε > 0, there exists cε > 0
such that

|Wu(t, u)| ≤ ε|u|+ cε|u|p−1.

Noticing (2.4), for u ∈ E, one obtains∫
R
ectW (t, u(t)) ≤ ε|u|22 + cε|u|pp ≤ C(ε‖u‖2 + ‖u‖p).
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Since ε is arbitrarily and p ∈ (2,+∞), it follows that∫
R
ectW (t, u) = o(‖u‖2), as u→ 0 in E.

Consequently, I satisfies (I3) of Theorem 2.9.
Step 3. We verify that there exists e ∈ E\Bρ such that I(e) ≤ 0. Consider

I(su) =
s2

2
‖u‖2 −

∫
R
ectW (t, su)

for s ∈ R\{0} and u ∈ E\{0}. By (W2), there exists a continuous function α0(t) >
0 such that for all |u| ≥ 1,

W (t, u) ≥ α0(t)|u|µ.
Set ū ∈ E with ‖ū‖ = 1. Then there exist a constant δ1 > 0 and a positive measure
subset Ω of R such that |ū(t)| ≥ δ1 > 0 for all t ∈ Ω. Choosing s > 0 such that
s|ū(t)| ≥ 1 for all t ∈ Ω, we deduce that

I(sū) ≤ s2

2
‖ū‖2 −

∫
R
ectW (t, sū) ≤ s2

2
− sµ

∫
Ω

ectα0(t)|ū(t)|µ. (4.1)

Since µ > 2 and α0(t) > 0, (4.1) implies that I(sū) < 0 = I(0) for some s > 0 such
that s|ū(t)| ≥ 1 for all t ∈ Ω and ‖sū‖ > ρ, where ρ is defined in Step 2. �

Proof of Theorem 1.17. By (W4), I is even. Using the same argument as in the
proof of Theorem 1.16, we can easily show that I(0) = 0, I ∈ C1(E,R) and satisfies
the (PS)-condition. Likewise, by taking V = 0 and X = E, (I5) of Theorem 2.10
holds.

The theorem will be proved if we can show that I satisfies condition (I6). Let
Ẽ ⊂ E be a finite dimensional subspace. From Step 3 of Theorem 1.16, we know
that, for any ũ ∈ Ẽ ⊂ E with ‖ũ‖ = 1, there exists sũ > 0 such that

I(sũ) < 0,∀|s| ≥ sũ > 0. (4.2)

Then we can take R = R(Ẽ) > 0 such that

I(u) < 0, ∀u ∈ Ẽ\BR.
By Theorem 2.10, I possesses an unbounded sequence of critical values {cj}j∈N
with cj → +∞. �

5. The sign-changing case

In this section, we use the Nehari manifold method to prove Theorem 1.20.
Under condition (W5), the functional associated to (1.1) is

I(u) =
1
2
‖u‖2 − 1

θ

∫
R
ecta(t)|u|θ +

1
ϑ

∫
R
ectb(t)|u|ϑ,

which is differentiable on E, and

I ′(u)v = (u, v)−
∫

R
ecta(t)〈|u|θ−2u, v〉dt+

∫
R
ectb(t)〈|u|ϑ−2u, v〉dt.

The Nehari manifold is

N = {u ∈ E\{0} : I ′(u)u = 0}

=
{
u ∈ E\{0} : ‖u‖2 =

∫
R
ecta(t)|u|θ −

∫
R
ectb(t)|u|ϑ

}
.
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Define
m = inf

u∈N
I(u).

By a series of lemmas, we show that m is attained by some u ∈ N , which is a
critical point of I on E, and then a solution to (1.1).

Lemma 5.1. The Nehari manifold N is not empty.

Proof. Let u ∈ E\{0}. We study the behavior of the function on [0,+∞)

γ(τ) = I ′(τu)(τu) = τ2‖u‖2 − τθ
∫

R
ecta(t)|u|θ + τϑ

∫
R
ectb(t)|u|ϑ.

Obviously, γ is continuous. By (W5), it is easy to see that

γ(τ) = τ2‖u‖2 + o(τ2) as τ → 0+,

γ(τ)→ −∞ as τ → +∞.
Therefore, there exists τ∗ ∈ (0,+∞) such that γ(τ∗) = 0, i.e. τ∗u ∈ N . �

Lemma 5.2. The functional I is coercive on N and m > 0.

Proof. For every u ∈ N , we have

I(u) = (
1
2
− 1
θ

)‖u‖2 + (
1
ϑ
− 1
θ

)
∫

R
ectb(t)|u|ϑ ≥ (

1
2
− 1
θ

)‖u‖2

which shows that I is coercive on N . By (2.4), one has

‖u‖2 ≤ ‖u‖2 +
∫

R
ectb(t)|u|ϑ =

∫
R
ecta(t)|u|θ ≤ |a|∞Cθθ‖u‖θ.

Consequently,

‖u‖ ≥
(

1
Cθθ |a|∞

) 1
θ−2

> 0.

It follows that

m = inf
u∈N

I(u) ≥ inf
u∈N

(
1
2
− 1
θ

)‖u‖2 ≥ (
1
2
− 1
θ

)
(

1
Cθθ |a|∞

) 2
θ−2

> 0.

�

Lemma 5.3. There exists u ∈ N such that I(u) = m.

Proof. Let {un} ⊂ N be a minimizing sequence for I. Since I is coercive on N , the
sequence {un} is bounded and then, up to subsequence, un ⇀ u in E. By Lemma
2.5, for all κ ∈ [2, r], un → u in Lκ(ect) and un → u a.e. in R. Hence, we obtain
that

I(u) ≤ lim inf
n→∞

I(un) = m,

‖u‖2 ≤
∫

R
ecta(t)|u|θ −

∫
R
ectb(t)|u|ϑ.

Since for all n ∈ N,

‖un‖ ≥
( 1
Cθθ |a|∞

) 1
θ−2

> 0,

we obtain ∫
R
ecta(t)|u|θ −

∫
R
ectb(t)|u|ϑ > 0,
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which shows that u 6≡ 0.
If ‖u‖2 <

∫
R e

cta(t)|u|θ −
∫

R e
ctb(t)|u|ϑ, consider the function

γ(τ) = τ2‖u‖2 − τθ
∫

R
ecta(t)|u|θ + τϑ

∫
R
ectb(t)|u|ϑ.

Since γ(1) < 0 and γ(τ) > 0 in a right neighborhood of 0, there exists τ0 ∈ (0, 1)
such that γ(τ0) = 0, which means that τ0u ∈ N . Consequently,

m ≤ I(τ0u)

=
1
2
‖τ0u‖2 −

1
θ

∫
R
ecta(t)|τ0u|θ +

1
ϑ

∫
R
ectb(t)|τ0u|ϑ

=
(1

2
− 2
θ + ϑ

)
‖τ0u‖2 +

( 2
θ + ϑ

− 1
θ

) ∫
R
ecta(t)|τ0u|θ

+ (
1
ϑ
− 2
θ + ϑ

)
∫

R
ectb(t)|τ0u|ϑ

<
(1

2
− 2
θ + ϑ

)
‖u‖2 +

( 2
θ + ϑ

− 1
θ

) ∫
R
ecta(t)|u|θ +

( 1
ϑ
− 2
θ + ϑ

) ∫
R
ectb(t)|u|ϑ

≤ lim inf
n→∞

I(un) = m.

This is a contradiction. Therefore,

‖u‖2 =
∫

R
ecta(t)|u|θ −

∫
R
ectb(t)|u|ϑ.

Then u ∈ N and is the required minimum. The proof is complete. �

Lemma 5.4. Let u ∈ N be such that I(u) = m. Then I ′(u) = 0.

Proof. Take v ∈ E and let ε > 0 be small that u + sv 6= 0 for all s ∈ (−ε, ε). We
know that there exists τ(s) ∈ R such that τ(s)(u+ sv) ∈ N . Consider the function

F (s, τ) = τ2‖u+ sv‖2 −
∫

R
ecta(t)|τ(u+ sv)|θdt+

∫
R
ectb(t)|τ(u+ sv)|ϑdt

for (s, τ) ∈ (−ε, ε)× R. Since u ∈ N , we have

F (0, 1) = ‖u‖2 −
∫

R
ecta(t)|u|θdt+

∫
R
ectb(t)|u|ϑdt = 0.

On the other hand,
∂F

∂τ
(0, 1) = 2‖u‖2 − θ

∫
R
ecta(t)|u|θ + ϑ

∫
R
ectb(t)|u|ϑ

≤ 2‖u‖2 − θ + ϑ

2

∫
R
ecta(t)|u|θdt+

θ + ϑ

2

∫
R
ectb(t)|u|ϑdt

= (2− θ + ϑ

2
)‖u‖2 < 0.

So, by the Implicit Function Theorem, for ε small enough, we can determine a
function τ ∈ C1(−ε, ε) such that F (s, τ(s)) = 0, and τ(0) = 1. This says that
τ(s) 6= 0 at least for ε small, and then τ(s)(u+ sv) ∈ N .

Setting
γ(s) = I(τ(s)(u+ sv)),

we obtain that γ is differentiable and has a minimum point at s = 0, thus

0 = γ′(0) = I ′(τ(0)u)(τ ′(0)u+ τ(0)u) = τ ′(0)I ′(u)u+ I ′(u)v = I ′(u)v.
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Since v ∈ E, is arbitrary, we conclude that I ′(u) = 0. �
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