Electron. J. Diff. Equ., Vol. 2015 (2015), No. 149, pp. 1-6.

Extending infinity harmonic functions by rotation

Gustaf Gripenberg

Abstract:
If $u(\mathbf{x}, y)$ is an infinity harmonic function, i.e., a viscosity solution to the equation $-\Delta_\infty u=0$ in $\Omega \subset \mathbb{R}^{m+1}$ then the function $v(\mathbf{x}, \mathbf{z})= u(\mathbf{x}, \|\mathbf{z}\|)$ is infinity harmonic in the set $\{(\mathbf{x}, \mathbf{z}): 
 (\mathbf{x}, \|\mathbf{z}\|)\in \Omega\}$ (provided $u(\mathbf{x},-y)=u(\mathbf{x},y)$).

Submitted May 21, 2015. Published June 10, 2015.
Math Subject Classifications: 35J60, 35J70.
Key Words: Infinity harmonic; extension; viscosity solution.

Show me the PDF file (196 KB), TEX file, and other files for this article.

Gustaf Gripenberg
Department of Mathematics and Systems Analysis
Aalto University
P.O. Box 11100, FI-00076 Aalto, Finland
email: gustaf.gripenberg@aalto.fi

Return to the EJDE web page