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LAPLACE TRANSFORM OF FRACTIONAL ORDER
DIFFERENTIAL EQUATIONS

SONG LIANG, RANCHAO WU, LIPING CHEN

Abstract. In this article, we show that Laplace transform can be applied to

fractional system. To this end, solutions of linear fractional-order equations are

first derived by a direct method, without using Laplace transform. Then the
solutions of fractional-order differential equations are estimated by employing

Gronwall and Hölder inequalities. They are showed be to of exponential order,

which are necessary to apply the Laplace transform. Based on the estimates
of solutions, the fractional-order and the integer-order derivatives of solutions

are all estimated to be exponential order. As a result, the Laplace transform
is proved to be valid in fractional equations.

1. Introduction

Fractional calculus is generally believed to have stemmed from a question raised
in the year 1695 by L’Hopital and Leibniz. It is the generalization of integer-order
calculus to arbitrary order one. Frequently, it is called fractional-order calculus,
including fractional-order derivatives and fractional-order integrals. Reviewing its
history of three centuries, we could find that fractional calculus were mainly in-
teresting to mathematicians for a long time, due to its lack of application back-
ground. However, in the previous decades more and more researchers have paid
their attentions to fractional calculus, since they found that the fractional-order
derivatives and fractional-order integrals were more suitable for the description of
the phenomena in the real world, such as viscoelastic systems, dielectric polariza-
tion, electromagnetic waves, heat conduction, robotics, biological systems, finance
and so on; see, for example, [1, 2, 8, 9, 10, 16, 17, 19].

Owing to great efforts of researchers, there have been rapid developments on
the theory of fractional calculus and its applications, including well-posedness, sta-
bility, bifurcation and chaos in fractional differential equations and their control.
Several useful tools for solving fractional-order equations have been discovered, of
which Laplace transform is frequently applied. Furthermore, it is showed to be
most efficient and helpful in analysis and applications of fractional-order systems,
from which some results could be derived immediately. For instance, in [11, 12],
the authors investigated stability of fractional-order nonlinear dynamical systems
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using Laplace transform method and Lyapunov direct method, with the introduc-
tion of Mittag-Leffler stability and generalized Mittag-Leffler stability concepts. In
[5], Deng et al studied the stability of n-dimensional linear fractional differential
equation with time delays by Laplace transform method. In [18], Jocelyn Sabatier
et al obtained the stability conditions in the form of linear matrix inequality (LMI)
for fractional-order systems by using Laplace transform. The Laplace transform
was also used in [6, 7, 13, 14, 15, 21].

Although it is often used in analyzing fractional-order systems, the validity of
Laplace transform to fractional systems is seldom touched upon when it is applied to
fractional systems. In this paper, its validity to fractional systems will be justified.
It is showed that Laplace transform could be applied to fractional systems under
certain conditions. To this end, solutions of linear fractional-order equations are
first derived by direct method, without using the Laplace transform. The obtained
results match those obtained by the Laplace transform very well. The method
provides an alternative way of solution, different from the Laplace transform. Then
solutions of fractional-order differential equations are estimated. They are showed
to be of exponential order, which is necessary to apply the Laplace transform.
Finally, the Laplace transform is proved to be feasible in fractional equations.

The article is organized as follows. In Section 2, some preliminaries about frac-
tional calculus are presented. In Section 3, solutions of linear fractional-order equa-
tions are expressed by the direct method, without using Laplace transform. Section
4 is devoted to the estimates of solutions of fractional-order equations. The Laplace
transform is proved to be valid in fractional-order equations in Section 5. Finally,
some conclusions are drawn in Section 6.

2. Preliminaries

In fractional calculus, the traditional integer-order integrals and derivatives of
functions are generalized to fractional-order ones, which are commonly defined by
Laplace convolution operation as follows.

Definition 2.1 ([9, p. 92]). Caputo fractional derivative with order α for a function
x(t) is defined as

CDα
t0x(t) =

1
Γ(m− α)

∫ t

t0

(t− τ)m−α−1x(m)(τ)dτ,

where 0 ≤ m − 1 ≤ α < m, m ∈ Z+, and t = t0 is the initial time and Γ(·) is the
Gamma function.

Definition 2.2 ([9, p. 69]). Riemann-Liouville fractional integral of order α > 0
for a function x : R+R is defined as

Iαt0f(t) =
1

F (α)

∫ t

t0

(t− τ)α−1f(τ)dτ,

where t = t0 is the initial time and Γ(.) is the Gamma function.

Definition 2.3 ([9, p. 70]). Riemann-Liouville fractional derivative with order α
for a function x : R+R is defined as

RLDα
t0x(t) =

1
Γ(m− α)

dm

dtm

∫ t

t0

(t− τ)m−α−1x(τ)dτ,
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where 0 ≤ m − 1 ≤ α < m, m ∈ Z+, and t = t0 is the initial time and Γ(.) is the
Gamma function.

Definition 2.4 ([17, pp. 16-17]). The Mittag-Leffler function is defined as

Eα(z) =
∞∑
k=0

zk

Γ(ka+ 1)
,

where α > 0, z ∈ C. The two-parameter Mittag-Leffler function is defined as

Eα,β(z) =
∞∑
k=0

zk

Γ(ka+ β)
,

where α > 0, β > 0, z ∈ C.

There are some properties between fractional-order derivatives and fractional-
order integrals, which are expressed as follows.

Lemma 2.5 ([9, pp. 75-76, 96]). Let α > 0, n = [α]+1 and fn−α(t) = (In−αa f)(t).
Then fractional integrals and fractional derivatives have the following properties.
(1) If f(t) ∈ L1(a, b) and fn−α(t) ∈ ACn[a, b], then

(Iαa
RLDα

a f)(t) = f(t)−
n∑
j=1

f
(n−j)
n−α (a)

Γ(a− j + 1)
(t− a)α−j ,

holds almost everywhere in [a, b].
(2) If f(t) ∈ ACn[a, b] or f(t) ∈ Cn[a, b], then

(Iαa
CDα

a f)(t) = f(t)−
n−1∑
k=0

f (k)(a)
k!

(t− a)k.

Note that the Laplace transform is a useful tool for analyzing and solving or-
dinary and partial differential equations. The definition of Laplace transform and
some applications to integer-order systems are recalled from [20]. They will be
useful for later analysis.

Definition 2.6 ([20, pp. 1-2]). The Laplace transform of f is defined as

F (s) = L(f(t))(s) =
∫ ∞

0

e−stf(t)dt = lim
τ→∞

∫ τ

0

e−stf(t)dt,

whenever the limit exists (as a finite number).

Definition 2.7 ([20, p. 10]). A function f is piecewise continuous on the interval
[0,∞) if (i) limt→0+ f(t) = f(0+) exists and (ii) f is continuous on every finite
interval (0, b) except possibly at a finite number of points τ1, τ2, . . . , τn in (0, b) at
which f has a jump discontinuity.

Definition 2.8 ([20, p. 12]). A function f is of exponential order γ if there exist
constants M > 0 and γ such that for some t0 > 0 such that |f(t)| ≤ Meγt for
t ≥ t0.

Some existence results of Laplace transform for functions and their derivatives
are listed as follows.

Theorem 2.9 ([20, p. 13]). If f is piecewise continuous on [0,∞) and of exponen-
tial order γ, then the Laplace transform L(f(t)) exists for Re(s) > γ and converges
absolutely.



4 S. LIANG, R. WU, L. CHEN EJDE-2015/139

Theorem 2.10 ([20, p. 56]). If we assume that f ′ is continuous [0,∞) and also
of exponential order, then it follows that the same is true of f .

Theorem 2.11 ([20, p. 57]). Suppose that f(t), f ′(t), . . . , f (n−1)(t) are continuous
on (0,∞) and of exponential order, while f (n)(t) is piecewise continuous on [0,∞).
Then

L(f (n)(t))(s) = snL(f(t))− sn−1f(0+)− sn−2f ′(0+)− · · · − f (n−1)(0+).

Although the Laplace operator can be applied to many functions, there are some
functions, to which it could not be applied, see for example [20, p.6]. The following
inequalities will also be helpful for later analysis.

Lemma 2.12 ([21]). Suppose β > 0, a(t) is a nonnegative function locally inte-
grable on 0 ≤ t < T (some T ≤ +∞) and g(t) is a nonnegative, nondecreasing
continuous function defined on 0 ≤ t < T , g(t) ≤ M (constant), and suppose u(t)
is nonnegative and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + g(t)
∫ t

0

(t− s)β−1u(s) ds

on this interval. Then

u(t) ≤ a(t) +
∫ t

0

[ ∞∑
n=1

(g(t)Γ(β))n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds, 0 ≤ t < T.

Lemma 2.13 (Cauchy inequality [22]). Let n ∈ N , and let x1, x2, . . . , xn be non-
negative real numbers. Then for ϑ,( n∑

i=1

xi

)ϑ
≤ nϑ−1

n∑
i=1

xϑi .

Lemma 2.14 (Gronwall integral inequality [4]). If

x(t) ≤ h(t) +
∫ t

t0

k(s)x(s) ds, t ∈ [t0, T ),

where all the functions involved are continuous on [t0, T ), T ≤ +∞, and k(s) ≥ 0,
then x(t) satisfies

x(t) ≤ h(t) +
∫ t

t0

h(s)k(s)e
R t
s
k(u)du ds, t ∈ [t0, T ).

If, in addition, h(t) is nondecreasing, then

x(t) ≤ h(t)e
R t
t0
k(s) ds

, t ∈ [t0, T ).

3. Solutions of linear fractional-order equations by a direct
method

Consider the one-dimensional linear fractional-order equation

Dα
0 x(t) = λx(t), (3.1)

where D denotes RLD orCD, l − 1 < α ≤ l, l ∈ N , λ ∈ R.
Take Laplace transform on both sides of (3.1), then the solutions of (3.1) could

be figured out, see [9, pp.284, 313]. The solutions are presented as follows.
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(a) When D denotes RLD, the solution is represented as

x(t) =
l∑

j=1

djxj(t), (3.2)

where dj = (RLDα−j
x)(0+) = x

(l−j)
l−α (0+), xj(t) = tα−jEα,α+1−j(λtα), and j =

1, 2, . . . , l.
(b) When D denotes CD, the solution is represented as

x(t) =
l−1∑
j=0

bj x̃j(t), (3.3)

where bj = x(j)(0), x̃j(t) = tjEα,j+1(λtα), and j = 1, 2, . . . , l − 1.
Now we employ the direct method to derive the solutions of (3.1). The whole

process will be formulated after the following theorem is introduced.

Theorem 3.1. Suppose that α > 0, u(t) and a(t) are locally integrable on 0 ≤ t <
T (some T ≤ +∞), and |a(t)| ≤M(constant). Suppose x(t) is locally integrable on
0 ≤ t < T with

x(t) = u(t) +
1

Γ(α)

∫ t

0

(t− τ)α−1a(τ)x(τ)dτ

on this interval. Then

x(t) = u(t) +
∫ t

0

[ ∞∑
n=1

1
Γ(nα)

(t− τ)nα−1an(τ)u(τ)
]
dτ.

Proof. Let Bφ(t) = 1
Γ(α)

∫ t
0
(t − τ)α−1a(τ)φ(τ)dτ , t ≥ 0, where φ is the locally

integrable function. Then x(t) = u(t) +Bx(t) implies

x(t) =
n−1∑
k=0

Bku(t) +Bnx(t).

Let us prove by mathematical induction that

Bnx(t) =
1

Γ(nα)

∫ t

0

(t− τ)nα−1an(τ)x(τ)dτ, (3.4)

and Bnx(t)→ 0 as n→ +∞ for each t in 0 ≤ t < T .
We know that the relation (3.4) is true for n = 1. Assume that it is true for

n = k. If n = k + 1, then the induction hypothesis implies

Bk+1x(t) = B(Bkx(t))

=
1

Γ(α)

∫ t

0

(t− s)α−1a(s)
[ 1

Γ(kα)

∫ s

0

(s− τ)kα−1ak(τ)x(τ)dτ
]
ds.

By interchanging the order of integration, we have

Bk+1x(t) =
1

Γ(α)Γ(kα)

∫ t

0

[
∫ t

τ

(t− s)α−1(s− τ)kα−1ds]ak+1(τ)x(τ)dτ,

where the integral∫ t

τ

(t− s)α−1(s− τ)kα−1ds = (t− τ)kα+α−1

∫ 1

0

(1− z)α−1zkα−1dz
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= (t− τ)(k+1)α−1B(kα, α)

=
Γ(α)Γ(kα)
Γ((k + 1)α)

(t− τ)(k+1)α−1

is evaluated with the help of the substitution s = τ + z(t− τ) and the definition of
the beta function. The relation (3.4) is proved.

Since

Bnx(t) =
1

Γ(nα)

∫ t

0

(t− τ)nα−1a(τ)x(τ)dτ

≤ 1
Γ(nα)

∫ t

0

|(t− τ)nα−1an(τ)x(τ)|dτ

≤ 1
Γ(nα)

∫ t

0

(t− τ)nα−1|an(τ)||x(τ)|dτ

≤ Mn

Γ(nα)

∫ t

0

(t− τ)nα−1|x(τ)|dτ

≤ MnTnα−1

Γ(nα)

∫ t

0

|x(τ)|dτ → 0,

as n→ +∞ for t ∈ [0, T ). Then the proof is complete. �

The way to prove the theorem can also be found in [21] and [23]. The theorem
provides a direct method to solve the linear fractional-order equation (3.1).

(A) When D denotes RLD, take the operator Iα0 on both sides of (3.1), then
from Lemma 2.5 we have

x(t) =
l∑

j=1

x
(l−j)
l−α (0+)

Γ(α− j + 1)
tα−j +

1
Γ(α)

∫ t

0

(t− τ)α−1λx(τ)dτ.

Let
l∑

j=1

x
(l−j)
l−α (0+)

Γ(α− j + 1)
tα−j =

l∑
j=1

dj
Γ(α− j + 1)

tα−j = u(t),

from Theorem 3.1, one obtains

x(t) = u(t) +
∫ t

0

[ ∞∑
n=1

1
Γ(nα)

(t− τ)nα−1λnu(τ)
]
dτ. (3.5)

Assume that

Aj =
dj

Γ(α− j + 1)
tα−j +

∫ t

0

[ ∞∑
n=1

1
Γ(nα)

(t− τ)nα−1λn
dj

Γ(α− j + 1)
τα−j

]
dτ

=
dj

Γ(α− j + 1)
tα−j

+
∞∑
n=1

[ djλ
nt(n+1)α−j

Γ(nα)Γ(α− j + 1)

∫ 1

0

(1− τ

t
)nα−1

(τ
t

)α−j
d
(τ
t

)]
=

dj
Γ(α− j + 1)

tα−j +
∞∑
n=1

[ djλ
nt(n+1)α−j

Γ(nα)Γ(α− j + 1)
B(nα, α− j + 1)

]
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=
dj

Γ(α− j + 1)
tα−j +

∞∑
n=1

[ djλ
nt(n+1)α−j

Γ(nα+ α− j + 1)
]

= djt
α−jEα,α+1−j(λtα) = djxj(t).

Then

x(t) =
l∑

j=1

Aj =
l∑

j=1

djxj(t). (3.6)

It means that the solution of linear fractional-order differential equations with
Rieman-Liouville derivative could be solved by the direct method above.

(B) When D denotes CD, take the operator Iα0 on both sides of (3.1), then from
Lemma 2.5 we have

x(t) =
l−1∑
j=0

x(j)(0)
j!

tj +
1

Γ(α)

∫ t

0

(t− τ)α−1λx(τ)dτ.

Let
l−1∑
j=0

x(j)(0)
j!

tj = u(t),

from Theorem 3.1 one obtains

x(t) = u(t) +
∫ t

0

[ ∞∑
n=1

1
Γ(nα)

(t− τ)nα−1λnu(τ)
]
dτ. (3.7)

Assume that

Bj =
x(j)(t)
j!

tj +
∫ t

0

[ ∞∑
n=1

1
Γ(nα)

(t− τ)nα−1λn
x(j)(0)
j!

tj
]
dτ

=
x(j)(t)
j!

tj +
∞∑
n=1

[x(j)(0)λntnα+j

Γ(nα)Γ(j + 1)

∫ 1

0

(1− τ

t
)nα−1

(τ
t

)j
d
(τ
t

)]
=
x(j)(t)
j!

tj +
∞∑
n=1

[x(j)(0)λntnα+j

Γ(nα)Γ(j + 1)
B(nα, j + 1)

]
=
x(j)(0)
j!

tj +
∞∑
n=1

[x(j)(0)λntnα+j

Γ(nα+ j + 1)
]

= x(j)(0)tjEα,j+1(λtα) = bj x̃j(t).

Then

x(t) =
l−1∑
j=0

Bj =
l−1∑
j=0

bj x̃j(t). (3.8)

That is, the solution of linear fractional-order differential equations with Caputo
derivative could also be solved by the direct method.

4. Estimates of solutions to fractional-order differential equations

Consider the nonlinear fractional-order differential equation

Dα
0 x(t) = Ax(t) + f(x) + d(t), (4.1)
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where D denotes RLD or CD, l − 1 < α ≤ l, l ∈ N , λ ∈ R, x ∈ Rn, f(x) is the
nonlinear part and continuous in x ∈ Rn, f(0) = 0, d(t) means the input of the
equation. To obtain the main results, make the following assumptions.

(i) f(x) satisfies the Lipschitz condition, that is, there exists a constant L > 0
such that ‖f(x)‖ ≤ L‖x‖;

(ii) d(t) is bounded, that is, there exists a constant M > 0 such that ‖d(t)‖ ≤
M .

Then we have the following result.

Theorem 4.1. When t > 1, D denotes CD or RLD and (4.1) satisfies assumptions
(i) and (ii), then the solution of (4.1) satisfies

‖x(t)‖ ≤ M̃1e
p1t, (4.2)

where

p1 =
2h−1(‖A‖+ L)hΓ

h
v (va− v + 1)

hvαh−h+h
v Γh(α)

+ α+ 1,

h = 1 +
1
α
, v = 1 + α, M̃1 =

1
2

(l + 1)M,

M = max
{ ‖x(l−α)

l−1 (0)‖
Γ(α− 1 + 1)

,
‖x((l−α))

l−2 (0)‖
Γ(α− 2 + 1)

, . . . ,
‖x(l−α)

0 (0)‖
Γ(α− l + 1)

,

M

Γ(α+ 1)
‖x(0)‖

0!
,
‖x′(0)‖

1!
, . . . ,

‖x(l−1)(0)‖
(l − 1)!

}
.

Proof. Applying the operator Iα0 on both sides of (4.1), we have

x(t) = u(t) +
1

Γ(α)

∫ t

0

(t− τ)α−1(Ax(τ) + f(x(τ)) + d(τ))dτ, (4.3)

where

u(t) =


∑l
j=1

x
(l−j)
l−α (0)

Γ(a−j+1) t
a−j , D = RLD,∑l−1

j=0
x(j)(0)
j! tj , D = CD.

Taking norms of both sides of (4.3), one obtains

‖x(t)‖ ≤ ‖u(t)‖+
1

Γ(α)

∫ t

0

(t− τ)α−1(‖A‖‖x(τ)‖+ ‖f(x(τ))‖+ ‖d(τ)‖)dτ, (4.4)

where

‖u(t)‖ ≤


∑l
j=1

‖x(l−j)
l−α (0)‖

Γ(aα−j+1) t
α−j , D = RLD,∑l−1

j=0
‖x(j)(0)‖

j! tj , D = CD.

From assumptions (i) and (ii), one has

‖x(t)‖ ≤ ‖u(t)‖+
1

Γ(α)

∫ t

0

(t− τ)α−1[(‖A‖+ L)‖x(τ)‖+M ]dτ

= ‖u(t)‖+
Mtα

Γ(α+ 1)
+

1
Γ(α)

∫ t

0

(t− τ)α−1(‖A‖+ L)‖x(τ)‖dτ.
(4.5)

Let t > 1, M̂ = (l + 1)M and

M = max
{ ‖x(l−α)

l−1 (0)‖
Γ(α− 1 + 1)

,
‖x((l−α))

l−2 (0)‖
Γ(α− 2 + 1)

, . . . ,
‖x(l−α)

0 (0)‖
Γ(α− l + 1)

,
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M

Γ(α+ 1)
‖x(0)‖

0!
,
‖x′(0)‖

1!
, . . . ,

‖x(l−1)(0)‖
(l − 1)!

}
.

Then we have

‖x(t)‖ ≤ M̂tα +
1

Γ(α)

∫ t

0

(t− τ)α−1(‖A‖+ L)‖x(τ)‖dτ

= M̂tα +
1

Γ(α)

∫ t

0

(t− τ)α−1eτ−tet−τ (‖A‖+ L)‖x(τ)‖dτ.
(4.6)

Let h = 1 + 1
α , v = 1 + α, from (4.6) and Hölder inequality, we have

‖x(t)‖

≤ M̂tα +
‖A‖+ L

Γ(α)

[ ∫ t

0

(
(t− τ)α−1eτ−t

)v
dτ
]1/v[ ∫ t

0

(
et−τ‖x(τ)‖

)h
dτ
]1/h

= M̂tα +
‖A‖+ L

Γ(α)

[ ∫ t

0

(t− τ)vα−vevτ−vtdτ
]1/v[ ∫ t

0

eht−hτ‖x(τ)‖hdτ
]1/h

.

(4.7)
Note that ∫ t

0

(t− τ)vα−ve−(vt−vτ)dτ =
∫ t

0

svα−ve−svds

=
1
v

∫ tv

0

uvα−ve−udu

≤ 1
vvα−v+1

∫ +∞

0

uvα−ve−udu

=
1

vvα−v+1
Γ(va− v + 1),

(4.8)

where s = t− τ ,u = sv. Submitting (4.8) into (4.7), one has

‖x(t)‖ ≤ M̂tα +
(‖A‖+ L)Γ1/v(va− v + 1)

vα−1+ 1
v Γ(α)

[ ∫ t

0

eht−hτ‖x(τ)‖hdτ
]1/h

. (4.9)

From Lemma 2.13 and (4.9) it follows that

‖x(t)‖h

≤ 2h−1M̂hthα + 2h−1 (‖A‖+ L)hΓ
h
v (va− v + 1)eht

vαh−h+h
v Γh(α)

∫ t

0

e−hτ‖x(τ)‖hdτ,
(4.10)

then we can obtain

‖x(t)‖he−ht

≤ 2h−1M̂hthαe−ht +
2h−1(‖A‖+ L)hΓ

h
v (va− v + 1)

vαh−h+h
v Γh(α)

∫ t

0

e−hτ‖x(τ)‖hdτ

≤ 2h−1M̂hthα +
2h−1(‖A‖+ L)hΓ

h
v (va− v + 1)

vαh−h+h
v Γh(α)

∫ t

0

e−hτ‖x(τ)‖hdτ.

(4.11)

From Lemma 2.14, we have

‖x(t)‖he−ht ≤ 2h−1M̂hthαeK̃t ≤ 2h−1M̂he(K̃+hα)t, (4.12)
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where

K̃ =
2h−1(‖A‖+ L)hΓ

h
v (va− v + 1)

vαh−h+h
v Γh(α)

.

Then one obtains
‖x(t)‖ ≤ 1

2
M̂e( K̃h +α+1)t. (4.13)

Let M̃1 = 1
2M̂ , p1 = K̃

h + α+ 1, then ||x(t)|| ≤ M̃1e
p1t. The proof is complete. �

Theorem 4.2. (1) When 0 < t ≤ 1, D denotes CD and the equation (4.1) satisfy
assumptions (i) and (ii), then the solution of (4.1) satisfies

‖x(t)‖ ≤ M̃2e
p2t, (4.14)

where M̃2 = 1
2 (l + 1)M ,

p2 =
2h−1(‖A‖+ L)hΓ

h
v (va− v + 1)

hvαh−h+h
v Γh(α)

+ 1.

(2) When 0 < t ≤ 1, D denotes RLD and (4.1) satisfies assumptions (i) and (ii)
for any b > 0, then the solution of (4.1) satisfies

‖x(t)‖ ≤ M̃3e
p3t (t > b > 0), (4.15)

where M̃3 = 1
2 (l+ 1)Mbα−l, p3 = 2h−1(‖A‖+L)hΓ

h
v (va−v+1)

hvαh−h+h
v Γh(α)

+ 1. The expressions M ,

h and v are the same as in Theorem 4.1.

Proof. (1) When 0 < t ≤ 1, D denotes CD, we can write (4.5) as

‖x(t)‖ ≤ M̂ +
1

Γ(α)

∫ t

0

(t− τ)α−1(‖A‖+ L)‖x(τ)‖dτ

= M̂ +
1

Γ(α)

∫ t

0

(t− τ)α−1eτ−tet−τ (‖A‖+ L)‖x(τ)‖dτ.
(4.16)

Following the same process as in Theorem 4.1, we have

‖x(t)‖ ≤ M̃2e
p2t, (4.17)

where M̃2 = 1
2 (l + 1)M ,

p2 =
2h−1(‖A‖+ L)hΓ

h
v (va− v + 1)

hvαh−h+h
v Γh(α)

+ 1.

(2) When 0 < t ≤ 1, D denotes RLD, and t > b, we can write (4.5) as

‖x(t)‖ ≤ M̂bα−l +
1

Γ(α)

∫ t

0

(t− τ)α−1(‖A‖+ L)‖x(τ)‖dτ

= M̂bα−l +
1

Γ(α)

∫ t

0

(t− τ)α−1eτ−tet−τ (‖A‖+ L)‖x(τ)‖dτ.
(4.18)

Following the same process as in Theorem 4.1, we have

‖x(t)‖ ≤ M̃3e
p3t, (4.19)

where M̃3 = 1
2 (l + 1)Mbα−l,

p3 =
2h−1(‖A‖+ L)hΓ

h
v (va− v + 1)

hvαh−h+h
v Γh(α)

+ 1.
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The proof is complete. �

The methods to prove Theorems 4.1 and 4.2 are similar to those in [24] and [3].
From Theorems 4.1 and 4.2, we can have the following theorem.

Theorem 4.3. (1) When D denotes CD, and (4.1) satisfies (i) and (ii), there exist
constants M̃ > 0 and p > 0 such that

‖x(t)‖ ≤ M̃ept, (4.20)

for all t > 0.
(2) When D denotes RLD, and (4.1) satisfies (i) and (ii), there exist constants

M̃ > 0 and p > 0 for any b > 0 such that

‖x(t)‖ ≤ M̃ept, (4.21)

for all t > b > 0.

5. Validity of Laplace transform for fractional-order equations

Consider the one-dimensional fractional-order differential equation

Dα
0 x(t) = ax(t) + f1(x(t)) + d1(t), (5.1)

where D denotes RLD or CD, l − 1 < α ≤ l, l ∈ N , λ ∈ R, x ∈ R, f1(x) is the
nonlinear part and continuous in x ∈ R, d1(t) is the input of the equation. And
f1 and d1 also satisfy the assumptions (i) and (ii). Before the validity of Laplace
transform method is justified, some lemmas and theorems are needed.

Lemma 5.1 ([9, p. 84]). Let Re(α) > 0 and f ∈ L1(0, b) for any b > 0. Also let
the estimate

|f(t)| ≤ Aep0t (t > b > 0)
hold for some constants A > 0 and p0 > 0. Then the relation L(Iα0 f(t)) =
s−αL(f(t)) is valid for Re{s} > p0.

Theorem 5.2. If α > 0, n = [α] + 1, and x(t), In−α0 x(t), d
dtI

n−α
0 x(t), . . . , d

n−1

dtn−1

In−α0 x(t) are continuous in (0,∞) and of exponential order, while RLDα
0 x(t) is

piecewise continuous on [0,∞). Then

L(RLDα
0 x(t)) = sαL(x(t))−

n−1∑
k=0

sn−k−1 d
(k−1)

dt(k−1)
In−α0 x(0+).

Proof. Since RLDα
0 x(t) = d(n)

dt(n) I
n−α
0 x(t), let f(t) = In−α0 x(t), then RLDα

0 x(t) =
d(n)

dt(n) f(t). Under the assumptions, from theorem 2.11 we have

L(RLDα
0 x(t)) = L(f (n)(t)) = snL(f(t))−

n−1∑
k=0

sn−k−1f (k)(0+)

= sαL(x(t))−
n−1∑
k=0

sn−k−1 d
(k−1)

dt(k−1)
In−α0 x(0+).

This completes the proof. �

Theorem 5.3. When D denotes RLD, the Laplace transform can be taken on both
sides of (5.1), if assumptions (i) and (ii) are satisfied and x(t) is continuous.
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Proof. From (5.1) and Theorem 4.3, there exist constants M1 > 0 and P1 > 0 such
that

|RLDα
0 x(t)| ≤ |a||x(t)|+ |f1(x(t))|+ |d1(t)|

≤ (|a|+ L)x(t) +M

≤M1e
p1t.

This implies RLDα
0 x(t) = dn

dtn I
n−α
0 x(t) begin of exponential order. Then from The-

orems 2.10 and 4.3 and Lemma 5.1, we have that x(t), In−α0 x(t), and d
dtI

n−α
0 x(t),

. . . , dn−1

dtn−1 I
n−α
0 x(t) are of exponential order. From theorem 5.2, the Laplace trans-

form can be taken on both sides of (5.1). �

Theorem 5.4. If α > 0, n = [a]+1, and x(t), x′(t), x′′(t), x(n−1)(t) are continuous
on [0,+∞) and of exponential order, while CDα

0 x(t) is piecewise continuous on
[0,∞). Then

L(CDα
0 x(t)) = sαL(x(t))−

n−1∑
k=0

sα−k−1x(k)(0).

Proof. Since

CDα
0 x(t) =

1
Γ(n− α)

∫ t

0

(t− τ)m−α−1x(n)(τ)dτ

=
1

Γ(n− α)
tm−α−1 ∗ x(n)(t).

Under the assumptions in Theorem 2.11, one has

L(CDα
0 x(t)) =

1
Γ(n− α)

L(tn−α−1) · L(x(n)(t))

= sαL(x(t))−
n−1∑
k=0

sα−k−1x(k)(0).

�

Lemma 5.5. If CDα
0 x(t) is of exponential order and n = [α] + 1, then x(j)(t)(j =

1, . . . , n− 1) is also of exponential order.

Proof. Since CDα
0 x(t) is of exponential order, then there exist constants M2 > 0

and P2 > 0 such that

|CDα
0 x(t)| = |CDα−j

0 x(j)(t)| ≤M2e
p2t;

that is,

−M2e
p2t ≤ CDα−j

0 x(j)(t) ≤M2e
p2t.

Then there exist functions M1(t) ≤ 0,M2(t) ≤ 0 such that

−M2e
p2t +M1(t) = CDα−j

0 x(j)(t) = M2e
p2t −M2(t).

This is equivalent to
n−i−1∑
i=0

x(i+j)(0)
i!

ti − Iα−j0 (M2e
p2t) + Iα−j0 M1(t)
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= x(j)(t) =
n−i−1∑
i=0

x(i+j)(0)
i!

ti + Iα−j0 (M2e
p2t)− Iα−j0 M2(t).

In view of Iα−j0 M1(t) ≥ 0 and Iα−j0 M2(t) ≥ 0, we have

n−i−1∑
i=0

x(i+j)(0)
i!

ti − Iα−j0 (M2e
p2t) ≤ x(j)(t) ≤

n−i−1∑
i=0

x(i+j)(0)
i!

ti + Iα−j0 (M2e
p2t).

Note that

Iα−j0 ep2t =
1

Γ(α− j)

∫ t

0

(t− τ)α−j−1ep2τdτ

=
1

Γ(α− j)
ep2t

∫ t

0

(t− τ)α−j−1ep2(τ−t)dτ

=
1

Γ(α− j)
ep2t

∫ t

0

sα−j−1e−sp2ds

=
1

Γ(α− j)
ep2t

1
pα2

∫ p2t

0

uα−j−1e−udu

≤ 1
Γ(α− j)

p−α+j
2 ep2t

∫ +∞

0

uα−j−1e−udu

≤ p−α+j
2 ep2t,

where s = t − τ , u = p2s. It is not difficult to get that there exist M3 > 0 and
p3 > 0 such that

|x(j)(t)| ≤M3e
p3t,

where j = 0, . . . , n− 1. �

Theorem 5.6. When D denotes CDα
0 , the Laplace transform can be taken on both

sides of (5.1), if assumptions (i) and (ii) are satisfied and x(t) is continuous.

Proof. From (5.1) and Theorem 4.3, then there exist constants M4 > 0 and P4 > 0
such that

|CDα
0 x(t)| ≤ |a||x(t)|+ |f1(x(t))|+ |d1(t)|

≤ (|a|+ L)x(t) +M

≤M4e
p4t.

It means that CDα
0 x(t) is of exponential order. Then from Lemma 5.5 and Theorem

4.3 we have x(j)(t)(j = 0, . . . , n − 1) is of exponential order. From Theorem 5.4,
the Laplace transform can be taken on both sides of (5.1). �

Conclusions. By Gronwall and Hölder inequalities, solutions of fractional-order
equations are showed to be of exponential order. Based on that, the fractional-order
and integer-order derivatives are all estimated to be of exponential order. Conse-
quently, the Laplace transform is proved to be valid for fractional-order equations
under general conditions. So the validity of Laplace transform of fractional-order
equations is justified.
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[16] N. Özalp, E. Demirci; A fractional order SEIR model with vertical transmission, Math.
Comput. Model 54 (2011), 1-6.

[17] I. Podlubny; Fractional differential equations, Academic Press, New York, 1999.
[18] J. Sabatier, M. Moze, C. Farges; LMI stability conditions for fractional order systems, Com-

put. Math. Appl. 59 (2010), 1594-1609.
[19] S. G. Samko, A. A. Kilbas, O. I. Marichev; Fractional Integrals and Derivatives, Theory and

Applications, Gordon and Breach, Yverdon, 1993.

[20] J. L. Schiff; The Laplace transform: theory and applications, Springer, New York, 1999.

[21] H. Ye, J. Gao, Y. Ding; A generalized Gronwall inequality and its application to a fractional
differential equation, J. Math. Anal. Appl. 328 (2007), 1075-1081.

[22] M. Kuczma; An introduction to the theory of functional equations and inequalities: Cauchy’s
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