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PUISEUX SERIES SOLUTIONS OF ODES

ALI AYAD, ALI FARES, YOUSSEF AYYAD, RAAFAT TARRAF

Abstract. In this article, we will determine Puiseux series solutions of ordi-

nary polynomial differential equations. We also study the binary complexity of
computing such solutions. We will prove that this complexity bound is single

exponential in the number of terms in the series. Our algorithm is based on a

differential version of the Newton-Puiseux procedure for algebraic equations.

1. Introduction

Let K = Q(T1, . . . , Tl)[η] be a finite extension of a finitely generated field
over Q. The variables T1, . . . , Tl are algebraically independent over Q and η is
an algebraic element over the field Q(T1, . . . , Tl) with the minimal polynomial
φ ∈ Z[T1, . . . , Tl][Z]. Let K be an algebraic closure of K and consider the two
fields:

L = ∪ν∈N∗K((x
1
ν )), L = ∪ν∈N∗K((x

1
ν ))

which are the fields of fraction-power series of x over K (respectively K), i.e., the
fields of Puiseux series of x with coefficients in K (respectively K). Each element
ψ ∈ L (respectively ψ ∈ L) can be represented in the form ψ =

∑
i∈Q cix

i, ci ∈ K
(respectively ci ∈ K). The order of ψ is defined by ord(ψ) := min{i ∈ Q, ci 6= 0}.
The fields L and L are differential fields with the differential operator

d

dx
(ψ) =

∑
i∈Q

icix
i−1.

Let F (y0, . . . , yn) be a polynomial in the variables y0, . . . , yn with coefficients in
L and consider the associated ordinary differential equation F (y, dydx , . . . ,

dny
dx ) = 0

which will be denoted by F (y) = 0. We will describe all the solutions of the
differential equation F (y) = 0 in L by a differential version of the Newton polygon
process. First write F in the form:

F =
∑

i∈Q,α∈A
fi,αx

iyα0
0 . . . yαnn , fi,α ∈ K

where α = (α0, . . . , αn) belongs to a finite subset A of Nn+1. The order of F
is defined by ord(F ) := min{i ∈ Q; fi,α 6= 0 for a certain α}. Without loss of
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generality we can suppose that each coefficient fi,α ∈ Z[T1, . . . , Tl][η] and so it can
be written in the form

fi,α =
∑

j,j1,...,jl

bj,j1,...,jlT
j1
1 . . . T jll η

j , bj,j1,...,jl ∈ Z.

We define the degree of F with respect to x by degx(F ) = max{i ∈ Q; fi,α 6=
0 for a certain α} (it can be equal to +∞), the degree of F with respect to T1, . . . , Tl
by degT1,...,Tl

(F ) = max{degT1,...,Tl
(fi,α); i ∈ Q, α ∈ A}. We denote by l(b)

the binary length of an integer b. The binary length of F is defined by l(F ) =
max{l(fi,α); i ∈ Q, α ∈ A} where l(fi,α) is the maximum of the binary lengths of
its coefficients in Z. We can define in the same manner the degrees and the binary
length of φ. To estimate the binary complexity of the algorithm of this paper we
suppose that degZ(φ) ≤ d0, degT1,...,Tl

(φ) ≤ d1, l(φ) ≤ M1, degy0,...,yn(F ) ≤ d,
degT1,...,Tl

(F ) ≤ d2, degx(F ) ≤ d3 (d3 can be equal to +∞) and l(F ) ≤M2.
In this article, we will solve ordinary polynomial differential equations of the form

F (y) = 0. For such an equation, we compute solutions in the set L of Puiseux series.
There is no algorithm which decide whether a polynomial differential equation has
Puiseux series as solutions. We get an algorithm which computes a finite extension
of the ground field which generates the coefficients of the solutions. Algorithms
which estimate the coefficients of the solutions are given in [10, 11].

To analyse the binary complexity of factoring ordinary linear differential opera-
tors, Grigoriev [8] describes an algorithm which computes a fundamental system of
solutions of the Riccatti equation associated to an ordinary linear differential oper-
ator. The binary complexity of this algorithm is single exponential in the order n
of the linear differential operator. There are also algorithms for computing series
solutions with real exponents [9, 1, 6, 2] and complex exponents [6].

The article is organized as follows. In section 1, we state the main theorem.
In section 2, we give a description of the Newton polygon associated to polyno-
mial differential equations. The algorithm with its binary complexity analysis are
described in section 3.

2. Main results

For each i ∈ Q, let R(i) = d2(dd0d1)O(il) and

S(i) = nid2(dd0d1)O(il)(M1M2)O(i) logi2(dd3).

The main theorem of this article read as follows:

Theorem 2.1. Let F (y) = 0 be a polynomial differential equation with the above
bounds. There is an algorithm which computes all Puiseux series solutions of
F (y) = 0 with coefficients in K, i.e., all solutions of F (y) = 0 in L. Namely,
for each solution ψ =

∑
i∈Q cix

i ∈ L of F (y) = 0, the algorithm computes an inte-
ger ν ∈ N∗ such that for each i ∈ Q, it computes a finite extension K1 = K[θ] of
K where θ is an algebraic element over K computed with its minimal polynomial
Φ ∈ K[Z] such that

∑
j≤i,j∈Q cjx

j ∈ K1((x
1
ν )). Moreover, for any j ≤ i, j ∈ Q, we

have the following bounds
• degZ(Φ) ≤ di.
• degT1,...,Tl

(Φ), degT1,...,Tl
(cj) ≤ R(i).

• l(Φ), l(cj) ≤ S(i).
• The binary complexity of this computation is S(i).
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By [9, corollary of Lemma 3.1], the integer ν in Theorem 2.1 is constant, i.e.,
independent of i. This constant depends only on the solution ψ.

In general, we cannot compute a finite extension K1 of K which contains all the
coefficients of all the solutions of F (y) = 0 in L either an integer ν ∈ N∗ such that
all the solutions of F (y) = 0 (in L) are in K1((x

1
ν )). Namely, if we consider the

polynomial
F (y0, y1, y2) = xy0y2 − xy2

1 + y0y1

then ψ = cxµ is a solution of F (y) = 0 in L for all c ∈ C and all µ ∈ Q.

3. Newton polygons

Let F be a differential polynomial as in the introduction. We now define the
Newton polygon of F . For every pair (i, α) ∈ Q× A such that fi,α 6= 0 (i.e., every
existing term in F ), we mark the point

Pi,α := (i− α1 − 2α2 − · · · − nαn, α0 + α1 + · · ·+ αn) ∈ Q× N.

We denote by P (F ) the set of all the points Pi,α. The convex hull of these points and
(+∞, 0) in the plane R2 is denoted byN (F ) and is called the Newton polygon of the
differential equation F (y) = 0 in the neighborhood of x = 0. If degy0,...,yn(F ) = m,
then N (F ) is located between the two lines y = 0 and y = m. For each (a, b) ∈
Q2 \ {(0, 0)}, we define the set

N(F, a, b) := {(u, v) ∈ P (F ), ∀(u′, v′) ∈ P (F ), au′ + bv′ ≥ au+ bv}.
A point Pi,α ∈ P (F ) is a vertex of the Newton polygon N (F ) if there exist (a, b) ∈
Q2 \ {(0, 0)} such that N(F, a, b) = {Pi,α}. We remark that N (F ) has a finite
number of vertices. A pair of different vertices e = (Pi,α, Pi′,α′) forms an edge of
N (F ) if there exist (a, b) ∈ Q2 \ {(0, 0)} such that e ⊂ N(F, a, b). We denote by
E(F ) (respectively V (F )) the set of all the edges e (respectively all the vertices
p) of N (F ) for which a > 0 and b ≥ 0 in the previous definitions. It is easy to
prove that if e ∈ E(F ), then there exists a unique pair (a(e), b(e)) ∈ Z2 such that
GCD(a(e), b(e)) = 1, a(e) > 0, b(e) ≥ 0 and e ⊂ N(F, a(e), b(e)) where GCD is
an abbreviation of “Greatest Common Divisor”. By the inclination of a line we
mean the negative inverse of its geometric slope. If e ∈ E(F ), we can prove that
the fraction µe := b(e)

a(e) ∈ Q is the inclination of the straight line passing through
the edge e. If p ∈ V (F ) and N(F, a, b) = {p} for a certain (a, b), then the fraction
µ := b/a ∈ Q is the inclination of a straight line which intersects N (F ) exactly in
the vertex p.

For each e ∈ E(F ), we define the univariate polynomial (in a new variable C)

H(F,e)(C) :=
∑

Pi,α∈N(F,a(e),b(e))

fi,αC
α0+α1+···+αn(µe)α1

1 . . . (µe)αnn ∈ K[C],

where (µe)k := µe(µe−1) . . . (µe−k+1) for any positive integer k. We call H(F,e)(C)
the characteristic polynomial of F associated to the edge e ∈ E(F ). Its degree is
at most m = degy0,...,yn(F ) ≤ d.

If ψ ∈ L is a solution of the differential equation F (y) = 0 such that ord(ψ) = µe,
i.e., ψ has the form ψ =

∑
i∈Q, i≥µe cix

i, ci ∈ K, then we have H(F,e)(cµe) = 0, i.e.
cµe is a root of the polynomial H(F,e) in K. This condition is called a necessary
initial condition to have a solution of F (y) = 0 in the form of ψ (see [2, Lemma 1]).
In fact, H(F,e)(cµe) is equal to the coefficient of the lowest term in the expansion of
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F (ψ(x)) with indeterminates µe and cµe . Let A(F,e) := {c ∈ K, c 6= 0, H(F,e)(c) =
0}.

For each p = (u, v) ∈ V (F ), let µ1 < µ2 be the inclinations of the adjacent edges
at p in N (F ), it is easy to prove that for all rational number µ = b

a , a ∈ N∗, b ∈ N
such that N(F, a, b) = {p}, we have µ1 < µ < µ2. We associate to p the polynomial

h(F,p)(µ) :=
∑

Pi,α=p

fi,α(µ)α1
1 . . . (µ)αnn ∈ K[µ],

which is called the indicial polynomial of F associated to the vertex p (here µ is
considered as an indeterminate). Let H(F,p)(C) = Cvh(F,p)(µ) defined as above for
edges e ∈ E(F ). Let A(F,p) := {µ ∈ Q, µ1 < µ < µ2; h(F,p)(µ) = 0}.

Remark 3.1. Let p = (u, v) ∈ V (F ) and e be the edge of N (F ) descending from
p, then h(F,p)(µe) is the coefficient of the monomial Cv in the expansion of the
characteristic polynomial of F associated to e.

4. Differential version of the Newton-Puiseux algorithm

We describe now a differential version of the Newton-Puiseux algorithm to give
formal Puiseux series solutions of the differential equation F (y) = 0. The input
of the algorithm is a differential polynomial equation F (y) = 0 with the bounds
described in the introduction. The algorithm will construct a tree T which depends
only on F and on the field K. The root of T is denoted by τ0. For each node τ of
T , it constructs the following elements:

• The field Kτ which is a finite extension of K.
• The primitive element θτ of the extension Kτ of K with its minimal poly-

nomial φτ ∈ K[Z].
• An element cτ ∈ Kτ , a number µτ ∈ Q ∪ {−∞,+∞} and an element
yτ = cτx

µτ+yτ1 ∈ Kτ ((x
1

ν(τ) )) where τ is a descendant of τ1 (here µτ > µτ1)
and ν(τ) ∈ N∗.
• The differential polynomial Fτ (y) = F (y+yτ ) with coefficients inKτ ((x

1
ν(τ) )).

We define the degree of τ by deg(τ) = µτ ∈ Q, we have deg(τ) = degx(yτ ) if cτ 6= 0.
The level of the node τ , denoted by lev(τ), is the distance from τ0 to τ .

For the root τ0 we have Kτ0 = K, θτ0 = 1, φτ0 = Z − 1, cτ0 = yτ0 = 0,
deg(τ0) = µτ0 = −∞, ν(τ0) = 1 and Fτ0(y) = F (y).

A node τ of the tree T is a leaf of T if for each e ∈ E(Fτ ) and for each p ∈ V (Fτ )
we have µe ≤ deg(τ) and µ2 ≤ deg(τ) and y = 0 is a solution of Fτ (y) = 0, where
µ1 < µ2 are the inclinations of the adjacent edges at p in N (F ).

The algorithm constructs the tree T by induction on the level of its nodes. We
suppose by induction on i that all the nodes of T of level ≤ i are constructed.
Denote by Ti the set of these nodes. At the (i + 1)-th step of the induction, for
each node τ of level i which is not a leaf of T we consider the following two sets:

• E′(Fτ ) = {e ∈ E(Fτ ), µe > deg(τ)} and
• V ′(Fτ ) = {p ∈ V (Fτ ), µ2 > deg(τ)}.

For each e ∈ E′(Fτ ), compute a factorization of the polynomial H(Fτ ,e)(C) ∈ Kτ [C]
into irreducible factors over the field Kτ = K[θτ ] in the form

H(Fτ ,e)(C) = λe
∏
j

H
kj
j
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where 0 6= λe ∈ Kτ , kj ∈ N∗ and Hj ∈ Kτ [C] are monic and irreducibles over
Kτ . We can do this factorization by the algorithm in [3, 4, 5, 7]. The elements of
the set A(Fτ ,e) correspond to the roots of the factors Hj 6= C. We consider a root
cj ∈ K for each factor Hj 6= C and we compute a primitive element θj,e,τ of the
finite extension Kτ [cj ] = K[θτ , cj ] of K with its minimal polynomial φj,e,τ ∈ K[Z]
using the algorithm in [3, 5, 7].

For each root cj of Hj 6= C we correspond a son σ of τ such that θσ = θj,e,τ ,
the field Kσ = K[θj,e,τ ] and the minimal polynomial of θσ over K is φσ = φj,e,τ .
Moreover, cσ = cj , µσ = µe, yσ = cσx

µσ + yτ and Fσ(y) = F (y+ yσ). For ν(σ), we
take ν(σ) = LCM(ν(τ), a(e)) for example.

For each p ∈ V ′(Fτ ), we consider the indicial polynomial h(Fτ ,p)(µ) ∈ Kτ [µ] of
Fτ associated to p. To each µ ∈ A(Fτ ,p) such that µ > deg(τ) and 0 6= c ∈ K
(where c is given by its minimal polynomial over K), we correspond a son σ of τ
such that θσ = c, cσ = c, µσ = µ. This completes the description of all the sons of
the node τ of the tree T .

Remark 4.1. (i) If (E′(Fτ ) 6= ∅ or V ′(Fτ ) 6= ∅) and y = 0 is a solution of Fτ (y) = 0
then one of the sons of τ is a leaf σ for which Fσ = Fτ , µσ = +∞ and cσ = 0.

(ii) For any node τ of T such that deg(τ) 6= ∞, if y = 0 is not a solution of
Fτ (y) = 0 then E′(Fτ ) 6= ∅.

Let U be the set of all the vertices τ of T such that either deg(τ) = +∞ and
for the ancestor τ1 of τ it holds deg(τ1) < +∞ or deg(τ) < +∞ and τ is a leaf of
T . For each τ ∈ U , there exists a sequence (τi(τ))i≥0 of vertices of T such that
τ0(τ) = τ0 and τi+1(τ) is a son of τi(τ) for all i ≥ 0. For each τ ∈ U , the element

yτ =
∑
i≥0

cτi(τ)x
µτi(τ) ∈ Kτ ((x

1
ν(τ) ))

is a solution of F (y) = 0. In fact, there are two possibilities to τ : if deg(τ) = +∞
then y = 0 is a solution of Fτ1(y) = 0 where τ is a son of τ1 and so yτ1 is a solution
of F (y) = 0. If deg(τ) < +∞ and τ is a leaf of T then y = 0 is a solution of
Fτ (y) = F (y+ yτ ) = 0 and so yτ is a solution of F (y) = 0. This defines a bijection
between U and the set of the solutions of F (y) = 0 in L.

To analyse the binary complexity of the algorithm, we begin by estimating the
binary complexity of computing all the sons of the root τ0 of T . For each e ∈
E(F ), we consider the polynomial H(F,e)(C) ∈ K[C], its degree with respect to C
(respectively T1, . . . , Tl) is bounded by d (respectively d2). We have µe ≤ d3

d and its
binary length is l(µe) ≤ O(log2(dd3)) (using the fact that µe is the inclination of the
straight line passing through e). Then the binary length of H(F,e)(C) is bounded
by M2 + ndO(log2(dd3)). By the algorithm of [3, 4, 5, 7] the binary complexity of
factoring H(F,e)(C) into irreducible polynomials over K is

(dd1d2)O(l)(nd0M1M2 log2(dd3))O(1).

Moreover, each factor Hj ∈ K[C] of H(F,e)(C) satisfies the following bounds (see
[5, Lemma 1.3]): degC(Hj) ≤ d, degT1,...,Tl

(Hj) ≤ d2(dd0d1)O(1) and

l(Hj) ≤ nld2(dd0d1)O(1)M1M2 log2(dd3).

By the induction we suppose that the following bounds hold at the i-th step of the
algorithm for each node τ of T of level i:
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• degZ(φτ ) ≤ di.
• degT1,...,Tl

(φτ ), degT1,...,Tl
(cτ ) ≤ R(i).

• l(φτ ), l(cτ ) ≤ S(i) where R(i) and S(i) are as in the introduction.
• µτ ≤ i(d3d ) and then l(µτ ) ≤ O(log2(idd3)).

Then we have the following bounds for the differential polynomial Fτ (y) = F (y +
yτ ) ∈ Kτ ((x

1
ν(τ) ))[y0, . . . , yn]:

• degy0,...,yn(Fτ ) ≤ d.
• degT1,...,Tl

(Fτ ) ≤ d2 + ddegT1,...,Tl
(cτ ) ≤ R(i).

• degx(Fτ ) ≤ d3 + dµτ ≤ (i+ 1)d3.
• l(Fτ ) ≤M2 + dl(cτ ) ≤ S(i).

We compute a primitive element η1 of the finite extensionKτ over the field Q(T1, . . . , Tl),
i.e., Kτ = K[θτ ] = Q(T1, . . . , Tl)[η][θτ ] = Q(T1, . . . , Tl)[η1] by [8, corollary of
Proposition 1.4] (see also [5, section 3 chapter 1]). Moreover, η1 = η + γθτ where
0 ≤ γ ≤ [Kτ : Q(T1, . . . , Tl)] = degZ(φ) degZ(φτ ) ≤ did0 and we can compute the
monic minimal polynomial φ1 ∈ Q(T1, . . . , Tl)[Z] of η1 which satisfies the following
bounds:

• degZ(φ1) ≤ did0

• degT1,...,Tl
(φ1) ≤ (did0)O(1)

• l(φ1) ≤ S(i).
• This computation can be done with binary complexity S(i).

For each e ∈ E′(Fτ ), we consider the polynomial H(Fτ ,e)(C) ∈ Kτ [C], its degree
with respect to C (respectively T1, . . . , Tl) is bounded by d (respectively R(i)). We
have µe ≤ (i + 1)(d3d ) and its binary length is l(µe) ≤ O

(
log2((i + 1)dd3)

)
. Then

the binary length of H(Fτ ,e)(C) is bounded by

l(Fτ ) + ndl(µe) ≤ S(i).

By the algorithm of [3, 4, 5, 7] the binary complexity of factoring H(Fτ ,e)(C) into
irreducible polynomials over Kτ = Q(T1, . . . , Tl)[η1] is S(i). Moreover, each factor
Hj ∈ Kτ [C] of H(Fτ ,e)(C) satisfies the following bounds:

• degC(Hj) ≤ d
• degT1,...,Tl

(Hj) ≤ R(i).
• l(Hj) ≤ S(i).

Let cj ∈ K be a root of Hj . We can compute by the corollary of Proposition
1.4 of [8] a primitive element θj,e,τ of the finite extension Kτ [cj ] = K[θτ , cj ] of K
with its minimal polynomial φj,e,τ ∈ K[Z]. We can express θσ = θj,e,τ in the form
θσ = θτ + γjcj where 0 ≤ γj ≤ degZ(φτ ) degC(Hj) ≤ di+1 and cσ = cj in the form

cσ =
∑

0≤t<di+1

btθ
t
σ

where bt ∈ K. Moreover, the following bounds hold:
• degZ(φσ) ≤ di+1.
• degT1,...,Tl

(φσ), degT1,...,Tl
(bt) ≤ R(i).

• l(φσ), l(bt) ≤ S(i).
• µσ = µe ≤ (i+ 1)(d3d ) and then l(µσ) ≤ O

(
log2((i+ 1)dd3)

)
.

This computation can be done with binary complexity S(i) and thus the total
binary complexity of computing all the sons σ of τ is S(i).
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