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TRIPLE POSITIVE SOLUTIONS FOR m-POINT
BOUNDARY-VALUE PROBLEMS OF DYNAMIC EQUATIONS

ON TIME SCALES WITH p-LAPLACIAN

ABDULKADIR DOGAN

Abstract. In this article we study the existence of positive solutions for m-

point dynamic equation on time scales with p-Laplacian. We prove that the
boundary-value problem has at least three positive solutions by applying the

five functionals fixed-point theorem. An example demonstrates the main re-

sults.

1. Introduction

In recent years, dynamic equations on time scales have found a considerable
interest and attracted many researchers; see for example [1, 2, 3, 4, 9, 10, 11, 12, 17,
20,27]. The reasons seem to be two-fold. Theoretically, dynamic equations on time
scales can not only unify differential and difference equations [14], but also have
displayed much more complicated dynamics [7, 8, 16]. Moreover, the study of time
scales has led to several important applications in the study of insect population
models, neural networks, stock market, heat transfer, wound healing and epidemic
models; see for example [15,21,23].

In this paper, we study the existence of positive solutions of m-point p-Laplacian
equation on time scales

(φp(u∆(t)))∇ + g(t)f(u(t)) = 0, t ∈ [0, T ]T, (1.1)

with the boundary conditions

u(0) =
m−2∑
i=1

aiu(ξi), u∆(T ) = 0, (1.2)

or

u∆(0) = 0, u(0) =
m−2∑
i=1

biu(ξi), (1.3)

where φp(s) is p-Laplacian operator; i.e., φp(s) = |s|p−2s for p > 1, with (φp)−1 =
φqand 1

p + 1
q = 1 and ξi ∈ (0, T )T with 0 < ξ1 < ξ2 < · · · < ξm−2 < T and

ai, bi ∈ [0,∞) satisfy 1−
∑m−2
i=1 ai 6= 0 and 1−

∑m−2
i=1 bi 6= 0 (i = 1, 2, . . . ,m− 2).
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Some basic knowledge and definitions about time scales, which can be found in [7,8],
will be used here. By using the five functionals fixed-point theorem, we prove that
the boundary-value problems (1.1) (1.2) and (1.1) (1.3) has at least three positive
solutions.

Throughout this paper, we assume that the following conditions are satisfied:
(H1) f : R → R+ is continuous, and does not vanish identically on any closed

subinterval of [0, T ]T;
(H2) g : T→ R+ is left dense continuous (g ∈ Cld(T,R+)), and does not vanish

identically on any closed subinterval of [0, T ]T.
Recently, the boundary-value problems with p-Laplacian in the continuous case

have been studied extensively in the literature; see for example [6, 13,18,19,24,25,
28]. However, to the best of our knowledge, there are not many results concerning
p-Laplacian dynamic equations on time scales, see [4, 22,26].

Zhao et al [28] studied the existence of at least three positive solutions to the
following p-Laplacian problem,

(φp(u′(t)))′ + a(t)f(u, u′) = 0, t ∈ [0, 1],

u′(0) = u(1) = 0.

To show their main results, they applied Leggett-Williams fixed-point theorem.
Anderson et al [4] considered the following BVP on time scales:

[φp(u∆(t))]∇ + c(t)f(u(t)) = 0, t ∈ (a, b)T,

u(a)−B0(u∆(υ)) = 0, u∆(b) = 0,

where υ ∈ (a, b)T, f ∈ Cld([0,+∞), [0,+∞)), c ∈ Cld([a, b], [0,+∞)), and Kmx ≤
B0(x) ≤ KMx for some positive constants Km,KM . By using a fixed-point theo-
rem, they established the existence result for at least one positive solution.

Wang [26] studied existence criteria of three positive solutions to the following
boundary-value problems for p-Laplacian dynamic equations on time scales

[φp(u∆(t))]∇ + a(t)f(u(t)) = 0, t ∈ [0, T ]T,

u∆(0) = 0, u(T ) +B1(u∆(η)) = 0, or

u(0)−B0(u∆(η)) = 0, u∆(T ) = 0.

The main tool used in [26] is the Leggett-Williams fixed-point theorem.
Motivated by the results mentioned above, we consider the existence of solutions

to (1.1) (1.2) and (1.1) (1.3). Our main results will depend on an application of
the five functionals fixed-point theorem.

2. Preliminaries

In this section, we provide some background materials from theory of cones in
Banach spaces, and we then state the five functionals fixed-point theorem for a cone
preserving operator.

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex set
P ⊂ E is said to be a cone provided the following conditions are satisfied:

(i) If u ∈ P and λ ≥ 0, then λu ∈ P ;
(ii) If u ∈ P and −u ∈ P , then u = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y−x ∈ P .
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Definition 2.2. Given a cone P in a real Banach space E, a functional ψ : P → R
is said to be increasing on P , provided ψ(x) ≤ ψ(y) for all x, y ∈ P with x ≤ y.

Definition 2.3. A map α is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if α :→ [0,∞) is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say the map β is a nonnegative
continuous convex functional on a cone P of a real Banach space E if β : P → [0,∞)
is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)
for all x, y ∈ P and 0 ≤ t ≤ 1.

Let γ, β, θ be nonnegative continuous convex functionals on P , and α,ψ be non-
negative continuous concave functionals on P . Then for nonnegative real numbers
h, a, b, d and c, we define the following convex sets,

P (γ, c) = {u ∈ P : γ(u) < c},
P (γ, α, a, c) = {u ∈ P : a ≤ α(u), γ(u) ≤ c},
Q(γ, β, d, c) = {u ∈ P : β(u) ≤ d, γ(u) ≤ c},

P (γ, θ, α, a, b, c) = {u ∈ P : a ≤ α(u), θ(u) ≤ b, γ(u) ≤ c},
Q(γ, β, ψ, h, d, c) = {u ∈ P : h ≤ ψ(u), β(u) ≤ d, γ(u) ≤ c}.

The following five functionals fixed-point theorem will play an important role in
the proof of our main results.

Theorem 2.4 ( [5]). Let P be a cone in a real Banach space E. Suppose there
exist positive numbers c and M , nonnegative continuous concave functionals α and
ψ on P , and nonnegative continuous convex functionals γ, β and θ on P with

α(u) ≤ β(u), ‖u‖ ≤Mγ(u)

for all u ∈ P (γ, c). Suppose that F : P (γ, c) → P (γ, c) is a completely continuous
operator and that there exist nonnegative numbers h, a, k, b, with 0 < a < b such
that:

(i) {u ∈ P (γ, θ, α, b, k, c) : α(u) > b} 6= ∅ and α(Fu) > b for
u ∈ P (γ, θ, α, b, k, c);

(ii) {u ∈ Q(γ, β, ψ, h, a, c) : β(u) < a} 6= ∅ and β(Fu) < a for
u ∈ Q(γ, β, ψ, h, a, c);

(iii) α(Fu) > b for u ∈ P (γ, α, b, c) with θ(Fu) > k;
(iv) β(Fu) < a for u ∈ Q(γ, β, a, c) with ψ(Fu) < h.

Then F has at least three fixed points u1, u2, u3 ∈ P (γ, c) such that β(u1) < a,
b < α(u2) and a < β(u3), with α(u3) < b.

3. Existence of three positive solutions

In this section, by using the five functionals fixed-point theorem, we will find the
existence of at least three positive solutions (1.1) (1.2) and (1.1) (1.3).

Let the Banach space E = Cld([0, T ]T,R) with norm ‖u‖ = supt∈[0,T ]T |u(t)|, and
define the cone, P ⊂ E, by

P = {u ∈ E : u∆(T ) = 0, u is concave and nonnegative on [0, T ]T}.
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Suppose that there exists l ∈ T such that ξm−2 < l < T and
∫ T
l
g(r)∇r > 0 hold,

then we will use the following lemma.

Lemma 3.1. If u ∈ P , then
(i) u(t) ≥ t

T ‖u‖ for t ∈ [0, T ]T;
(ii) su(t) ≥ tu(s) for t, s ∈ [0, T ]T, with t ≤ s.

Proof. (i) Since u∆∇(t) ≤ 0, it follows that u∆(t) is nonincreasing. Thus, for
0 < t < T ,

u(t)− u(0) =
∫ t

0

u∆(s)∆s ≥ tu∆(t),

u(T )− u(t) =
∫ T

t

u∆(s)∆s ≤ (T − t)u∆(t)

from which we have

u(t) ≥ tu(T ) + (T − t)u(0)
T

≥ t

T
u(T ) =

t

T
‖u‖.

(ii) If t = s, then the conclusion of (ii) holds. If t < s with t, s ∈ [0, T ]T, setting
x(t) = u(t)− t

su(s), for u ∈ P , we have

x∆∇(t) = u∆∇(t) ≤ 0, x(0) = u(0) ≥ 0, x(s) = 0.

Therefore, the concavity of x implies that x(t) ≥ 0, t ∈ [0, s)T; i.e., su(t) > tu(s),
for t < s with t, s ∈ [0, T ]T. This completes the proof. �

We define the nonnegative, continuous concave functionals α,ψ and nonnegative
continuous convex functionals β, θ, γ on the cone P by

γ(u) = θ(u) := max
t∈[0,ξm−2]T

u(t) = u(ξm−2),

α(u) := min
t∈[l,T ]T

u(t) = u(l),

β(u) := max
t∈[0,l]T

u(t) = u(l),

ψ(u) := min
t∈[ξm−2,T ]T

u(t) = u(ξm−2).

We see that, for all u ∈ P ,
α(u) = u(l) = β(u).

For notational convenience, we define

M =
( ∑m−2

i=1 aiξi

1−
∑m−2
i=1 ai

+ ξm−2

)
φq

(∫ T

0

g(r)∇r
)
,

m =
( ∑m−2

i=1 aiξi

1−
∑m−2
i=1 ai

+ l
)
φq

(∫ T

l

g(r)∇r
)
,

λl =
( ∑m−2

i=1 aiξi

1−
∑m−2
i=1 ai

+ l
)
φq

(∫ T

0

g(r)∇r
)
.

We note that u(t) is a solution of (1.1) and (1.2), if and only if

u(t) =

∑m−2
i=1 ai

( ∫ ξi
0
φq

( ∫ T
s
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 ai
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+
∫ t

0

φq

(∫ T

s

g(r)f(u(r))∇r
)

∆s, t ∈ [0, T ]T.

Theorem 3.2. Let 0 < a < lb/T < (lξm−2c)/T 2, Mb < mc, and suppose that f
satisfies the following conditions:

(C1) f(w) < φp( c
M ), for all 0 ≤ w ≤ Tc/ξm−2;

(C2) f(w) > φp( bm ), for all b ≤ w ≤ T 2b/ξ2
m−2;

(C3) f(w) < φp( aλl ), for all 0 ≤ w ≤ Ta/l.
Then, there exist at least three positive solutions u1, u2, u3 of (1.1) and (1.2)

such that

max
t∈[0,l]T

u1(t) < a, b < min
t∈[l,T ]T

u2(t) and a < max
t∈[0,l]T

u3(t) with min
t∈[l,T ]T

u3(t) < b.

Proof. Defining a completely continuous integral operator F : P → E by

(Fu)(t) =
∑m−2
i=1 ai

( ∫ ξi
0
φq
( ∫ T

s
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 ai

+
∫ t

0

φq

(∫ T

s

g(r)f(u(r))∇r
)

∆s, u ∈ P,

(3.1)

for t ∈ [0, T ]T, we will search for fixed points of F in the cone P . We note that, if
u ∈ P , then (Fu)(t) ≥ 0 for t ∈ [0, T ]T, and

(Fu)∆(t) = φq

(∫ T

t

g(r)f(u(r))∇r
)
, u ∈ P, t ∈ [0, T ]Tκ .

We see that (Fu)∆(t) is continuous and nonincreasing on [0, T ]Tκ and, (Fu)∆∇(t) ≤
0 for [0, T ]Tκ∩Tκ . In addition, (Fu)∆(T ) = 0. This implies that Fu ∈ P , and
therefore F : P → P .

If u ∈ P (γ, c), then

γ(u) = max
t∈[0,ξm−2]T

u(t) = u(ξm−2) = c.

Consequently, 0 ≤ u(t) ≤ c for t ∈ [0, ξm−2]T. By Lemma 3.1, we have

‖u‖ ≤ Tu(ξm−2)
ξm−2

≤ Tc

ξm−2
.

This implies 0 ≤ u(t) ≤ Tc
ξm−2

for t ∈ [0, T ]T.
It follows from (C1) of Theorem 3.2 that

γ(F (u)) = (Fu)(ξm−2)

=

∑m−2
i=1 ai

(∫ ξi
0
φq

(∫ T
s
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 ai

+
∫ ξm−2

0

φq

(∫ T

s

g(r)f(u(r))∇r
)

∆s

<

∑m−2
i=1 ai

(∫ ξi
0
φq

(∫ T
s
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 ai

+ ξm−2φq

(∫ T

0

g(r)f(u(r))∇r
)
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<

∑m−2
i=1 ai

(∫ ξi
0
φq

(∫ T
0
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 ai

+ ξm−2φq

(∫ T

0

g(r)f(u(r))∇r
)

<
c

M

( ∑m−2
i=1 aiξi

1−
∑m−2
i=1 ai

+ ξm−2

)
φq

(∫ T

0

g(r)∇r
)

= c.

So F (u) ∈ P (γ, c).
By Lemma 3.1, we obtain γ(u) = u(ξm−2) ≥ ξm−2

T ‖u‖, hence

‖u‖ ≤ Tu(ξm−2)
ξm−2

=
Tγ(u)
ξm−2

for all u ∈ P.

Now we prove that (i)-(iv) of Theorem 2.4 are satisfied. Firstly, if u ≡ Tb
ξm−2

,
k = Tb

ξm−2
, then

α(u) = u(l) =
Tb

ξm−2
> b, θ(u) = u(ξm−2) =

Tb

ξm−2
= k, γ(u) =

Tb

ξm−2
< c,

which show that
{u ∈ P (γ, θ, α, b, k, c) : α(u) > b} 6= ∅.

For u ∈ P (γ, θ, α, b, Tb
ξm−2

, c), we obtain

θ(u) = max
t∈[0,ξm−2]T

u(t) = u(ξm−2) ≤ Tb

ξm−2
, α(u) = min

t∈[l,T ]T
u(t) = u(l) ≥ b,

which imply

0 ≤ u(t) ≤ Tb

ξm−2
for all t ∈ [0, ξm−2]T,

and b ≤ u(t) for all t ∈ [l, T ]T. By Lemma 3.1, we obtain

‖u‖ ≤ Tu(ξm−2)
ξm−2

≤ T 2b

ξ2
m−2

,

as a result,

b ≤ u(t) ≤ T 2b

ξ2
m−2

for all t ∈ [l, T ]T.

By (C2) of Theorem 3.2, we find

α(F (u)) = (Fu)(l)

=

∑m−2
i=1 ai

(∫ ξi
0
φq

(∫ T
s
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 ai

+
∫ l

0

φq

(∫ T

s

g(r)f(u(r))∇r
)

∆s

>

∑m−2
i=1 ai

(∫ ξi
0
φq

(∫ T
l
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 ai

+ lφq

(∫ T

l

g(r)f(u(r))∇r
)
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>
b

m

( ∑m−2
i=1 aiξi

1−
∑m−2
i=1 ai

+ l
)
φq

(∫ T

l

g(r)∇r
)

= b.

Therefore, (i) of Theorem 2.4 is satisfied.
Secondly, we show that (ii) of Theorem 2.4 is satisfied. Let u = aξm−2

T and
h = aξm−2

T , then

γ(u) = u(ξm−2) =
aξm−2

T
< c, β(u) = u(l) =

aξm−2

T
< a,

ψ(u) = u(ξm−2) =
aξm−2

T
= h.

Thus
{u ∈ Q(γ, β, ψ, h, a, c) : β(u) < a} 6= ∅.

If u ∈ Q(γ, β, ψ, aξm−2
T , a, c), then

β(u) := max
t∈[0,l]T

u(t) = u(l) ≤ a,

as a result 0 ≤ u(t) ≤ a for t ∈ [0, l]T. By Lemma 3.1,

‖u‖ ≤ Tu(l)
l
≤ Ta

l
for t ∈ [0, T ]T,

hence 0 ≤ u(t) ≤ Ta/l for t ∈ [0, T ]T. By (C3) of Theorem 3.2, we obtain

β(F (u)) = (Fu)(l)

=

∑m−2
i=1 ai

(∫ ξi
0
φq

( ∫ T
s
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 ai

+
∫ l

0

φq

(∫ T

s

g(r)f(u(r))∇r

)
∆s

<

∑m−2
i=1 aiξiφq

(∫ T
0
g(r)f(u(r))∇r

)
1−

∑m−2
i=1 ai

+ lφq

(∫ T

0

g(r)f(u(r))∇r
)

<
a

λl

( ∑m−2
i=1 aiξi

1−
∑m−2
i=1 ai

+ l
)
φq

(∫ T

0

g(r)∇r
)

= a.

Thirdly, we verify that (ii) of Theorem 2.4 is satisfied. If

u ∈ P (γ, α, b, c) and θ(F (u)) = F (u(ξm−2)) > k =
Tb

ξm−2
,

then

α(F (u)) = (Fu)(l) ≥ l

T
F (u(l)) ≥ l

T
F (u(ξm−2)) >

lb

ξm−2
> b.

Lastly, if

u ∈ Q(γ, β, a, c) and ψ(F (u)) = F (u(ξm−2)) < h =
aξm−2

T
,
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then by Lemma 3.1 we find

β(F (u)) = (Fu)(l) ≤ T

l
F (u(l)) ≤ T

ξm−2
F (u(ξm−2)) < a

which shows that condition (iv) of Theorem 2.4 is satisfied.
Hence, all the conditions in Theorem 2.4 are fulfilled, therefore the boundary-

value problems (1.1) and (1.2) has at least three positive solutions u1, u2, u3 such
that

max
t∈[0,l]T

u1(t) < a, b < min
t∈[l,T ]T

u2(t), a < max
t∈[0,l]T

u3(t) with min
t∈[l,T ]T

u3(t) < b.

The proof of Theorem 3.2 is complete. �

Now, we apply the five functionals fixed-point theorem to establish the existence
of at least three positive solutions of (1.1) and (1.3).

We define the cone, P1 ⊂ E, by

P1 = {u ∈ E : u∆(0) = 0, u is concave and nonnegative on [0, T ]T}.

Suppose that there exists l1 ∈ T such that 0 < l1 < ξ1 < T and
∫ l1

0
g(r)∇r > 0

hold.

Lemma 3.3. If u ∈ P1, then
(i) u(t) ≥ T−t

T ‖u‖ for t ∈ [0, T ]T;
(ii) (T − s)u(t) ≥ (T − t)u(s) for t, s ∈ [0, T ]T, with s ≤ t.

Proof. (i) Since u∆∇(t) ≤ 0, it follows that u∆(t) is nonincreasing. Thus, for
0 < t < T ,

u(t)− u(0) =
∫ t

0

u∆(s)∆s ≥ tu∆(t),

u(T )− u(t) =
∫ T

t

u∆(s)∆s ≤ (T − t)u∆(t)

from which we have

u(t) ≥ tu(T ) + (T − t)u(0)
T

≥ T − t
T

u(0) =
T − t
T
‖u‖.

(ii) If t = s, then the conclusion of (ii) holds. If t > s, t, s ∈ [0, T ]T, setting
x(t) = u(t)− T−t

T−su(s), for u ∈ P1, we have

x∆∇(t) = u∆∇(t) ≤ 0, x(T ) = u(T ) ≥ 0, x(s) = 0.

Therefore, the concavity of x implies that x(t) ≥ 0, t ∈ (s, T ]T, i.e., (T − s)u(t) >
(T − t)u(s), for t > s, t, s ∈ [0, T ]T. This completes the proof. �

We define the nonnegative continuous concave functionals α1, ψ1 and the non-
negative continuous convex functionals γ1, β1, θ1 on the cone P1 by

γ1(u) = θ1(u) := max
t∈[ξ1,T ]T

u(t) = u(ξ1),

α1(u) := min
t∈[0,l1]T

u(t) = u(l1),

β1(u) := max
t∈[l1,T ]T

u(t) = u(l1),

ψ1(u) := min
t∈[0,ξ1]T

u(t) = u(ξ1).
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We see that, for all u ∈ P1, α1(u) = u(l1) = β1(u).

M1 =
(∑m−2

i=1 bi(T − ξi)
1−

∑m−2
i=1 bi

+ T − ξ1
)
φq

(∫ T

0

g(r)∇r
)
,

m1 =
(∑m−2

i=1 bi(T − ξi)
1−

∑m−2
i=1 bi

+ T − l1
)
φq

(∫ l1

0

g(r)∇r
)
,

λl1 =
(∑m−2

i=1 bi(T − ξi)
1−

∑m−2
i=1 bi

+ T − l1
)
φq

(∫ T

0

g(r)∇r
)
.

We note that u(t) is a solution of (1.1) and (1.2), if and only if

u(t) =

∑m−2
i=1 bi

(∫ T
ξi
φq
( ∫ s

0
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 bi

+
∫ T

t

φq

(∫ s

0

g(r)f(u(r))∇r
)

∆s, t ∈ [0, T ]T.

Theorem 3.4. Let 0 < a < (T−l1)b
T < (T−l1)(T−ξ1)c

T 2 , M1b < m1c, and assume that
f satisfies the following conditions:

(D1) f(w) < φp
(
c
M1

)
for all 0 ≤ w ≤ Tc

T−ξ1 ;

(D2) f(w) > φp
(
b
m1

)
for all b ≤ w ≤ T 2b

(T−ξ1)2 ;
(D3) f(w) < φp

(
a
λl1

)
for all 0 ≤ w ≤ Ta

T−l1 .

Then, there exist at least three positive solutions u1, u2, u3 of (1.1) and (1.3)
such that

max
t∈[l1,T ]T

u1(t) < a, b < min
t∈[0,l1]T

u2(t), a < max
t∈[l1,T ]T

u3(t) with min
t∈[0,l1]T

u3(t) < b.

Proof. Defining a completely continuous integral operator F1 : P1 → E by

(F1u)(t) =

∑m−2
i=1 bi

(∫ T
ξi
φq
(∫ s

0
g(r)f(u(r))∇r

)
∆s
)

1−
∑m−2
i=1 bi

+
∫ T

t

φq

(∫ s

0

g(r)f(u(r))∇r
)

∆s, u ∈ P1,

(3.2)

for t ∈ [0, T ]T, each fixed point of F1 in the cone P1 is a positive solution of (1.1)
and (1.3). We note that, if u ∈ P1, then (F1u)(t) ≥ 0 for t ∈ [0, T ]T, and

(F1u)∆(t) = −φq
(∫ t

0

g(r)f(u(r))∇r
)
, u ∈ P1, t ∈ [0, T ]Tκ .

Note that (F1u)∆(t) is continuous and nonincreasing on [0, T ]Tκ , and (F1u)∆∇(t) ≤
0 for t ∈ [0, T ]Tκ∩Tκ . In addition, (F1u)∆(0) = 0. This implies F1u ∈ P1, and
therefore F : P1 → P1. In likeness to the proof of Theorem 3.2, we arrive at the
conclusion. �
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4. An example

Let T = {2−( 1
2 )N0}∪{0, 1

8 ,
1
4 ,

1
3 ,

1
2 , 1,

3
2 , 2}∪ [ 1

10 ,
1
9 ]. We consider the p-Laplacian

dynamic equation with k ∈ N0,

(φp(u∆(t)))∇ +
{ 6∑
k=0

tk(ρ(t))6−k
}
t∇f(u(t)) = 0, t ∈ [0, 2]T, (4.1)

satisfying the boundary conditions

u(0) =
1
2
u
(1

4

)
+

1
6
u
(1

2

)
, u∆(2) = 0, (4.2)

where p = 4/3, ξ1 = 1/4, ξ2 = 1/2, a1 = 1/2, a2 = 1/6, T = 2 and

f(u) =


1× 10−7, 0 ≤ u ≤ 4,
p(u), 4 ≤ u ≤ 10,
7× 10−6, 10 ≤ u ≤ 800,
s(u), u ≥ 800,

here p(u) and s(u) satisfy p(4) = 1 × 10−7, p(10) = 7 × 10−6, s(800) = 7 × 10−6,
(p∇(u))∇ = 0 for u ∈ (4, 10), and s(u) : R→ R+ is continuous. If

g(t) =
{ 6∑
k=0

tk(ρ(t))6−k
}
t∇,

then we obtain (t7)∇ =
{∑6

k=0 t
k(ρ(t))6−k

}
t∇.

Choose a = 2, b = 10, c = 200, l = 1. Then

M =
( ∑m−2

i=1 aiξi

1−
∑m−2
i=1 ai

+ ξm−2

)
φq

(∫ T

0

g(r)∇r
)

=
(5

8
+

1
2
)( ∫ 2

0

{ 6∑
k=0

tk(ρ(t))6−k
}
t∇∇t

)3

=
9
8
× 221 = 2.3593× 106,

m =
( ∑m−2

i=1 aiξi

1−
∑m−2
i=1 ai

+ l
)
φq

(∫ T

l

g(r)∇r
)

=
(5

8
+ 1
)(∫ 2

1

{ 6∑
k=0

tk(ρ(t))6−k
}
t∇∇t

)3

=
13
8
× (27 − 1)3 = 3.3286× 106,

λl =
( ∑m−2

i=1 aiξi

1−
∑m−2
i=1 ai

+ l
)
φq

(∫ T

0

g(r)∇r
)

=
13
8

(∫ 2

0

{ 6∑
k=0

tk(ρ(t))6−k
}
t∇∇t

)3

=
13
8
× 221 = 3.4079× 106.



EJDE-2015/131 TRIPLE POSITIVE SOLUTIONS 11

It is easy to see that

0 < a <
lb

T
<
ξ2lc

T 2
, Mb < mc

and f satisfies

f(w) < φp

(
a

λl

)
= 5.8687× 10−7, for 0 ≤ w ≤ Ta

l
= 4,

f(w) > φp

(
b

m

)
= 3.0043× 10−6, for 10 ≤ w ≤ T 2b

ξ2
m−2

= 160,

f(w) < φp

( c

M

)
= 8.4771× 10−5, for 0 ≤ w ≤ Tc

ξm−2
= 800.

So, all the conditions of Theorem 3.2 are satisfied. By Theorem 3.2, the problem
(4.1), (4.2) has at least three positive solutions u1, u2 and u3 satisfying

max
t∈[0,1]T

u1(t) < 2, 10 < min
t∈[1,2]T

u2(t), 2 < max
t∈[0,1]T

u3(t) with min
t∈[1,2]T

u3(t) < 10.
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