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GLOBAL WELL-POSEDNESS OF DAMPED
MULTIDIMENSIONAL GENERALIZED BOUSSINESQ

EQUATIONS

YI NIU, XIUYAN PENG, MINGYOU ZHANG

Abstract. We study the Cauchy problem for a sixth-order Boussinesq equa-
tions with the generalized source term and damping term. By using Galerkin

approximations and potential well methods, we prove the existence of a global
weak solution. Furthermore, we study the conditions for the damped coeffi-

cient to obtain the finite time blow up of the solution.

1. Introduction

In this article, we consider the Cauchy problem for damped multidimensional
generalized Boussinesq equations

utt −∆u−∆utt + ∆2utt − k∆ut = ∆f(u), x ∈ Rn, t > 0, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn, (1.2)

where k is a positive constant, and f(u) satisfies
(A1) f(u) = −|u|p−1u, n+2

n ≤ p < n+2
n−2 for n ≥ 3, 1 < p <∞ for n = 1, 2.

Boussinesq [1] first derived the equation

utt = −γuxxxx + uxx + (u2)xx, (1.3)

to describe the propagation of small amplitude long waves on the surface of shal-
low water. Later, Makhankov [3] obtained that the improved Boussinesq equation
(IBq),

utt −∆u−∆utt = ∆(u2), x ∈ Rn, t > 0, (1.4)
which can be derived by using the exact hydro-dynamical set of equations in plasma.
A modification of the IBq equation analogous to the modified Korteweg-de Vries
equation yields

utt −∆u−∆utt = ∆(u3). (1.5)
This equation is the so-called IMBq (modified IBq) equation. Wang and Chen [7, 8]
considered the existence of local and global solutions, the nonexistence of solutions,
and the existence of global small amplitude solutions for (1.5) with a general source
term ∆f(u).
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Through investigating the water wave problem, Schneider [6] improved the model
(1.3) as follows

utt − uxx − uxxtt − µuxxxx + uxxxxtt = (u2)xx, (1.6)

where x, t, µ ∈ R and u(x, t) ∈ R. This nonlinear wave equation not only models
the water wave problem with surface tension, but can also be formally derived
from the two-dimensional water wave problem. Because of the linear instability,
equation (1.6) with µ > 0 is known as the “bad” Boussinesq equation. For the case
µ = −1, Wang and Mu [10] showed that (1.6) has blow up and scattering solution.
By using contracting mapping principle, Wang and Guo [9] proved the existence
and uniqueness for the Cauchy problem (1.6) with µ = −1. Furthermore, they
gave the sufficient conditions of blowup of the solution for the problem in finite
time. For the multidimensional case (1.6) and the special case of nonlinear term
like up, the Littlewood-Paley dyadic decomposition guarantees the global existence
and scattering results of solution with the small initial data [11].

Xu and Liu [14] considered the initial boundary value problem of the generalized
Pochhammer-Chree equation

utt − uxx − uxxt − uxxtt = f(u)xx, (1.7)

where x ∈ Ω = (0, 1). By using the contract mapping principle, they established
the existence of local solutions. After modifying the source term f(u)xx, they
discussed the W k,p global solution and global nonexistence of generalized IMBq
equations. Necat Polat [4, 5] studied the Cauchy problem of the generalized damped
multidimensional Boussinesq equation with double dispersive term

utt −∆u−∆utt + ∆2u− k∆ut = ∆f(u). (1.8)

First, by starting with the contraction mapping principle, the authors pointed out
the locally well-posedness of the Cauchy problem. Then the authors obtain the
necessary a priori bound. Thanks to the a priori bound, every local solution is
indeed global in time. Finally, by using the concavity method, the authors proved
that the local solution of the Cauchy problem blows up in finite time with negative
and nonnegative initial energy. Unfortunately, it is much less known for the sixth
order equations with strong damping term.

In this article, we study the Cauchy problem (1.1), (1.2), which is not only the
multidimensional generalized sixth order Boussinesq equation, but also includes
both nondecreasing source term and strong damping term. To deal with such
problem, we refer to the papers [13, 12, 14, 15, 2, 16] especially the work by Xu and
Liu [15] who proved that the Cauchy problem (1.1), (1.2) for the multidimensional
sixth order equation with the generalized source term has the global Hm solution
and the finite time blow up solution. However, the method they employed can not
be used directly to solve the sixth order Boussinesq equation with strong damping
term considered in this article. So we improve the standard concavity method and
exploit further the character of the Nehari manifold in order to give a threshold
result of global existence and nonexistence of solutions, and point that the solution
blows up in correspondence of the sufficiently small damping coefficient. This paper
is organized as follows.

In Section 2 we give some preliminary lemmas and local existence theorem. In
Section 3 we give the sufficient conditions for existence and nonexistence of global
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weak solution for problem (1.1), (1.2), and provide the proofs of the main Theorems.
In Section 4 we give some remarks on the main results ofthis article.

2. Preliminary lemmas and local existence

To prove the existence of local solutions, and the main results of this article, we
provide some preliminary lemmas. Firstly, we denote Lp(Rn) and Hs(Rn) by Lp

and Hs respectively, with the norm ‖ · ‖p = ‖ · ‖Lp(Rn), ‖ · ‖ = ‖ · ‖L2(Rn) and the
inner product (u, v) =

∫
Rn uvdx. We also define the space

H = {u ∈ H1 : (−∆)−1/2u ∈ L2},
with the norm

‖u‖2H = ‖u‖2H1 + ‖(−∆)−1/2u‖2L2 ,

where (−∆)−αv = F−1
(
|ξ|−2αFv

)
, F and F−1 are the Fourier transformation

and the inverse Fourier transformation respectively. For problem (1.1)-(1.2) we
introduce the functionals

J(u) =
1
2
‖u‖2 +

∫
Rn

F (u)dx, F (u) =
∫ u

0

f(s)ds,

I(u) = ‖u‖2 +
∫

Rn

uf(u)dx,

d = inf
u∈N

J(u), N = {u ∈ H1 | I(u) = 0, ‖u‖ 6= 0}.

And we define the following subsets of H1(Rn):

W = {u ∈ H1 : I(u) > 0, J(u) < d} ∪ {0};
V = {u ∈ H1 : I(u) < 0, J(u) < d},W ′ = {u ∈ H1 : I(u) > 0} ∪ {0};

V ′ = {u ∈ H1 : I(u) < 0}.

Definition 2.1. We call u(x, t) a weak solution of problem (1.1), (1.2) on Rn ×
[0, T ), if u ∈ L∞(0, T ;H1), ut ∈ L∞(0, T ;H) satisfy

(i) for all v ∈ H and all t ∈ [0, T ),(
(−∆)−1/2ut, (−∆)−1/2v

)
+ (∇ut,∇v) + (ut, v) + k(u, v)

+
∫ t

0

((u, v) + (f(u), v)) dτ

=
(

(−∆)−1/2u1, (−∆)−1/2v
)

+ (∇u1,∇v) + k(u0, v) .

(2.1)

(ii) There holds u(x, 0) = u0(x) in H1 and

ut(x, 0) = u1(x) in H. (2.2)

(iii) for all t ∈ [0, T ),

E(t) + k

∫ t

0

‖uτ‖2dτ ≤ E(0) (2.3)

where

E(t) =
1
2
‖ut‖2H +

1
2
‖u‖+2

∫
Rn

F (u)dx, F (u) =
∫ u

0

f(s)ds.

We present the following theorem about local existence [6, 4].
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Theorem 2.2. Suppose that f(x) satisfies (A1) and u0(x), u1(x) ∈ H. Then (1.1)-
(1.2) admits a unique local solution u(x, t) ∈ H.

Let u0 ∈ H1, u1 ∈ H, {wj}∞j=1 be a basis function system in H. We construct
the approximate solutions of problem (1.1), (1.2)

um(x, t) =
m∑
j=1

gjm(t)wj(x), m = 1, 2, . . . , (2.4)

satisfying(
(−∆)−1/2umtt, (−∆)−1/2ws

)
+ (um, ws) + (umtt, ws)

+ (∇umtt,∇ws) + k(umt, ws) + (f(um), ws) = 0, s = 1, 2, . . . ,m,
(2.5)

um(x, 0) =
m∑
j=1

ajmwj(x)→ u0(x) in H1, (2.6)

umt(x, 0) =
m∑
j=1

bjmwj(x)→ u1(x) in H. (2.7)

Multiplying (2.5) by g′sm(t) and summing for s we obtain
d
dt
Em(t) + k‖umt‖2 = 0

and

Em(t) + k

∫ t

0

‖umτ‖2dτ = Em(0), (2.8)

where

Em(t) =
1
2
‖umt‖2H +

1
2
‖um‖2 +

∫
Rn

F (um)dx, F (u) =
∫ u

0

f(s)ds. (2.9)

Lemma 2.3. Let f(u) satisfy (A1) and u ∈ H1. We have
(i) limλ→0 J(λu) = 0.
(ii) I(λu) = λ d

dλJ(λu), ∀ λ > 0. Furthermore if
∫

Rn uf(u)dx < 0 and ϕ(λ) =
− 1
λ

∫
Rn uf(λu)dx, then I(λu) > 0 for ∀λ > 0.

(iii) limλ→+∞ J(λu) = −∞.
(iv) ϕ(λ) is increasing on 0 < λ <∞.
(v) limλ→0 ϕ(λ) = 0, limλ→+∞ ϕ(λ) = +∞.
(vi) In the interval 0 < λ <∞, there exists a unique λ∗ = λ∗(u) such that

d
dλ
J(λu)

∣∣∣
λ=λ∗

= 0.

(vii) J(λu) is increasing on 0 < λ ≤ λ∗, decreasing on λ∗ ≤ λ < ∞ and takes
the maximum at λ = λ∗.

(viii) I(λu) > 0 for 0 < λ < λ∗, I(λu) < 0 for λ∗ < λ <∞ and I(λ∗u) = 0.

Proof. Parts (i)–(iii) are obvious. Part (iv) and Part (v) follow from

ϕ(λ) = − 1
λ

∫
Rn

uf(λu)dx = −λp−1

∫
Rn

uf(u)dx.

Note that
∫

Rn uf(u)dx 6= 0 implies ‖u‖ 6= 0 and

d
dλ
J(λu) = λ

(
‖u‖2 − ϕ(λ)

)
, (2.10)
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which together with Part (iv) and Part (v) give Part (vi) and Part (vii).
Part (viii) follows from Part (ii) and (2.10). �

Lemma 2.4. Let f(u) satisfy (A1) and u ∈ H1. We obtain

(i) If 0 < ‖u‖ < r0, then I(u) > 0;
(ii) If I(u) < 0, then ‖u‖ > r0;

(iii) If I(u) = 0 and ‖u‖ 6= 0, i.e. u ∈ N , then ‖u‖ ≥ r0, where

r0 =
( 1
aCp+1
∗

) 1
p−1

, C∗ = sup
u∈H1,u6=0

‖u‖p+1

‖u‖
.

Proof. (i) If 0 < ‖u‖ < r0, then I(u) > 0 follows from

−
∫

Rn

uf(u)dx ≤
∫

Rn

|uf(u)|dx = a‖u‖p+1
p+1 ≤ aCp+1

∗ ‖u‖p+1

= aCp+1
∗ ‖u‖p−1‖u‖2 < ‖u‖2.

(ii) If I(u) < 0, then ‖u‖ > r0 follows from

‖u‖2 < −
∫

Rn

uf(u)dx ≤ aCp+1
∗ ‖u‖p−1‖u‖2.

(iii) If I(u) = 0 and ‖u‖ 6= 0, then we have

‖u‖2 = −
∫

Rn

uf(u)dx ≤ aCp+1
∗ ‖u‖p−1‖u‖2,

which together with ‖u‖ 6= 0 gives ‖u‖ ≥ r0. �

Lemma 2.5. Let f(u) satisfy (A1), we have

(i)

d ≥ d0 =
p− 1

2(p+ 1)

( 1
aCp+1
∗

) 2
p−1

. (2.11)

(ii) If u ∈ H1 and I(u) < 0, then

I(u) < (p+ 1) (J(u)− d) . (2.12)

Proof. (i) For any u ∈ N , by Lemma 2.4 we have ‖u‖ ≥ r0 and

J(u) =
1
2
‖u‖2 +

∫
Rn

F (u)dx =
1
2
‖u‖2 +

1
p+ 1

∫
Rn

uf(u)dx

=
(1

2
− 1
p+ 1

)
‖u‖2 +

1
p+ 1

I(u) =
p− 1

2(p+ 1)
‖u‖2 ≥ p− 1

2(p+ 1)
r2
0,

which gives (2.11).
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(ii) Let u ∈ H1 and I(u) < 0, then from Lemma 2.3 it follows that there exists
a λ∗ such that 0 < λ∗ < 1 and I(λ∗u) = 0. From the definition of d we have

d ≤ J(λ∗u) =
1
2
‖λ∗u‖2 +

∫
Rn

F (λ∗u)dx

=
1
2
‖λ∗u‖2 +

1
p+ 1

∫
Rn

λ∗uf(λ∗u)dx

=
(1

2
− 1
p+ 1

)
‖λ∗u‖2 +

1
p+ 1

I(λ∗u)

=
p− 1

2(p+ 1)
‖λ∗u‖2 = λ∗2

p− 1
2(p+ 1)

‖u‖2

<
p− 1

2(p+ 1)
‖u‖2.

(2.13)

From (2.13) and

J(u) =
p− 1

2(p+ 1)
‖u‖2 +

1
p+ 1

I(u),

we obtain
d <

p− 1
2(p+ 1)

‖u‖2 = J(u)− 1
p+ 1

I(u),

which gives (2.12). �

Lemma 2.6. Let f(u) satisfy (A1), u0 ∈ H1 and u1 ∈ H. We conclude that
F (u0) ∈ L1. And for the approximate solutions um defined by (2.4)–(2.7), there
holds Em(0)→ E(0) as m→∞, where

E(0) =
1
2
(
‖u1‖2H + ‖u0‖2

)
+
∫

Rn

F (u0)dx.

Proof. First from the assumptions we have

|F (u)| ≤ a

p+ 1
|u|p+1, ∀u ∈ R,

where 2n+2
n ≤ p+ 1 < 2n

n−2 for n ≥ 3 or 2 < p+ 1 <∞ for n = 1, 2. It is obvious
that F (u0) ∈ L1.

From (2.6) and (2.7) we obtain that as m→∞

‖(−∆)−1/2umt(0)‖2 + ‖um(0)‖2 + ‖umt(0)‖2 + ‖∇umt(0)‖2

→ ‖(−∆)−1/2u1‖2 + ‖u0‖2 + ‖u1‖2 + ‖∇u1‖2 = ‖u1‖2H .
Next we prove that∫

Rn

F (um(0))dx→
∫

Rn

F (u0)dx as m→∞.

In fact we have∣∣∣ ∫
Rn

F (um(0))dx−
∫

Rn

F (u0)dx
∣∣∣ ≤ ∫

Rn

|f(ϕm)||um(0)− u0|dx

≤ ‖f(ϕm)‖r‖um(0)− u0‖q,

where 1 < q, r <∞, 1
q + 1

r = 1, ϕm = u0 + θ (um(0)− u0), 0 < θ < 1.
(i) If n ≥ 3. Choose q = 2n

n−2 , r = 2n
n+2 . We have

‖um(0)− u0‖q ≤ C‖um(0)− u0‖ → 0 as m→∞,
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‖f(ϕm)‖rr =
∫

Rn

(a|ϕm|p)r dx = A‖ϕm‖prpr.

From the conditions we have 2 ≤ pr ≤ 2n
n−2 , hence ‖f(ϕm)‖r ≤ C.

(ii) If n = 1, 2. Choose q = r = 2, then we have

‖um(0)− u0‖q ≤ ‖um(0)− u0‖ → 0 as m→∞.

‖f(ϕm)‖rr = ‖f(ϕm)‖2 ≤ A‖ϕm‖2p2p.

Since 2 < 2p <∞, we obtain ‖f(ϕm)‖r < C.
Thus for two cases above we always have∫

Rn

F (um(0))dx→
∫

Rn

F (u0)dx as m→∞

and Em(0)→ E(0) as m→∞. �

Lemma 2.7. Let f(u) satisfy (A), u0 ∈ H1 and u1 ∈ H, E(0) < d. Assume
that I(u0) > 0 or ‖u0‖ = 0, i.e u0 ∈ W ′. Then for the approximate solutions um
defined by (2.4)–(2.7) there holds um ∈W ′ for 0 ≤ t <∞ and sufficiently large m.
Furthermore we have

‖um‖2 ≤
2(p+ 1)
p− 1

d, ‖umt‖2H < 2d, 0 ≤ t <∞, (2.14)

for sufficiently large m.

Proof. Arguing by contradiction, we assume that there exists a t̄ > 0 such that
um(t̄) /∈ W ′ for some sufficiently large m. Then by the continuity of I(um) with
respect to t it follows that there exists a t0 > 0 such that um(t0) ∈ ∂W ′. On the
other hand, from the definition of W ′ we have 0 /∈ ∂W ′. Hence I(um(t0)) = 0
and ‖um(t0)‖ 6= 0 for some sufficiently large m. From the definition of d we obtain
J(um(t0)) ≥ d, which contradicts (by (2.8))

Em(t) =
1
2
‖umt‖2H + J(um) ≤ Em(0) < d, 0 ≤ t <∞ (2.15)

for sufficiently large m.
On the other hand, from (2.15) we obtain that for sufficiently large m there holds

1
2
‖umt‖2H +

p− 1
2(p+ 1)

‖um‖2 +
1

p+ 1
I(um) ≤ Em(0) < d, 0 ≤ t <∞,

which together with um(t) ∈W ′ gives (2.14). �

3. Existence and nonexistence of global solutions

We first give the invariance of both subsets W and V of H1(Rn) under the flow
of (1.1), (1.2).

Theorem 3.1 (Invariant sets). Let f(u) satisfy (A1), u0 ∈ H1 and u1 ∈ H.
Assume that E(0) < d. Then both sets W ′ and V ′ are invariant under the flow of
problem (1.1)-(1.2). Furthermore

(i) All weak solutions of problem (1.1), (1.2) belong to W provided u0 ∈W ′.
(ii) All weak solutions of problem (1.1), (1.2) belong to V provided u0 ∈ V ′.
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Proof. We only prove the invariance of W ′, the proof for the invariance of V ′ is
similar. Let u(t) be any weak solution of (1.1), (1.2) with u0 ∈ W ′, T be the
maximal existence time of u(t). Next we prove that u(t) ∈ W ′ for 0 < t < T .
Arguing by contradiction we assume there is a t̄ ∈ (0, T ) such that u(t̄) /∈ W ′.
According to the continuity of I(u(t)) with respect to t, there is a t0 ∈ (0, T )
such that u(t0) ∈ ∂W ′. From the definition of W ′ and (i) of Lemma 2.4 we have
Br0 ⊂ W ′, Br0 = {u ∈ H1 : ‖u‖ < r0}. Hence we know 0 /∈ ∂W ′. So u(t0) ∈ ∂W
reads I(u(t0)) = 0 with ‖u(t0)‖ 6= 0. The definition of d tells J(u(t0)) ≥ d, which
contradicts

1
2
‖umt‖2H + k

∫ t

0

‖uτ‖2dτ + J(u) ≤ E(0) < d, 0 ≤ t < T. (3.1)

So the prove can be completed. �

Next we show the existence of global solution for (1.1), (1.2). And we give some
sufficient conditions for global well-posedness and finite time blow up. What is
more, these results are independent of the local existence theory, so they are not
restricted by the conditions for the local solution.

Theorem 3.2. Let f(u) satisfy (A1), u0 ∈ H1, u1 ∈ H and E(0) < d. Then
problem (1.1), (1.2) admits a global weak solution u(t) ∈ L∞(0,∞;H1) with ut(t) ∈
L∞(0,∞;H) and u(t) ∈W for 0 ≤ t <∞ provided u0 ∈W ′.

Proof. First let us turn to the existence of global solution for problem (1.1), (1.2).
For problem (1.1), (1.2), construct the approximate solutions um(x, t) by (2.4)-

(2.7). From Lemma 2.7, it follows that {um} in L∞(0,∞;H1) and {∇umt} in
L∞(0,∞;H) are bounded respectively. Moreover by an argument similar to that
in the proof of Lemma 2.6 we can get {f(um)} are bounded in L∞(0,∞;Lr), where
r is defined in the proof of Lemma 2.6. Hence there exists a u and a subsequence
{uν} of {um} such that as ν →∞; uν → u in L∞

(
0,∞;H1

)
weakly star and a.e.

in Q = Rn × [0,∞); ∇uνt → ∇ut in L∞ (0,∞;H) weakly star; f(uν) → χ = f(u)
in L∞ (0,∞;Lr) weakly star.

Integrating (2.5) with respect to t from 0 to t we obtain(
(−∆)−1/2umt, (−∆)−1/2ws

)
+ (∇umt,∇ws) + (umt, ws)

+ k(um, ws) +
∫ t

0

((um, ws) + (f(um), ws)) dτ

=
(

(−∆)−1/2umt(0), (−∆)−1/2ws

)
+ (∇umt(0),∇ws)

+ (umt(0), ws) + k(um(0), ws).

(3.2)

Let m = ν →∞ in (3.2) we obtain(
(−∆)−1/2ut, (−∆)−1/2ws

)
+ (∇ut,∇ws) + (ut, ws)

+ k(u,ws) +
∫ t

0

((u,ws) + (f(u), ws)) dτ

=
(

(−∆)−1/2u1, (−∆)−1/2ws

)
+ (∇u1,∇ws) + (u1, ws) + k(u0, ws), ∀s

and (
(−∆)−1/2ut, (−∆)−1/2v

)
+ (∇ut,∇v) + (ut, v)
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+ k(u, v) +
∫ t

0

((u, v) + (f(u), v)) dτ

=
(

(−∆)−1/2u1, (−∆)−1/2v
)

+ (∇u1,∇v) + (u1, v) + k(u0, v),

for all v ∈ H and all t ∈ [0,∞). On the other hand, from (2.6), (2.7) we obtain

u(x, 0) = u0(x) in H1,

ut(x, 0) = u1(x) in H.

Next we prove that above u satisfies (2.3). Note that the embedding H1 ↪→ Lp+1

is compact under the condition 2
(
1 + 1

n

)
≤ p+1 < 2n

n−2 for n ≥ 3 or 2 < p+1 <∞
for n = 1, 2. Thus from {um} is bounded in L∞(0,∞;H1) it follows that there
exists a subsequence {uν} of {um} such that as ν → ∞ uν → u in Lp+1 strongly
for each t > 0. Hence∣∣∣ ∫

Rn

F (uν)dx−
∫

Rn

F (u)dx
∣∣∣ ≤ ∫

Rn

|f(vν)||uν − u|dx ≤ ‖f(vν)‖r̄‖uν − u‖q̄,

where q̄ = p+ 1, r̄ = p+1
p , uν = u+ θ(uν − u), 0 < θ < 1. From ‖uν − u‖q̄ → 0 as

ν →∞ and

‖f(vν)‖r̄r̄ =
∫

Rn

(a|vν |p)r̄ dx = a
p+1

p ‖vν‖p+1
p+1 ≤ C,

we obtain ∫
Rn

F (uν)dx→
∫

Rn

F (u)dx as ν →∞.

Hence from (2.8) we obtain

1
2

(
‖(−∆)−1/2ut‖2 + ‖∇ut‖2 + ‖ut‖2 + ‖u‖2

)
+ k

∫ t

0

‖uτ‖2dτ

≤ 1
2

(
lim inf
ν→∞

‖(−∆)−1/2uνt‖2 + lim inf
ν→∞

‖∇uνt‖2 + lim inf
ν→∞

‖uνt‖2 + lim inf
ν→∞

‖uν‖2
)

+ k lim inf
ν→∞

∫ t

0

‖uτ‖2dτ

≤ lim inf
ν→∞

(1
2
‖(−∆)−1/2uνt‖2 +

1
2
‖∇uνt‖2 +

1
2
‖uνt‖2 +

1
2
‖uν‖2 + k

∫ t

0

‖uτ‖2dτ
)

= lim inf
ν→∞

(
Eν(0)−

∫
Rn

F (uν)dx
)

= lim
ν→∞

(
Eν(0)−

∫
Rn

F (uν)dx
)

= E(0)−
∫

Rn

F (u)dx,

which gives E(t) ≤ E(0) for 0 ≤ t < ∞. Therefore u(x) is a global weak solution
of problem (1.1), (1.2). Finally from Theorem 3.1 we obtain u(t) ∈ W for 0 ≤ t <
∞. �

Theorem 3.3. Let f(u) satisfy (A1), u0 ∈ H1, u1 ∈ H, (−∆)−1/2u0 ∈ L2 and
E(0) < d. Then the solutionu(t) of (1.1), (1.2) belongs to L∞(0,∞;H1), with
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ut(t) ∈ L∞(0,∞;H) blows up in finite time when I(u0) < 0, and k satisfies

0 < k < p− 1, if E(0) ≤ 0;

0 < k < (p− 1)

√
1− E(0)

d0
, if 0 < E(0) < d0,

(3.3)

where

d0 =
p− 1

2(p+ 1)

( 1
aCp+1
∗

) 2
p−1

, C∗ = sup
u∈H1, u 6=0

‖u‖p+1

‖u‖
.

Proof. Let u(t) ∈ L∞(0,∞;H1) with ut(t) ∈ L∞(0,∞;H) be any weak solution of
(1.1), (1.2), T be the maximal existence time of u(t). Now we need to show T <∞.
Arguing by contradiction, we suppose that T = +∞. Let φ(t) = ‖u‖2H , then

φ̇(t) = 2((−∆)−1/2ut, (−∆)−1/2u) + 2(∇ut,∇u) + 2(ut, u).

From Schwartz inequality we obtain(
((−∆)−1/2ut, (−∆)−1/2u) + (∇ut,∇u) + (ut, u)

)2

= ((−∆)−1/2ut, (−∆)−1/2u)2 + (∇ut,∇u)2 + (ut, u)2

+ 2((−∆)−1/2ut, (−∆)−1/2u)(∇ut,∇u) + 2(∇u,∇ut)(u, ut)

+ ((−∆)−1/2ut, (−∆)−1/2u)(ut, u)

≤ ‖(−∆)−1/2ut‖2‖(−∆)−1/2u‖2 + ‖∇ut‖2‖∇u‖2 + ‖u‖2‖ut‖2

+ ‖(−∆)−1/2ut‖2‖∇u‖2 + ‖(−∆)−1/2u‖2‖∇ut‖2 + ‖∇u‖2‖ut‖2

+ ‖∇ut‖2‖u‖2 + ‖(−∆)−1/2ut‖2‖u‖2 + ‖(−∆)−1/2u‖2‖ut‖2

= ‖(−∆)−1/2u‖2‖ut‖2H + ‖∇u‖2‖ut‖2H + ‖u‖2‖ut‖2H .
we have (

φ̇(t)
)2 ≤ 4φ(t)‖ut‖2H , (3.4)

and
φ̈(t) = 2‖(−∆)−1/2ut‖2 + 2‖∇ut‖2 + 2‖ut‖2

+ 2((−∆)−1/2utt, (−∆)−1/2u) + 2(∇utt,∇u) + 2(u, utt)

= 2‖ut‖2H − 2((−∆)−1utt, u)− 2(∆utt, u) + 2(utt, u)

= 2‖ut‖2H − 2(u, u)− 2(f(u), u)− 2k(ut, u)

= 2‖ut‖2H − 2(u, u)− 2(f(u), u)− 2k(ut, u)

= 2‖ut‖2H − 2
(
‖u‖2 +

∫
Rn

uf(u)dx
)
− 2k(ut, u)

= 2‖ut‖2H − 2I(u)− 2k(ut, u).

(3.5)

From (2.3) we have
1
2
‖ut‖2H +

p− 1
2(p+ 1)

‖u‖2 +
1

p+ 1
I(u) ≤ 1

2
‖ut‖2H + J(u) ≤ E(0) < d,

−2I(u) ≥ (p+ 1)‖ut‖2H + (p− 1)‖u‖2 − 2(p+ 1)E(0).

Hence we have

φ̈(t) ≥ (p+ 3)‖ut‖2H + (p− 1)‖u‖2 − 2k(ut, u)− 2(p+ 1)E(0). (3.6)
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Next we consider the following three cases:
(i) We consider E(0) < 0. In this case from 0 < k < p − 1 it follows that there

exists a ε such that 0 < ε < p− 1 and k2 < (p− 1− ε)(p− 1). And (3.6) gives

φ̈(t) ≥ (4 + ε)‖ut‖2H + (p− 1− ε)
(
‖(−∆)−1/2ut‖2 + ‖∇ut‖2

)
+ (p− 1− ε)‖ut‖2 + (p− 1)‖u‖2 − 2k(ut, u)− 2(p+ 1)E(0).

(3.7)

And from

2k|(ut, u)| ≤ (p− 1− ε)‖ut‖2 +
k2

p− 1− ε
‖u‖2

≤ (p− 1− ε)‖ut‖2 + (p− 1)‖u‖2,

we have
φ̈(t) ≥ (4 + ε)‖ut‖2H − 2(p+ 1)E(0). (3.8)

(ii) Suppose E(0) = 0. In this case from 0 < k < p−1 it follows that there exists
a ε such that 0 < ε < p− 1 and k < p− 1− ε. And (3.6) gives

φ̈(t) ≥ (4 + ε)‖ut‖2H + (p− 1− ε)
(
‖(−∆)−1/2ut‖2 + ‖∇ut‖2

)
+ (p− 1− ε)‖ut‖2 + (p− 1− ε)‖u‖2 + ε‖u‖2 − 2k(ut, u),

(3.9)

and from

2k|(ut, u)| ≤ (p− 1− ε)‖ut‖2 +
k2

p− 1− ε
‖u‖2

≤ (p− 1− ε)‖ut‖2 + (p− 1− ε)‖u‖2,

we have
φ̈(t) ≥ (4 + ε)‖ut‖2H + ε‖u‖2 ≥ (4 + ε)‖ut‖2H + εr2

0. (3.10)

(iii) We consider 0 < E(0) < d0. In this case from 0 < k < (p − 1)
√

1− E(0)
d0

,

it follows that there exists a ε such that 0 < ε < (p − 1)
(
1 − E(0)

d0

)
and k2 <

(p− 1− ε)
(
(p− 1)

(
1− E(0)

d0

)
− ε
)
. And (3.6) gives

φ̈(t) ≥ (4 + ε)‖ut‖2H + (p− 1− ε)
(
‖(−∆)−1/2ut‖2 + ‖∇ut‖2 + ‖ut‖2

)
+
(

(p− 1)
(
1− E(0)

d0

)
− ε
)
‖u‖2 + ε‖u‖2

+ (p− 1)
(E(0)
d0

)
‖u‖2 − 2k(ut, u)− 2(p+ 1)E(0).

(3.11)

And from Theorem 3.1 we have u(t) ∈ V for 0 ≤ t <∞. By Lemma 2.4, we obtain
‖u‖ > r0. From d0 = p−1

2(p+1)r
2
0, we obtain

(p− 1)
(E(0)
d0

)
‖u‖2 ≥ (p− 1)

(E(0)
d0

)
r2
0 = 2(p+ 1)E(0). (3.12)

We can derive

φ̈(t) ≥ (4 + ε)‖ut‖2 + (p− 1− ε)
(
‖(−∆)−1/2ut‖2 + ‖∇ut‖2

)
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+ (p− 1− ε)‖ut‖2 +
(

(p− 1)
(

1− E(0)
d0

)
− ε
)
‖u‖2 + ε‖u‖2

+ (p− 1)
(E(0)
d0

)
‖u‖2 − 2k(ut, u)− 2(p+ 1)E(0).

On the other hand,

2k|(ut, u)| ≤ (p− 1− ε)‖ut‖2 +
k2

(p− 1− ε)
‖u‖2

≤ (p− 1− ε)‖ut‖2 +
(

(p− 1)
(

1− E(0)
d0

)
− ε
)
‖u‖2.

Hence we have

φ̈(t) ≥ (4 + ε)‖ut‖2H + ε‖u‖2 > (4 + ε)‖ut‖2H + εr2
0. (3.13)

From (3.8), (3.10) and (3.13), it follows that there exists a δ0 such that for all
above cases there holds

φ̈(t) ≥ (4 + ε)‖ut‖2H + δ0. (3.14)
Hence

φ(t)φ̈(t)− ε+ 4
4
(
φ̇(t)

)2 ≥ δ0‖ut‖2H ≥ 0, (3.15)

and (
φ−α(t)

)′′ =
−α

φ(t)α+2

(
φ(t)φ̈(t)− (α+ 1)

(
φ̇(t)

)2) ≤ 0, (3.16)

α =
ε

4
, 0 < t <∞.

On the other hand, from (3.14) we obtain

φ̇(t) ≥ δ0t+ φ̇(0), 0 < t <∞.

Hence there exists a t0 ≥ 0 such that φ̇(t) > φ̇(t0) > 0 for t > t0 and

φ(t) > φ̇(t0)(t− t0) + φ(t0) ≥ φ̇(t0)(t− t0), t0 < t <∞.

Therefore there exits a t1 > 0 such that φ(t1) > 0 and φ̇(t1) > 0. From this and
(3.16) it follows that there exists a T1 > 0 such that

lim
t→T1

φ−α(t) = 0,

and
lim
t→T1

φ(t) = +∞, (3.17)

which contradicts T = +∞. So we prove the nonexistence of global weak solutions.
�

4. Remarks

In this section, we give some remarks on the main results of this paper. First
Theorem 3.3 can be written as follows

Theorem 4.1. Let f(u), u0 and u1 be same as those in Theorem 3.2 and 3.3.
Assume that E(0) < d0, where d0 is defined in Lemma 2.5, i.e.

d0 =
p− 1

2(p+ 1)

( 1
aCp+1
∗

) 2
p−1

.
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Then when ‖u0‖ < r0 problem (1.1), (1.2) admits a global weak solution; and when
‖u0‖ ≥ r0, and k satisfies

0 < k < p− 1, if E(0) ≤ 0;

0 < k < (p− 1)

√
1− E(0)

d0
, if 0 < E(0) < d0.

(4.1)

Then problem (1.1), (1.2) does not admit any global weak solution, where r0 is
defined in Lemma 2.4; i.e.,

r0 =
( 1
aCp+1
∗

) 1
p−1

, C∗ = sup
u∈H1,u6=0

‖u‖p+1

‖u‖
.

Proof. We will complete this proof by considering case ‖u0‖ < r0 and case ‖u0‖ ≥ r0

separately.
(i) Since ‖u0‖ < r0 implies 0 < ‖u0‖ < r0 or ‖u0‖ = 0. If 0 < ‖u0‖ < r0, from

Lemma 2.4 we can derive I(u0) > 0. Hence the weak solution exists globally.
(ii) If ‖u0‖ ≥ r0, then from

1
2
‖u1‖2H + k

∫ t

0

‖u1‖2dτ +
p− 1

2(p+ 1)
‖u0‖2 +

1
p+ 1

I(u0)

≤ E(0) < d0 =
p− 1

2(p+ 1)

( 1
aCp+1
∗

) 2
p−1

=
p− 1

2(p+ 1)
r2
0,

we obtain I(u0) < 0. Then Theorem 3.3 gives that there is no global weak solution
for problem (1.1), (1.2). �

So the results of Theorem 4.1 show that the space H = {u ∈ H1 | (−∆)−1/2u ∈
L2} is divided into two subspaces: ‖u‖ < r0 and ‖u‖ > r0 by the surface ‖u‖ = r0.
Furthermore, we have all weak solutions u(t) of problem (1.1), (1.2) with E(0) < d0

belong to Br0 = {u ∈ H | ‖u‖ < r0}, and problem (1.1), (1.2) does not admit any
global weak solutions if u0 ∈ B̄cr0 = {u ∈ H | ‖u‖ ≥ r0} and k satisfies (4.1).

In the case E(0) ≤ 0, which is a special case of the energy restriction E(0) < d.
We have the following result.

Theorem 4.2. Let f(u) satisfy (A1) and u0, u1 ∈ H. Assume that E(0) < 0 or
E(0) = 0, ‖u0‖ 6= 0. Then all weak solutions of problem (1.1)-(1.2) belong to V .

Proof. Let u(t) be any weak solution of problem (1.1)-(1.2) with E(0) < 0 or
E(0) = 0, ‖u0‖ 6= 0, T be the maximal existence time of u(t). From

1
2
‖u1‖2H + k

∫ t

0

‖u1‖2dτ +
p− 1

2(p+ 1)
‖u0‖2 +

1
p+ 1

I(u0) ≤ E(0),

we see that if E(0) < 0 or E(0) = 0 with ‖u0‖ 6= 0, then I(u0) < 0. Hence from
Theorem 3.1 we obtain u(t) ∈ V for 0 ≤ t < T . �

Furthermore from Theorem 3.3 and Theorem 4.2 we can conclude the following
corollary.

Corollary 4.3. Let f(u) satisfy (A1) and u0, u1 ∈ H. Assume that E(0) < 0 or
E(0) = 0, ‖u0‖ 6= 0 and k satisfies

0 < k < p− 1, if E(0) ≤ 0;
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0 < k < (p− 1)

√
1− E(0)

d0
, if 0 < E(0) < d0.

Then problem (1.1), (1.2) does not admit any global weak solution.

Corollary 4.4. Under the conditions of Theorem 3.3, for the global weak solution
of problem (1.1)-(1.2) given in Theorem 3.3 we further have

u(t) ∈ L∞(0, T ;H), ∀T > 0.

Proof. From

(−∆)−1/2u =
∫ t

0

(−∆)−1/2uτdτ + (−∆)−1/2u0, 0 ≤ t <∞,

we obtain

‖(−∆)−1/2u‖ ≤
∫ t

0

‖(−∆)−1/2uτ‖dτ + ‖(−∆)−1/2u0‖

≤ T max
0≤t≤T

(
‖(−∆)−1/2ut‖

)
+ ‖(−∆)−1/2u0‖, 0 ≤ t ≤ T,

which gives

(−∆)−1/2u ∈ L∞(0, T ;L2), ∀T > 0,

u(t) ∈ L∞(0, T ;H), ∀T > 0.

�

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (11471087, 41306086).

References

[1] Boussinesq, J.; Theorie des ondes et de remous qui se propagent le long d’un canal rectangu-

laire horizontal, en communiquant au liquide contene dans ce canal des vitesses sensiblement
pareilles de la surface au foud. J. Math Pures Appl., 1872, 217: 55-108.

[2] Liu, Y. C.; Xu, R. Z.; Global existence and blow up of solutions for Cauchy problem of

generalized Boussinesq equation. Phys. D, 2008, 237(6): 721-731.
[3] Makhankov, V. G.; Dynamics of classical solitons (in nonintegrable systems). Phys. Rep.,

1978, 35(1): 1-128.
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