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HOPF MAXIMUM PRINCIPLE REVISITED

JOSÉ C. SABINA DE LIS

Abstract. A weak version of Hopf maximum principle for elliptic equations in

divergence form
PN

i,j=1 ∂i(aij(x)∂ju) = 0 with Hölder continuous coefficients

aij was shown in [3], in the two-dimensional case. It was also pointed out that
this result could be extended to any dimension. The objective of the present

note is to provide a complete proof of this fact, and to cover operators more

general than the one studied in [3].

1. Introduction

It is well-known that the Hopf maximum principle (see [5, Lemma 3.4], [10,
Theorem II.7] or [11, Theorem 2.8.4] for a classical statement) does not hold for
linear elliptic equations in divergence form. More precisely, a function u ∈ C1(Ω),
with Ω ⊂ RN a smooth domain, is assumed to solve in weak sense the elliptic
equation

N∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0 (1.1)

in Ω, while u(x) > u(x0) in an inner tangent ball B ⊂ Ω, x0 ∈ ∂Ω ∩ B being the
tangency point. Then, a maximum Hopf principle (a “boundary point lemma”)
holds at x0 if the strict inequality

∂u

∂n
< 0 (1.2)

is satisfied at x0, n standing for the outward unit normal at that point.
A counterexample to this assertion, even when coefficients aij in (1.1) are con-

tinuous in Ω was given in [5, Problem 3.9] (see also [11, Section 2.7]; and a further
example in [9] for the case in which coefficients in (1.1) satisfy aij ∈ L∞(Ω)). More-
over, as pointed out in [9], a simpler example than the one in [5] can be obtained
as follows. Function u = < z

ln z , z = x + iy, is harmonic and negative in the plane
domain Ω enclosed by the C1 curve r = ϕ(θ) with ϕ(θ) = exp (−θ tan θ) if |θ| < π

2 ,
ϕ(±π/2) = 0 ([5], Chapter 3). Outward unit normal at (0, 0) ∈ ∂Ω is n = (−1, 0)
while

u(0, 0) = 0, ux(0, 0) = 0.
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Thus (1.2) fails. Since Ω is not a C2 domain at (0, 0) then, after a C1 rectification
of ∂Ω near (0, 0) one finds that u solves an equation (1.1) with respect to new
variables (x′, y′) in B ∩ {y′ > 0}, with coefficients aij ∈ C(B ∩ {y′ ≥ 0}), being B
a small ball centered at (0, 0). This furnishes us the desired counterexample.

Nevertheless, Hopf maximum principle, when regarded in this weak form, seems
to be either not correctly stated (see e. g. [1, Proposition 1.16] where some kind
of differentiability assumption on the coefficients seems to be missing) or not prop-
erly employed in comparison arguments (proof of [6, Proposition 2.2], Remark 2.1
bellow).

The difficulty in showing a Hopf maximum principle for (1.2) lies, of course, on
the lack of differentiability of coefficients aij . Indeed, a proof in the line of the
standard one works provided that the aij belong to C0,1(Ω). That is why it still
seems an outstanding result the fact that Hopf principle holds when the aij are
merely Hölder continuous. This was shown in [3, Lemma 7] for (1.1) in the case
N = 2 (a later improved two-dimensional statement appeared in [4]). Moreover, it
is asserted in [3, Remark 2 p. 35] that: “The proof of Lemma 7 can be extended
to n dimensions for equations of the form (1.1)”. Accordingly, the goal of this note
is to furnish to the interested reader a detailed proof of such extended version. In
addition, the operators we are addressing in the present article are slightly more
general than the one announced in [3], meanwhile some of the auxiliary results
obtained here seem interesting in its own right (see estimate (3.8) in Lemma 3.4
bellow).

To simplify notation we are using, whenever possible, either ∂i or ∂ij instead
of ∂

∂xi
or ∂2

∂xi∂xj
, respectively, wherein reference variable x could be replaced by

another one, say y depending on the context.
Our main result is stated as follows.

Theorem 1.1. Let Ω ⊂ RN be a smooth bounded domain, aij ∈ Cα(Ω) with
aij(x) = aji(x), 1 ≤ i, j ≤ N , x ∈ Ω, and

N∑
i,j=1

aij(x)ξiξj > 0, (1.3)

for all x ∈ Ω and ξ ∈ RN \ {0}. Assume that u ∈ C1(Ω) solves, in the weak sense,

−
N∑

i,j=1

∂i(aij(x)∂ju) +
N∑
i=1

bi(x)∂iu+ c(x)u ≥ 0, (1.4)

in Ω, where bi ∈ L∞(Ω) for 1 ≤ i ≤ N , c ∈ L∞(Ω) and c(x) ≥ 0 a. e. in Ω.
Suppose that for x0 ∈ ∂Ω there exists a ball B ⊂ Ω with x0 ∈ ∂B where u = u(x)

satisfies:
u(x) > u(x0) x ∈ B.

If u(x0) ≤ 0 then
∂u

∂ν
(x0) < 0, (1.5)

where ν is any outward direction, i. e. any unitary vector ν ∈ RN so that 〈ν, n〉 > 0,
n being the outward unitary normal at x0.

Remark 1.2. (a) Ball B in the statement is indeed an “inner ball” tangent to
∂Ω at x0 ∈ ∂Ω.
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(b) No restriction on the sign of c is required in the case where u(x0) = 0.
Alternatively, the sign of u(x0) can be arbitrary provided that c(x) = 0 for
all x ∈ Ω.

2. Proof of Theorem 1.1

Define the operator,

Lu = −
N∑

i,j=1

∂i(aij(x)∂ju),

which is understood to act in weak sense on functions in C1(Ω). Let u be as in the
statement of Theorem 1.1 and set u0 = u(x0). Then

L(u− u0) +
N∑
i=1

bi∂i(u− u0) + c(u− u0) ≥ −cu0 ≥ 0.

By performing a suitable linear transformation of the variable x it can be assumed
that aij(x0) = δij (δij = 1 if i = j, δij = 0 otherwise). After a translation and a
rotation it can be also assumed that x0 = 0 meanwhile the outward unit normal
n at x = 0 is −eN . It should be remarked that after this set of variable changes,
outward derivatives of u at x0 are transformed into outward derivatives of u at 0,
with respect to the new variables.

Consider the “unitary” annulus D = {x ∈ RN : 1/2 < |x| < 1} and for ρ > 0 set
Dρ = ρD = {ρx : x ∈ D}. By a suitable choice of ρ0 > 0 it follows that the domain

Ωρ = ρeN +Dρ = {x : ρ/2 < |x− ρeN | < ρ},
lies in Ω for all 0 < ρ < ρ0.

Following [3] we introduce the auxiliary function v ∈ C1,α(Ωρ) defined as the
weak solution to the problem

Lv +
N∑
i=1

bi∂iv + cv = 0 x ∈ Ωρ

v = 1 x ∈ ∂Ω−ρ
v = 0 x ∈ ∂Ω+

ρ ,

(2.1)

where ∂Ω−ρ = {x : |x− ρeN | = ρ/2} and ∂Ω+
ρ = {x : |x− ρeN | = ρ}. Existence and

uniqueness of a positive solution to (2.1) is provided in Lemma 3.1 below.
It is clear that a small ε > 0 can be found so that

u− u0 − εv ≥ 0,

on ∂Ωρ meanwhile

L(u− u0 − εv) + c(u− u0 − εv) ≥ 0,

in the weak sense in Ωρ. The weak maximum principle [5] then implies that u ≥
u0 + εv, in Ωρ. In particular,

∂u

∂ν
(0) ≤ ε∂v

∂ν
(0), (2.2)

for any outward direction ν to Ωρ at x = 0. It follows from Lemma 3.4 below that

∂v

∂ν
(0)→ −∞ (2.3)
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as ρ → 0+. An even more precise account on the asymptotic behavior of such
derivative as ρ → 0+ is given in Lemma 3.4. It is clear that (2.2) and (2.3) imply
the desired conclusion (1.5).

Remark 2.1. The following strong comparison principle is stated in [6, Proposition
2.2]. Functions u, v ∈ C1(Ω), u = v = 0 on ∂Ω, solve −∆pu = f and −∆pv = g in
a smooth bounded domain Ω ⊂ RN . It is assumed that f, g ∈ L∞(Ω), 0 ≤ f ≤ g
while the set {x ∈ Ω : f(x) = g(x) a. e.} has an empty interior. Then v(x) > u(x)
for all x ∈ Ω together with

∂v

∂n
<
∂u

∂n
, (2.4)

at every point in ∂Ω.
As for its proof, by the contradiction argument employed in [6] it follows that

v > u in Ω. This is achieved by using weak comparison [12] and the strong maximum
principle [13], the latter implying that ∂v

∂n < 0 on ∂Ω. Authors in [6] then obtain
(2.4) from the strict inequality between u and v in Ω.

However, we think that to attain (2.4) a more work is required and propose the
following argument. Fix x0 ∈ ∂Ω and assume that contrary to (2.4) the equality

∂v

∂n
(x0) =

∂u

∂n
(x0) (2.5)

holds. Then there exists a small ball B, centered at x0, such that

min{|∇u(x)|, |∇v(x)|} ≥ k > 0

in U := B ∩ Ω. Thus, the difference w = v − u solves in U an elliptic equation of
the form (1.1) with the uniform elliptic matrix

A(x) =
∫ 1

0

|∇wt|p−2
(
I + (p− 2)

∇wt
|∇wt|

⊗ ∇wt
|∇wt|

)
dt, (2.6)

where wt = (1− t)u+ tv, I is the identity matrix and for ξ ∈ RN , (ξ ⊗ ξ)ij = ξiξj ,
1 ≤ i, j ≤ N . Since ∂v

∂n (x0) 6= 0 this implies, by reducing B if necessary, that
0 /∈ [∇u(x),∇v(x)] for all x ∈ U . Equivalently, that |∇wt(x)| > 0 for all x ∈ U ,
t ∈ [0, 1]. Taking into account that u, v ∈ C1,α(Ω) for some 0 < α < 1 [8] then the
coefficients aij of matrix A in (2.6) belong to Cα(U). In this respect it should be
remarked that ∇u(x) 6= 0 and ∇v(x) 6= 0 in U are not enough to ensure us that
aij ∈ Cα(U). Finally, Theorem 1.1 can now be used to conclude that (2.5) is not
possible. Hence, (2.4) holds at x0.

3. Auxiliary results

Lemma 3.1. Problem (2.1) admits a unique positive solution v ∈ C1,α(Ωρ).

Proof. Existence of a unique weak solution v ∈ H1(Ωρ) to (2.1) is standard [5,
Theorem 8.3], being the uniqueness consequence of the weak maximum principle.
Just this result implies that 0 ≤ v ≤ 1 a. e. in Ω. Since v ∈ L∞(Ω), classical results
in [7] imply that v ∈ Cβ(Ωρ) for some 0 < β < 1. Furthermore, strong maximum
principle [5, Theorem 8.19] ensures us that v(x) > 0 for all x ∈ Ωρ. Also the results
in [5, Section 8.11] permit us concluding that v ∈ C1,α(Ωρ). �
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Remark 3.2. When bi ≡ 0, 1 ≤ i ≤ N , in (2.1) existence of a weak solution can
be directly obtained by a variational argument. In fact, the functional

J(u) =
1
2

∫
Ωρ

{ N∑
i,j=1

aij∂iu∂ju+ cu2
}
,

is coercive in M = {u ∈ H1(Ωρ) : u = ϕ on ∂Ωρ}, where ϕ is the characteristic
function of ∂Ω−ρ in ∂Ωρ. It therefore admits a global minimizer u ∈ H1(Ωρ) in M.
Moreover, such minimizer is unique due to the convexity of J (c ≥ 0).

Consider now the elliptic operator

Lu = −
N∑

i,j=1

āij∂iju,

where the coefficients āij are constant and the matrix Ā = (āij) is symmetric and
positive definite with eigenvalues

0 < λ̄1 ≤ · · · ≤ λ̄N .

Let D be the unitary annulus introduced above and Dρ the corresponding annulus
with exterior radius ρ. Set Gρ(x, y) the Green function associated to L, under
homogeneous Dirichlet conditions in Dρ (see [2]). Namely, the unique function
Gρ ∈ C2(Dρ × Dρ \ ∆), ∆ = {(x, x) : x ∈ Dρ}, such that the classical solution
u ∈ C2(Dρ) ∩ C(Dρ) to the problem

Lu = f x ∈ Dρ

u = 0 x ∈ ∂Dρ,
(3.1)

with f ∈ C(Dρ) ∩ L1(Dρ), provided that it exists, can be represented in the form

u(x) =
∫
Dρ

Gρ(x, y)f(y) dy. (3.2)

The next result provides us with the key estimates on the derivatives of Gρ.

Lemma 3.3. There exist positive constants C1, C2 such that

|∂xiGρ(x, y)| ≤ C1

|x− y|N−1
1 ≤ i ≤ N, (3.3)

|∂xi∂yjGρ(x, y)| ≤ C2

|x− y|N
1 ≤ i, j ≤ N, (3.4)

for all x, y ∈ Dρ, x 6= y. Moreover, constants C1 and C2 can be estimated as
follows:

C1 ≤ K1

( λ̄N
λ̄1

)N−1
2 1
λ̄1
, C2 ≤ K2

( λ̄N
λ̄1

)N
2 1
λ̄1
, (3.5)

where the positive constants K1 and K2 do not depend on ρ.

Proof. There exists a linear isomorphism y = Tx which maps Dρ into the ellipsoidal
cavity Dρ = {ρy : y ∈ D} with

D = {y ∈ RN :
1
4
<

N∑
i=1

y2
i

a2
i

< 1},
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and where the reference semiaxis ai are given by

ai =
1√
λ̄i

i = 1, . . . , N.

Moreover, T transforms problem (3.1) into

−∆v = g y ∈ Dρ
v = 0 y ∈ ∂Dρ,

(3.6)

where v(y) = u(T−1y), g(y) = f(T−1y). Let G̃ρ = G̃ρ(y, η) be the Green func-
tion associated to −∆ under homogeneous Dirichlet conditions in Dρ. A direct
computation shows that

Gρ(x, ξ) = {detT} G̃ρ(Tx, Tξ),

for all x, ξ ∈ Dρ, x 6= ξ, where detT = a1 · · · aN . A further scaling argument
permits us writing

G̃ρ(y, η) = ρ2−NG
(y
ρ
,
η

ρ

)
, y, η ∈ Dρ, y 6= η,

G = G(z, ζ) being the Green function for −∆, constrained with homogeneous
Dirichlet conditions in D. Therefore,

Gρ(x, ξ) = ρ2−N{detT}G
(Tx
ρ
,
Tξ

ρ

)
x, ξ ∈ Dρ x 6= ξ.

Now, the estimates in [14] allow us assert the existence of a positive constant M
such that

|∂xiG(x, y)| ≤ M

|x− y|N−1
1 ≤ i ≤ N,

|∂xi∂yjG(x, y)| ≤ M

|x− y|N
1 ≤ i, j ≤ N,

(3.7)

for all x, y ∈ D, x 6= y. Next we observe that isomorphism T can be chosen of the
form

T = diag(a1, . . . , aN ) L,
where L is an orthogonal transformation. Thus,

∂xiGρ(x, y) = ρ1−N
N∑
k=1

∂zkG
(Tx
ρ
,
Ty

ρ

)
∂xi((Tx)k),

where (Tx)k = ak
∑
Lxsxs. Then, the estimate

N∑
k=1

|∂xi((Tx)k)| ≤
√
Na1

follows easily. In addition,

|Tx| = |diag(a1, . . . , aN )Lx| ≥ a1|x|,

for all x ∈ RN . By (3.7) with the last estimates, the first inequality in (3.5) is
obtained with the choice

K1 = M
√
N.

By proceeding in the same way, the second inequality in (3.5) holds for K2 =
MN . �
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Lemma 3.4. Let v ∈ C1,α(Ωρ) be the positive solution of the problem (2.1). Then,

∂v

∂ν
(0) ∼ C∗N

ρ
〈ν, eN 〉 as ρ→ 0+, (3.8)

where ν ∈ RN is any unitary vector and

C∗N =
N − 2

2N−2 − 1
.

Remark 3.5. Observe that exterior directions ν to Ωρ at x = 0 are characterized
by 〈ν, eN 〉 < 0.

Proof of Lemma 3.4. To prove (3.8) we follow the argument in [3] and introduce
u = ψ, the solution of the problem

∆u = 0 x ∈ Ωρ
u = 1 x ∈ ∂Ω−ρ
u = 0 x ∈ ∂Ω+

ρ ,

whose explicit form is

ψ(x) =
( 1
|x− ρeN |N−2

− 1
ρN−2

) ρN−2

2N−1 − 1
.

We fix now x̄ ∈ Ωρ and define the constant coefficients operator

Lx̄u := −
N∑

i,j=1

āij∂iju,

with āij = aij(x̄). By noticing that w(x) := v(x)− ψ(x) vanishes at the boundary
∂Ωρ of Ωρ, w can be represented as

w(x) =
∫

Ωρ

Gρ(x, y)Lx̄w(y) dy, (3.9)

where Gρ stands for the Green function of the operator Lx̄ in Ωρ, subject to ho-
mogeneous Dirichlet conditions on ∂Ωρ (see Lemma 3.3). We are employing (3.9)
to analyze ∇w near zero when ρ becomes small.

Observe that,

w(x) =
∫

Ωρ

Gρ(x, y)(Lx̄v(y)− Lv(y)) dy

−
∫

Ωρ

Gρ(x, y)(Lx̄ψ(y)− L0ψ(y)) dy

−
∫

Ωρ

Gρ(x, y)(b(y)∇v(y) + c(y)v(y)) dy

=: w1(x) + w2(x) + w3(x),

x ∈ Ωρ, with b = (bi) and where L0 is the constant coefficients operator resulting
from fixing x = 0 in the functions aij(x). Notice that L0 = −∆ and so L0ψ = 0.

On the other hand,

w1(x) =
N∑

i,j=1

∫
Ωρ

∂yiGρ(x, y)(aij(y)− aij(x̄))∂jv(y) dy.
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Hence,

∂xsw1(x̄) =
N∑

i,j=1

∫
Ωρ

∂xs∂yiGρ(x̄, y)(aij(y)− aij(x̄))∂jv(y) dy. (3.10)

By estimate (3.4) in Lemma 3.3,

|∂xsw1(x̄)| ≤
N∑

i,j=1

C2[aij ]α‖∇v‖∞,Ωρ
∫

Ωρ

1
|y − x̄|N−α

dy,

where

[aij ]α = sup
x,y∈Ω,x 6=y

|aij(x)− aij(y)|
|x− y|α

.

After estimating the integral, (3.10) implies that

|∇w1(x̄)| ≤ C‖∇v‖∞,Ωρρα x̄ ∈ Ωρ, (3.11)

for a certain positive constant C which does not depend on ρ. Label C will be
employed in the sequel to designate positive constants which no depend on ρ, and
whose precise value is irrelevant for the discourse.

As for the gradient of w2,

∂xsw2(x̄) =
N∑

i,j=1

∫
Ωρ

∂xsGρ(x̄, y)(aij(0)− aij(x̄))∂ijψ(y) dy.

Since |∂ijψ(y)| ≤ Cρ−2, using estimate (3.3) we find that

|∂xsw2(x̄)| ≤
N∑

i,j=1

C[aij ]αρα−2

∫
Ωρ

1
|y − x̄|N−1

dy.

By estimating the integral in terms of ρ we obtain

|∂xsw2(x̄)| ≤ Cρα−1 x̄ ∈ Ωρ. (3.12)

On the other hand, taking into account that v(0) = 0, we conclude that

|∂xsw3(x̄)| ≤ C1‖c‖∞,Ω‖∇v‖∞,Ωρ
∫

Ωρ

1
|y − x̄|N−1

dy,

and so,
|∂xsw3(x̄)| ≤ C‖∇v‖∞,Ωρρ2 x̄ ∈ Ωρ. (3.13)

From (3.11), (3.12) and (3.13) the estimate

‖∇w‖∞,Ωρ ≤ C‖∇v‖∞,Ωρρα + Cρα−1 (3.14)

holds.
Now, ‖∇v‖∞,Ωρ can be estimated in terms of ρ. In fact,

|∇v(x)| ≤ |∇w(x)|+ |∇ψ(x)| ≤ ‖∇w‖∞,Ωρ + Cρ−1 x ∈ Ωρ.

Hence,
‖∇v‖∞,Ωρ ≤ Cρ−1,

which, together with (3.14), imply that

‖∇w‖∞,Ωρ ≤ Cρα−1. (3.15)
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Finally, ∣∣∂v
∂ν

(0)− ∂ψ

∂ν
(0)
∣∣ =

∣∣∂v
∂ν

(0)− C∗N
ρ
〈ν, eN 〉

∣∣ ≤ ‖∇w‖∞,Ωρ ≤ Cρα−1.

Thus,
C∗N
ρ

(
〈ν, eN 〉 −

C

C∗N
ρα
)
≤ ∂νv(0) ≤ C∗N

ρ

(
〈ν, eN 〉+

C

C∗N
ρα
)
,

for ρ small. Asymptotic estimate (3.8) immediately follows from these inequalities.
�
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