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QUASI-PERIODIC SOLUTIONS OF NONLINEAR BEAM
EQUATIONS WITH QUINTIC QUASI-PERIODIC

NONLINEARITIES

QIUJU TUO, JIANGUO SI

Abstract. In this article, we consider the one-dimensional nonlinear beam
equations with quasi-periodic quintic nonlinearities

utt + uxxxx + (B + εφ(t))u5 = 0

under periodic boundary conditions, where B is a positive constant, ε is a

small positive parameter, φ(t) is a real analytic quasi-periodic function in

t with frequency vector ω = (ω1, ω2, . . . , ωm). It is proved that the above
equation admits many quasi-periodic solutions by KAM theory and partial

Birkhoff normal form.

1. Introduction and statement of main results

Recently, there has been a lot of publications concerning the dynamic behavior
for nonlinear beam equations by using different methods, see for instance, [1, 3, 8,
9, 11, 20, 27]. In these works, little is considered about quasi-periodic solutions of
this kind of equations. Significant results have been obtained with respect to quasi-
periodic solutions of autonomous beam equations by KAM theory, see [13, 14, 15].
In particular, Liang and Geng [21] considered the existence of the quasi-periodic
solutions of completely resonant beam equations

utt + uxxxx +Bu3 = 0 (1.1)

with hinged boundary conditions with B = 1.
The works mentioned above do not non-autonomous include the case. More

recently, Wang [26] obtained the existence of quasi-periodic solutions for the non-
autonomous beam equation

utt + uxxxx + µu+ εg(ωt, x)u3 = 0 (1.2)

under hinged boundary conditions

u(t, 0) = uxx(t, 0) = u(t, π) = uxx(t, π) = 0.
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In this paper, we consider the existence of quasi-periodic solutions for nonlinear
beam equations with quintic quasi-periodic nonlinearities

utt + uxxxx + (B + εφ(t))u5 = 0, (1.3)

subject to periodic boundary conditions

u(t, x) = u(t, x+ 2π), (1.4)

where B is a positive constant, ε is a small positive parameter, φ(t) is a real analytic
quasi-periodic function in t with frequency vector ω = (ω1, ω2 . . . , ωm). Equation
(1.3) can be regarded as a quasi-periodic perturbation (with perturbation term
εφ(t)u5) of the completely resonant nonlinear beam equation

utt + uxxxx +Bu5 = 0.

Firstly, we consider the existence quasi-periodic solutions of an ordinary differ-
ential equation with respect to the unknown function x(t),

ẍ+ (B + εφ(t))x5 = 0. (1.5)

Secondly, we obtain the nonlinear beam equation

vtt + vxxxx + V1(ω̃(ξ̄)t, ξ̄, ε)v +
4∑
k=1

εkVk+1(ω̃(ξ̄)t, ξ̄, ε)vk+1 = 0 (1.6)

by letting u = u0(t)+εv(x, t) in (1.3), here u0(t) is a nonzero quasi-periodic solution
of (1.5) and Vk (k = 1, 2, . . . , 4) defined as in Section 3.

Thirdly, we construct the invariant tori or quasi-periodic solutions of (1.6) with
(1.4) by means of KAM theory. Finally, we prove that (1.3) with (1.4) have many
quasi-periodic solutions in the neighborhood of the quasi-periodic solutions to (1.5).

As in our previous works [25, 28, 30], the method used in this paper is based
on the infinite-dimensional KAM theory as developed by Kuksin [18] and Pöchel
[23]. Thus the main step is to reduce the equation to a setting where KAM theory
for PDE can be applied. We note that (1.6) is a nonlinear beam equation with
quasi-periodic potential and quasi-periodic nonlinearities, which needs to reduce
the linearized system of (1.6) to constant coefficients by a linear quasi-periodic
change of variables with the same basic frequencies as the initial system. However,
we cannot guarantee in general such reducibility. The strategy of the proof in this
paper is similar to the one in [25]. However, the details are quite different.

Now the reducibility problems of infinite-dimensional linear quasi-periodic sys-
tems, by KAM techniques, has become an active field of research. The first result
was obtained by Bambusi and Graffi [2], after that, Eliasson and Kuksin [10], Yuan
[29], Liu and Yuan [22], and Grébert and Thomann [16]. However, in general, the
reducibility of infinite-dimensional linear quasi-periodic systems remains open and
is very attracting.

For our purpose, we first introduce a hypothesis.

(H1) B > 0, φ(t) is a real analytic quasi-periodic function in t with frequency
vector ω = (ω1, ω2, . . . , ωm), where ω ∈ DΛ,

DΛ := {ω ∈ Rm : |〈k, ω〉| ≥ Λ|k|−(m+1), 0 6= k ∈ Zm}

with Λ > 0.



EJDE-2015/11 QUASI-PERIODIC SOLUTIONS 3

For γ > 0 we define the set

Aγ = {α ∈ R : |〈k, ω〉+ lα| > γ(|k|+ |l|)−(m+1), for all 0 6= (k, l) ∈ Zm × Z}

with its complex neighborhood Aγ + h of radius h. The following theorem is the
main result of this article.

Theorem 1.1. Assume that (H1) is satisfied. For an arbitrary index set Nd =
{n1, n2, . . . , nd} ⊂ N, there is a small enough positive ε∗∗ such that for any 0 < ε <

ε∗∗, there are the sets J ⊂ Ĵ ⊂ [π/T, 3π/T ] and Σε ⊂ Σ := DΛ × Aγ × [0, 1]d+1

with meas Ĵ > 0,meas J > 0 and meas (Σ \ Σε) ≤ ε, such that for any ξ̄ ∈ J

and (ω, α(ξ̄), ξ̃0
⊕

(ξ̃j)j∈Nd) ∈ Σε, the nonlinear beam equation (1.3)-(1.4) possess
a solution of the form

u(t, x) = u0(t) + εu1(t, x) + o(ε),

u1(t, x) =
∑

j∈{0}∪Nd

√
2ξ̃j/π

4
√
j4 + ε[V̂ ]

cos
√
j4 + ε[V̂ ]t cos(jx),

with frequency vector ̂̂ω = (ω, α(ξ̄), (ω̂j){0}∪Nd) ∈ Rm+d+2,

and V̂ as defined in Section 3.
(i) ω is the frequency vector of φ , while α, ω̂j are constructed in the proof, and

are functions of ε and of parameters ξ̄, ξ̃ = (ξ̃0, (ξ̃j)j∈Nd) ∈ Rd+1. In particular,

ω̂j = µj(ε) + ε2a(ξ̄, ε), µj(ε) =
√
j4 + ε[V̂ ] +O(ε5.5), j ∈ {0} ∪ Nd,

where |aj(ξ̃, ε)| ≤ C;
(ii) u0(t) is a non-trivial solution of (1.5) depending on the parameters (ξ̄, ε),

it is of size O(ε1/4) and of quasi-periodic with frequency (ω, α), and u1(t, x) is a
solution of the linear equation

∂ttu1 + ∂xxxxu1 + ε[V̂ ]u1 = 0, (1.7)

and is quasi-periodic with frequencies
√
j4 + ε[V̂ ], j ∈ {0} ∪ Nd.

Remark 1.2. Using the method of this paper we cannot expect an existence result
for quasi-periodic solutions u(t, x) of (1.3) with the same frequency ω as the data
of the problem. Actually, the quasi-periodic solutions obtained in Theorem 1.1
bifurcate from quasi-periodic solutions of the nonlinear ODE (1.5), and the solutions
have more frequencies than the data of the problem. That is because we need to
add extra parameters while one considers the existence of quasi-periodic solutions
for ODE (1.5) and PDE (1.6) by means of KAM theory respectively. The addition
of the extra parameters will cause solutions with additional frequencies. Thus,
the main aim of the work is the construction of solutions with also additional
frequencies, and the solutions could be viewed as the interaction between u0(t),
which is the (ω, α)-quasi-periodic solutions of (1.5), and u1(t, x), which is a solution
of the linear equation (1.7), and is quasi-periodic with frequencies

(
j4 + ε[V̂ ]

)1/2.
The result is still new even if the equation seems to be quite studied and well-
understood.
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Remark 1.3. To avoid the double eigenvalues we restrict ourselves to choose an
even complete orthogonal basis φj(x) = 1√

π
cos(jx), j ≥ 0. The solutions u(t, x)

constructed in Theorem 1.1 are even in space variable x.

2. Quasi-periodic solutions of a nonlinear ODE

In 2000, Bibikov [5] developed a KAM theorem for nearly integrable Hamiltonian
systems with one degree of freedom under the quasi-periodic perturbation:

ṙ = −∂H(r, ϕ, ωt, a)
∂ϕ

,

ϕ̇ = a+
∂H(r, ϕ, ωt, a)

∂r

(2.1)

with a one-dimensional parameter a. In this section, we apply the results in [5]
(See also [17]) to show the existence of the quasi-periodic solutions for the following
nonlinear ordinary differential equation with quasi-periodic coefficient,

ẍ+ (B + εφ(t))x5 = 0. (2.2)

First we introduce the Bibikov’s lemma.

Lemma 2.1 ([5]). Suppose that H(r, ϕ, θ, a) is real analytic on

D = {(r, ϕ, ωt, a) : |r| < δ0, | Imϕ| < p0, | Im θ| < p0, a ∈ Aγ +
1
2
γδ0}

and satisfies
|H| < γpm+3

0 δ2
0 . (2.3)

Then
(i) There exists a δ∗0 such that if δ0 < δ∗0 , then there exists a function a0 :, Aγ → R

and a change of variables

r = ρ+ v(ρ, ψ, θ, α), ϕ = ψ + u(ψ, θ, α), α ∈ Aγ ,
that transforms system (2.1) with a = a0(α) into a system

ρ̇ = B(ρ, ψ, θ, α), ψ̇ = Ψ(ρ, ψ, θ, α)

that satisfies the condition

B(0, ψ, θ, α) =
∂B(0, ψ, θ, α)

∂ρ
= Ψ(0, ψ, θ, α) = 0.

(ii) meas(AKµ)→ µ, as K → 0+, where I ⊂ R is a unit interval, µ > 0, and

AKµ = {α ∈ µI : |〈k, ω〉+ lα| ≥ Kµ(|k|+ |l|)−(m+1), for all 0 6= (k, l) ∈ Zm × Z}.

Equation (2.2) is equivalent to the system

ẋ = −y, ẏ = Bx5 + εφ(t)x5. (2.4)

Using Bibikov’s theorem, we have the following lemma.

Lemma 2.2. For any ω ∈ DΛ, there exists an ε∗ such that for any positive 0 < ε <
ε∗ and sufficiently small γ > 0 there exist a real analytic function a0(α) : Aγ → R
and a set Ĵ ⊂ [π/T, 3π/T ] with meas Ĵ > 0, such that for α ∈ Aγ , ξ̄ ∈ Ĵ and
some σ > 0, Equation (2.2) has a quasi-periodic solution x(t, ξ̄, ε) ∈ Qσ(ω̃) with
ω̃(ξ̄) = (ω1, ω2, . . . , ωm, α(ξ̄)) satisfying x(t, ξ̄, ε) = O(ε

1
4 ).
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Remark 2.3. ω = (ω1, ω2 . . . , ωm) is the frequency of φ(t) and α(ξ̄) is obtained
from Lemma 2.2, then the frequency of solution for (2.2) is dimension m+ 1.

3. Hamiltonian formalism

From Lemma 2.2 we know that for every ε ∈ (0, ε∗) equation (2.2) has a non-
trivial quasi-periodic solution u0(t, ξ̄, ε) with frequency vector ω̃(ξ̄). Taking u =
u0(t, ξ̄, ε) + εv(t, x) in (1.3), we get the equation

vtt + vxxxx + V1(ω̃(ξ̄)t, ξ̄, ε)v +
4∑
k=1

εkVk+1(ω̃(ξ̄)t, ξ̄, ε)vk+1 = 0, (3.1)

where

V1(ω̃(ξ̄)t, ξ̄, ε) := 5
(
B + εφ̂(ωt)

)
ū4

0(ω̃(ξ̄)t, ξ̄, ε),

Vk+1(ω̃(ξ̄)t, ξ̄, ε) := Ck+1
5

(
B + εφ̂(ωt)

)
ū4−k

0 (ω̃(ξ̄)t, ξ̄, ε), k = 1, 2, 3, 4

are quasi-periodic in time t with frequency vector ω̃(ξ̄), and φ̂ and ū0 are the shell
functions of φ and u0 respectively. Let us write

V̂ (θ, ξ̄, ε)

= 5c
(
B + εφ̂(ωt)

)[
(ξ̄ +

√
εI)1/4C(ϕT )

]4 (3.2)

with θ = ω̃(ξ̄)t ∈ Tm+1, and
d

dξ̄
V̂ (θ, ξ̄, ε) = 5c

(
B + εφ̂(ωt)

)[
(1 +

√
ε
dI

dξ̄
)C4(ϕT )

+ (ξ +
√
εI)4C3(ϕT )C ′(ϕT )

dϕ

dξ̄

]
.

Therefore,

lim
ε→0

[V̂ (θ, ξ̄, ε)] =
1

(2π)m+1

∫
Tm+1

lim
ε→0

V̂ (θ, ξ̄, ε)dθ = 5cBξ̄C4(ϕ0T ),

lim
ε→0

d

dξ̄
[V̂ (θ, ξ̄, ε)] =

1
(2π)m+1

∫
Tm+1

lim
ε→0

d

dξ̄
V̂ (θ, ξ̄, ε)dθ = 5cBC4(ϕ0T ).

Thus, there exists 0 < ε1 < ε∗ such that for any ε ∈ (0, ε1),

[V̂ (θ, ξ̄, ε)] >
5
2
cBξ̄C4(ϕ0T ) := I1 > 0, (3.3)

∂

∂ξ̄
[V̂ (θ, ξ̄, ε)] >

5
2
cBC4(ϕ0T ) := I2 > 0. (3.4)

Let us write
V̂ (θ, ξ̄, ε) := [V̂ (θ, ξ̄, ε)] + Ṽ (θ, ξ̄, ε)

with [Ṽ (θ, ξ̄, ε)] = 0, and mε := ε[V̂ (θ, ξ̄, ε)] > 0. Then

V1(θ, ξ̄, ε) = εV̂ (θ, ξ̄, ε) = mε + εṼ (θ, ξ̄, ε).

Furthermore, we can show that

Ṽ (θ, ξ̄, ε) = O(ε) (3.5)

as ε� 1. In fact, from (3.2), we have

V̂ (θ, ξ̄, ε) = 5c
(
B + εφ̂(ωt)

)
(ξ +

√
εI)C4(ϕT ),
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[V̂ (θ, ξ̄, ε)] = 5c(B + ε[φ̂])(ξ̄ +
√
εI)C4(ϕT ).

Therefore,

Ṽ (θ, ξ̄, ε) = V̂ (θ, ξ̄, ε)− [V̂ (θ, ξ̄, ε)]

= 5cξ̄C4(ϕT )(ε(φ̂− [φ̂])) +O(ε3/2) = O(ε).

We can rewrite the equation (3.1) as follows

v̇ = w, ẇ +Av = −εṼ (ω̃(ξ̄)t, ξ̄, ε)v −
4∑
k=1

εkVk+1(ω̃(ξ̄)t, ξ̄, ε)vk+1, (3.6)

where A = d4/dx4 + mε, t ∈ R. As it is well known, the equation (3.6) can be
studied as an infinite dimensional Hamiltonian system by taking the phase space
to be the product of the Sobolev spaces H1

0 ([0, 2π]) × L2([0, 2π]) with coordinates
v and w = ∂tv. The Hamiltonian for (3.6) is then

H =
1
2
〈w,w〉+

1
2
〈Av, v〉+

1
2
εṼ (ω̃(ξ̄)t, ξ̄, ε)

∫ 2π

0

v2dx

+
4∑
k=1

εk
Vk+1(ω̃(ξ̄)t, ξ̄, ε)

k + 2

∫ 2π

0

vk+2dx,

(3.7)

where ∠·, ·〉 denotes the usual scalar product in L2([0, 2π]). We will find the solu-
tions v(t, x) of (3.6) which satisfy

v(t,−x) = v(t, x), (t, x) ∈ R× T.

It is easy to see that λj = j4 + mε (j = 0, 1, . . . ) and φj(x) = 1√
π

cos(jx)
(j = 1, 2, . . . ), φ0(x) = 1√

2π
are, respectively, the eigenvalues and eigenfunctions of

Sturm-Liouville problems

Ay = λy,

x ∈ T, y(−x) = y(x),
(3.8)

and the eigenfunctions φj(x)′s with j ≥ 0 form a complete orthogonal basis of the
subspace consisting of all even functions of L2(0, 2π).

We introduce coordinates q = (q0, q1, q2, . . . ), p = (p0, p1, p2, . . . ) through the
relations

v(t, x) =
∑
j≥0

qj(t)
4
√
λj
φj(x), ∂tv(t, x) =

∑
j≥0

4
√
λjpj(t)φj(x). (3.9)

The coordinates are taken from some real Hilbert space:

la,s = la,s(R) :=
{
q = (q0, q1, q2, . . . ), qi ∈ R, i ≥ 0 such that

‖q‖2a,s = |q0|2 +
∑
i≥1

|qi|2i2se2ai <∞
}
.

Next we assume that a ≥ 0 and s > 1/2. One rewrites the Hamiltonian (3.7) in
the coordinates (q, p),

H = Λ +G, (3.10)
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where

Λ =
1
2

∑
j≥0

√
λj(p2

j + q2
j ) + ε

Ṽ (ω̃(ξ̄)t, ξ̄, ε)
2
√
λj

q2
j ,

G =
4∑
k=1

εk
Vk+1(ω̃(ξ̄)t, ξ̄, ε)

k + 2

∫ 2π

0

(∑
j≥0

qj(t)
4
√
λj
φj(x)

)k+2

dx.

The equations of motion are

q̇j =
∂H

∂pj
=
√
λjpj , ṗj = −∂H

∂qj
= −

√
λjqj−ε

Ṽ (θ, ξ̄, ε)√
λj

qj−
∂G

∂qj
, j ≥ 0 (3.11)

with respect to the symplectic structure
∑
dqi ∧ dpi on la,s × la,s.

Lemma 3.1. Let I be an interval and let

t ∈ I → (q(t), p(t)) ≡ ({qj(t)}j≥0, {pj(t)}j≥0)

be a real analytic solution of (3.11) for a > 0. Then

v(t, x) =
∑
j≥0

qj(t)
4
√
λj
φj(x)

is a classical solution of (3.1) that is real analytic on I × [0, 2π].

One introduces a pair of action-angle variables (J, θ), where J ∈ Rm+1 is canon-
ically conjugate to θ = ω̃(ξ̄)t ∈ Tm+1. Then (3.6) can be written as a Hamiltonian
system

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
, j ≥ 0, θ̇ = ω̃(ξ̄), J̇ = −∂H

∂θ
(3.12)

with the Hamiltonian

H = 〈ω̃(ξ̄), J〉+
1
2

∑
j≥0

√
λj(p2

j + q2
j ) + ε

Ṽ (θ, ξ̄, ε)
2
√
λj

q2
j

+ εG3(q, θ, ξ̄, ε) + ε2G4(q, θ, ξ̄, ε) + ε3G5(q, θ, ξ̄, ε) + ε4G6(q, ϑ),

(3.13)

where ϑ = ωt,
G3(q, θ, ξ̄, ε) =

∑
i,j,d≥0

G3
i,j,d(θ, ξ̄, ε)qiqjqd (3.14)

with

G3
i,j,d(θ, ξ̄, ε) =

1
3
V2(θ, ξ̄, ε)
4
√
λiλjλd

∫
T
φi(x)φj(x)φd(x)dx. (3.15)

It is not difficult to verify that, from the definition of eigenfunctions,

G3
i,j,d(θ, ξ̄, ε) = 0, unless i± j ± d = 0 .

Expressions G4, G5 and G6 are similar. We introduce complex coordinate

zj =
1√
2

(qj − ipj), z̄j =
1√
2

(qj + ipj), j ≥ 0,

that live in the now complex Hilbert space:

la,s = la,s(C)

:=
{
z = (z0, z1, z2, . . . ), zj ∈ C, j ≥ 0such that
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‖z‖2a,s = |z0|2 +
∑
j≥1

|zj |2j2se2aj <∞
}
.

This transformation is symplectic with dq ∧ dp =
√
−1dz ∧ dz̄. Then (3.13) is

changed into

H = H̃ + εG3(z, θ, ξ̄, ε) + ε2G4(z, θ, ξ̄, ε) + ε3G5(z, θ, ξ̄, ε) + ε4G6(z, θ, ε), (3.16)

where

H̃ = 〈ω̃(ξ̄), J〉+
∑
j≥0

√
λjzj z̄j +

εṼ (θ, ξ̄, ε)
4
√
λj

(zj + z̄j)
2
, (3.17)

G3(z, θ, ξ̄, ε) = G3
0,0,0(θ, ξ̄, ε)

(z0 + z̄0√
2

)3
+ 3

∑
j,d 6=0

G3
0,j,d(θ, ξ̄, ε)

(zj + z̄j√
2

)(zd + z̄d√
2

)(z0 + z̄0√
2

)
+
∑

i,j,d 6=0

G3
i,j,d(θ, ξ̄, ε)

(zi + z̄i√
2

)(zj + z̄j√
2

)(zd + z̄d√
2

)
.

(3.18)

Expressions G4, G5, G6 are defined similarly to G3.

4. Reducibility of linear Hamiltonian system

In this section, we are concerned with the reducibility of linear quasi-periodic
Hamiltonian system (3.17). Our result shows that system (3.17) can be reduced to
constant coefficients for any fixed ω ∈ DΛ. Let us rewrite Hamiltonian (3.17) as

H̃ = H0 + εH1, (4.1)

where

H0 = 〈ω̃(ξ̄), J〉+
∑
j≥0

√
λjzj z̄j , H1 =

∑
j≥0

Ṽ (θ, ξ̄, ε)
4
√
λj

(zj + z̄j)2.

4.1. Reducibility theorem.

Theorem 4.1. Consider the Hamiltonian H̃ given by equation (4.1). Then there
is a 0 < ε∗∗ < ε∗, 0 < % < 1 and a set J ⊂ Ĵ with meas J ≥ meas Ĵ

(
1 − O(%)

)
such that for any 0 < ε < ε∗∗, ξ̄ ∈ J and α(ξ̄) ∈ Aγ there is a linear symplectic
transformation

Σ∞ : Da,s(σ/2, r/2)× J → Da,s(σ, r)
such that the following statements hold:

(i) There is some absolute constant C > 0 such that

|Σ∞ − id |∗
a,s+1,Da,s(σ/2,r/2)×J ≤ Cε,

where id is identity mapping.
(ii) The transformation Σ∞ changes Hamiltonian (4.1) into

H̃ ◦ Σ∞ = 〈ω̃(ξ̄), J〉+
∑
j≥0

µjzj z̄j ,

where

µj =
√
λj +

∞∑
k=1

εkλ̃j,k(ξ̄, ω̃(ξ̄), ε), (4.2)
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λ̃j,1(ξ̄, ω̃(ξ̄), ε) =
[Ṽ (θ, ξ̄, ε)]

2
√
λj

= 0,

λ̃j,k(ξ̄, ω̃(ξ̄), ε) = [ζj,k−1,1,1], |λ̃j,k(ξ̄, ω̃(ξ̄), ε)| ≤ C, k = 2, 3, . . . .

4.2. Regularity of the perturbation term. Let

G3
i,j,d = G3

|i|,|j|,|d|, G4
ijdl = G4

|i||j||d||l|, G
5
ijdlm = G5

|i||j||d||l||m|,

G6
ijdlmn = G6

|i||j||d||l||m||n|.

Noting that the transformation Σ∞ is linear, and from (i) of Theorem 4.1 we get
for j = 0, 1, 2, . . .

zj ◦ Σ∞ = zj + εf̃∗j,∞(θ; ξ̄, ε)zj + εf̃∗∞,j(θ; ξ̄, ε)z̄j ,

where
‖f̃∗j,∞(θ; ξ̄, ε)‖∗

Θ(σ/2)×J , ‖f̃∗∞,j(θ; ξ̄, ε)‖∗Θ(σ/2)×J ≤ C.

For convenience we introduce another coordinates (. . . , w−2, w−1, w0, w1, w2, . . . ) in
lsb by letting z0 = w0, z̄0 = w−0, zj = wj , z̄j = w−j where lsb consists of all bi-infinite
sequence with finite norm

‖w‖2a,s = |w0|2 + |w−0|2 +
∞∑
|j|≥1

|wj |2|j|2se2a|j|.

Hamiltonian (3.17) is changed into

Ĥ := H̃ ◦ Σ∞ = 〈ω̃(ξ̄), J〉+
∑
j≥0

µjwjw−j , (4.3)

(z0 + z̄0) ◦ Σ∞ = S11(θ, ξ̄, ε)w0 + S12(θ, ξ̄, ε)w−0,

where

S11(θ, ξ̄, ε) := 1 + εf̃1
0,∞(θ; ξ̄, ε), S12(θ, ξ̄, ε) := 1 + εf̃2

0,∞(θ; ξ̄, ε)

with
‖f̃1

0,∞(θ; ξ̄, ε)‖∗
Θ(σ/2)×J , ‖f̃2

0,∞(θ; ξ̄, ε)‖∗
Θ(σ/2)×J ≤ C.

This implies the Hamiltonian (3.16) is changed by the transformation Σ∞ into

H = Ĥ + εG̃3 + ε2G̃4 + ε3G̃5 + ε4G̃6. (4.4)

Next we consider the regularity of the gradient of G̃3, . . . , G̃6.

Lemma 4.2. For a ≥ 0 and s > 1/2, the space la,s is a Hilbert algebra with respect
to convolution of the sequences, (q ∗ p)j :=

∑
k qj−kpk, and

‖q ∗ p‖a,s ≤ C‖q‖a,s‖p‖a,s
with a constant C depending only on s.

The proof for the above lemma is similar to that of [23, Lemma A]. Using the
above lemma, we can prove the following Lemma.

Lemma 4.3. For a ≥ 0 and s > 1, the gradient G̃3
w, G̃

4
w, G̃

5
w and G̃6

w are real
analytic for real argument as a map from some neighborhood of origin in la,s into
la,s+1/2, with

‖G̃3
w‖a,s+1/2 ≤ C‖w‖2a,s, ‖G̃4

w‖a,s+1/2 ≤ C‖w‖3a,s, . . . , |G̃6
w‖a,s+1/2 ≤ C‖w‖5a,s
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uniformly for (θ, ξ̄) ∈ Θ(σ/2) × Ĵ , where C is a constant large enough as ε small
enough. The Hamiltonian G̃3 till G̃5 depend on the “time” θ = (θ1, . . . , θm, θm+1) =
(ω1t, . . . , ωmt, α(ξ̄)t).

5. The Birkhoff normal form

In this section, we transform the hamiltonian (4.4) into some partial Birkhoff
normal form of order six so that it appears, in a sufficiently small neighbourhood
of the origin, as a small perturbation of some nonlinear integrable system. To this
end we have to kill the perturbation G̃3, G̃4, G̃5 and the non-resonant part of the
perturbation G̃6 by Birkhoff normal form.

By X1
F3

denote the time-1 map of the vector field of the Hamiltonian εF3, Then
letting

G̃3 + {Ĥ, F3} = 0,

we have found a quasi-periodic function F3 such that G̃3 +{Ĥ, F3} = 0. Therefore,
we get the new Hamiltonian

H = Ĥ + ε2G4 + ε3G5 + ε4G6 + ε5R1, (5.1)

Repeating this process, we eliminate all terms in G4 and G5. Hamiltonian (5.1) are
changed into

H = Ĥ + ε4G6 + ε5R11 + ε6R22 + ε7R33 + ε8R44 + ε9R55 + ε10R66, (5.2)

and we can write

G6 =
∑

|α|+|β|+r+s=6

G6
rsαβw

r
0w

s
−0w

α
j w

β
−j . (5.3)

Let Ln = {(i, j, d, l,m, n) ∈ Z6 : 0 6= min(|i|, |j|, |d|, |l|, |m|, |n|) ≤ n}, and Nn ⊂ Ln
be the subset of all (i, j, d, l,m, n) ≡ (i,−i, j,−j, l,−l). That is, they are of the
form (i,−i, j,−j, l,−l) or some permutation of it.

We define the indices set ∆∗, ∗ = 0, 1, 2, 3. For each ∗ = 0, 1, 2,∆∗ is the set of
indices {i, j, d, l,m, n} which have exactly ∗ components not in Ln,∆3 is the set
which has at least three components not in Ln. then we split (5.3) into three parts:

G6 = G6
+ Ĝ6 + G̃6,

where G6
is the normal form part of G6, with (i, . . . , n) ∈ (∆0 ∪∆1 ∪∆2) ∩Nn:

G6
=

∑
i∈Nn, j,l>1

G6
iijjll|wi|2|wj |2|wl|2,

Ĝ6 is the normal form part of G6, with (i, . . . , n) ∈ (∆0 ∪∆1 ∪∆2)\Nn:

Ĝ6 =
∑

(i,...,n)∈(∆0∪∆1∪∆2)\Nn

G6
ijdlmnwiwjwdwlwmwn,

G̃6 is the normal form part of G6, with (i, . . . , n) ∈ 43:

G̃6 =
∑

(i,...,n)∈43

G6
ijdlmnwiwjwdwlwmwn.

Using the same methods as in Section 5.1, there is a hamiltonian F6 which has the
same form as that of G6, and will eliminate Ĝ6 by a symplectic transformation X1

F6
,
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which is the time-1-map of the flow of a hamiltonian vector XF6 with hamiltonian
ε4F6, let

{Ĥ, F6}+ G6 = [χ33(θ, ξ̄, ε)]w3
0w

3
−0 + w2

0w
2
−0

∑
j≥1

[G6
22jj ](θ, ξ̄, ε)wjw−j

+ w0w−0

∑
i∈Nn,j≥1

[G6
00iijj ](θ, ξ̄, ε)wiw−iwjw−j + G6

+ G̃6.

By a direct calculation, we obtain the following lemma.

Lemma 5.1. For each finite n ≥ 1, there exists a real analytic, symplectic change
of coordinates X1

F6
in some neighborhood of the origin on the complex Hilbert space

la,s such that the hamiltonian (5.2) is changed into

H ◦X1
F6

= Ĥ + c0ε
4z3

0 z̄
3
0 + ε4z2

0 z̄
2
0

∑
j≥1

cjzj z̄j + ε4z0z̄0

∑
i,j≥1

[G6
00iijj ]ziz̄izj z̄j + ε4K,

where

K = G6
+ Ĝ6 + εR11 + εR22 + · · ·+ ε9

∫ 1

0

{R66, F6} ◦Xs
F6
ds,

c0 =
[φ]

24π2[V̂ ]3/2
ε−3/4(1 +O(ε

1
4 )),

cj =
[φ]

24π2[V̂ ]
√
λj
ε−1/2(1 +O(ε1/2)),

and [G6
00iijj ] denotes the 0-Fourier coefficient of G6

00iijj with

[G6
00iijj ] =


6!
48 [G6

00iijj ] = 15[φ]

π2
√
λ0λiλj

(1 +O(ε)) +$ij(ξ̄, ε)), i 6= j,

6!
48×2 [G6

00iiii] = 15[φ]

4π2λi
√
λ0

(1 +O(ε)) +$ij(ξ̄, ε)), i = j,
(5.4)

and

G6
iijjll =

[φ]
48π2

√
λiλjλl

(4 + 2δij + 2δjl + 2δjk + 2δi+j,l + 2δi+l,j + 2δl+j,i). (5.5)

Here

δij =

{
1, i = j,

0, i 6= j,

$ij(ξ̄, ε) depends smoothly on ξ̄ and ε and there is an absolute constant C such that
‖$ij(ξ̄, ε)‖∗J ≤ Cε for ε small enough, while Ĝ is only dependent on the coordinates
ẑ and we have

|Ĝ| = O(‖ẑ‖6a,s), |K| = O(‖z‖7a,s)
uniformly for | Im θ| < σ/5, ξ̄ ∈J , ẑ = (zj)j∈N\Nd .

We introduce the action-angle variable by setting

zj =

{√
Ije
−iθ̂j , j ∈ Nd ∪ {0},

zj = zj , j /∈ Nd ∪ {0}.
(5.6)

By the symplectic change (5.6), the normal form becomes

Ĥ + c0ε
4z3

0 z̄
3
0 + ε4z2

0 z̄
2
0

∑
j∈N

cjzj z̄j + ε4z0z̄0

∑
i∈Nn,j≥1

cj |zi|2|zj |2
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= 〈ω̃(ξ̄), J〉+ µ0I0 + c0ε
4I3

0 +
∑
j∈Nd

(µj + ε4I2
0cj)Ij +

∑
j /∈Nd

(µj + ε4I2
0cj)zj z̄j

+ I0
ε3.5√

[V̂ ]
(
1
2
〈AI, I〉+ 〈BI, Ẑ〉)

with I = (I1, . . . , Id), A = (aij)i,j∈Nd , B = (aij)j∈N,i∈Nd , Ẑ = (|zd+1|2, |zd+2|2, . . . ),
and

aij =


15[φ]

π2
√
λiλj

(1 +O(ε)) +$ij(ξ̄, ε)), i 6= j,

15[φ]
4π2λi

(1 +O(ε)) +$ij(ξ̄, ε)), i = j.

Now let us introduce the parameter vector ξ̃ = (ξ̃j)j∈Nd∪{0} and the new action
variable and ρ̃ = (ρ̃j)j∈Nd∪{0} as follows

Ij = εξ̃j + ρ̃j , ξ̃j ∈ [1, 2], |ρ̃j |〈ε4, j = {0} ∪ Nd.

Clearly, dθ̂j ∧ dIj = dθ̂j ∧ dρ̃j . So the transformation is symplectic. Then the
normal form is changed into

〈ω̃(ξ̄), J〉+
(
µ0 + 3c0ε6ξ̃2

0 + 2ε6ξ̃0
∑
j∈Nd

cj ξ̃j

)
ρ̃0 +

∑
j∈Nd

(µj + ε6ξ̃2
0cj)ρ̃j

+ (3c0ε5ξ̃0 + ε5
∑
j∈Nd

cj ξ̃j)ρ̃2
0 + 2ε5ξ̃0ρ̃0

∑
j∈Nd

cj ρ̃j + c0ε
4ρ̃3

0+

+
∑
j /∈Nd

(µj + ε4(εξ̃0 + ρ̃0)2cj)zj z̄j + ε5ξ̃0
∑

i,j∈Nd

[G6
00iiii]ρ̃iρ̃j

+ ε6ξ̃0
∑

i,j∈Nd

[G6
00iiii]ρ̃iξ̃j + ε6ξ̃0

∑
i,j∈Nd

[G6
00iiii]ξ̃iρ̃j + ε6ξ̃0

∑
i∈Nd,j /∈Nd

[G6
00iiii]ξ̃i|zj |2

+ ε5ρ̃0

∑
i∈Nd,j /∈Nd

[G6
00iiii]ξ̃j ρ̃i + ε5ρ̃0

∑
i,j∈Nd

[G6
00iiii]ξ̃iρ̃j + ε5ρ̃0

∑
i,j∈Nd

[G6
00iiii]ρ̃iρ̃j

+ ε4(ξ̃0 + ρ̃0)2
∑

i∈Nd,j /∈Nd

[G6
00iiii]ρ̃i|zj |2.

Hence, the total Hamiltonian is

H = 〈ω̃(ξ̄), J〉+ ω̌0ρ̃0 +
∑
j∈Nd

ω̌j ρ̃j +
∑
j∈N

λ̌jzj z̄j

+ ε6ξ̃0
∑

i,j∈Nd

[G6
00iijj ]ρ̃iξ̃j + ε6ξ̃0

∑
i,j∈Nd

[G6
00iijj ]ξ̃iρ̃j

+ ε6ξ̃0
∑

i∈Nd,j /∈Nd

[G6
00iijj ]ξ̃i|zj |2 + P,

(5.7)

where

ω̌0 = µ0 + 3c0ε6ξ̃2
0 + 2ε6ξ̃0

∑
j∈Nd

cj ξ̃j ,

ω̌j = µj + ε6ξ̃2
0cj + ε6ξ̃0

∑
i,j∈Nd

[G6
00iiii]ξ̃i, j ∈ Nd

λ̌j = µj + ε6ξ̃2
0cj + ε6ξ̃0

∑
i∈Nd,

[G6
00iiii]ξ̃i, j /∈ Nd,
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P = (3c0ε5ξ̃0 + ε5
∑
j∈Nd

cj ξ̃j)ρ̃2
0 + 2ε5ξ̃0ρ̃0

∑
j∈Nd

cj ρ̃j + c0ε
4ρ̃3

0

+ ε5ρ̃0

∑
i,j∈Nd

[G6
00iiii]ξ̃j ρ̃i + ε5ρ̃0

∑
i,j∈Nd

[G6
00iiii]ξ̃iρ̃j + ε5ρ̃0

∑
i,j∈Nd

[G6
00iiii]ρ̃iρ̃j

+ ε4(ξ̃0 + ρ̃0)2
∑

i∈Nd,j /∈Nd

[G6
00iiii]ρ̃i|zj |2 + ε4

∑
i,j,l∈Nd

G6ρ̃iρ̃j ρ̃l

+ ε5
∑

i,j,l∈N

G6ξ̃lρ̃iρ̃j + ε5
∑

i,j,l∈Nd

G6ξ̃iρ̃lρ̃j + ε5
∑

i,j,l∈Nd

G6ξ̃j ρ̃iρ̃l

+ ε5
∑

i,j∈Nd,l/∈Nd

G6ξ̃iρ̃jzlzl + ε5
∑

i,j∈Nd,l/∈Nd

G6ξ̃j ρ̃izlzl

+ ε4
∑

i,j∈Nd,l/∈Nd

G6ρ̃iρ̃jzlzl + ε5
∑

i∈Nd,j,l/∈Nd

ξ̃izjzjzlzl

+ ε4
∑

i∈Nd,j,l/∈Nd

ρ̃izjzjzlzl + ε4
∑

(i,...,n)∈43

G6
ijdlmnzizjzdzlzmzn + ε5K

= ε4Q+ ε4Ĝ6 + ε5K̂ + ε5K,

with

Q = O(|ρ̃|3) +O(|ρ̃|‖Ẑ‖2), Ĝ6 =
∑

(i,...,n)∈43

G6
ijdlmnzizjzdzlzmzn,

K̂ = O(|ρ̃|2) +O(|ρ̃|‖Ẑ‖), K = R11 +R22 + · · ·+ ε9

∫ 1

0

{R66, F6} ◦Xs
F6
ds.

Next, we give the estimates of the perturbed term P . To this end we need some
notation which is taken from [23]. Let la,s is now the Hilbert space consisting of
those vectors Z with ‖Z‖a,s <∞. with

‖Z‖2a,s =
∑
j /∈Nd

|zj |2|j|2se2aj <∞, a, s > 0.

Let x = (θ, θ̂0)⊕ θ̂, with θ̂ = (θ̂j)j∈Nd , y = (J, ρ̃0)⊕ ρ̃, ρ̃ = (ρ̃j)j∈Nd , Z = (zj)j /∈Nd ,
and let us introduce the phase space

Pa,s = T̂m+d+2 × Cm+d+2 × la,s × la,s 3 (x, y, Z, Z̄),

where T̂m+d+2 is the complexiation of the usual (m+ d+ 2)-torus Tm+d+2. Set

D(s, r) := {(x, y, Z, Z̄) ∈ Pa,s : | Imx| < s, |y| < r2, ‖Z‖a,s + ‖Z̄‖a,s < r}.

We define the weighted phase norms

|W |r = |W |s̄,r = |x|+ 1
r2
|y|+ 1

r
‖Z‖a,s̄ +

1
r
‖Z̄‖a,s̄

for W = (x, y, Z, Z̄) ∈ Pa,s̄ with s̄ = s + 1. Denote by Σ the parameter set
J × [1, 2]m+d+1. For a map U : D(s, r)×Σ→ Pa,s̄, define its Lipschitz semi-norm
|U |Lr :

|U |Lr = sup
ξ̂ 6=ξ

|∆ξ̂ξU |r
|ξ̂ − ξ|

,
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where ∆ξ̂ξU = U(·, ξ̂)−U(·, ξ), and where the supremum is taken over Σ. Denote by
XP the vector field corresponding the Hamiltonian P with respect to the symplectic
structure dx ∧ dy + idZ ∧ dZ̄, namely,

XP = (∂yP,−∂xP,∇Z̄P,−∇ZP ).

Lemma 5.2. The Perturbation P (x, y, Z, Z̄; ζ) is real analytic for real argument
(x, y, Z, Z̄) ∈ D(s, r) for given s, r > 0, and Lipschitz in the parameters ξ ∈ Σ, and
for each ξ ∈ Σ its gradients with respect to Z, Z̄ satisfy

∂ZP, ∂Z̄P ∈ A(la,s, la,s+1/2),

where A(la,s, la,s+1/2) denotes the class of all maps from some neighborhood of the
origin in la,s into la,s+1/2, which is real analytic in the real and imaginary parts of
the complex coordinate Z. In addition, for the perturbed term P we have the two
estimates

sup
D(s,r)×Σ

|XP |r ≤ Cε4, sup
D(s,r)×Σ

|∂ξXP |r ≤ Cε4,

where s = σ/5 and r = ε.

Proof. For j ∈ Nd, from (5.6) it follows that |∂θ̂jwj | ≤ Cε
1/2 and |∂ρ̃jwj | ≤ Cε−1/2

where wj = zj or wj = z̄j . From (5.6) and ‖Z‖a,s ≤ r = ε, we obtain ‖z‖a,s ≤ Cε1/2

where z = (z0, z)⊕ Z with z = (zj ∈ C : j ∈ Nd). In view of |G6| = O(ε8), |Ĝ6| =
O(ε6) and K = O(ε17/2), it follows that |P | = O(ε10) on D(s, 2r). Using Cauchy
estimates for ∂xP , ∂yP , ∂Z̄P and ∂ZP , we obtain |∂xP | = O(ε10), |∂yP | = O(ε8),
|∂Z̄P | = O(ε9), |∂ZP | = O(ε9) on D(s′, r). Hence, we have supD(s,r)×Σ |XP |r ≤
Cε4. By a direct computation with respect to ξ, we also have supD(s,r)×Σ |∂ξXP |r ≤
Cε4. �

6. Proof of main theorem

To apply the infinite-dimensional KAM theorem which was first proved by Kuksin
[18, 19] and Pöschel [23] to our problem, we need to introduce a new parameter ω̄
below.

For any ξ̄ ∈J , we have α(ξ̄) ∈ Aγ . Hence, for fixed ω− = (ω1
−, ω

2
−, . . . , ω

m
− ) ∈

DΛ and ωm+1
− (ξ̄) ∈ Aγ arbitrarily. For

ω̃(ξ̄) ∈ ¯̄Ω :=
{
ω̃(ξ̄) = (ω1, . . . , ωm, α(ξ̄)) ∈ DΛ ×Aγ : |ωi − ωi−| ≤ ε,

|α(ξ̄)− ωm+1
− (ξ̄)| ≤ ε

}
,

we can introduce new parameter ω̄ = (ω̄1, ω̄2, . . . , ω̄m, ω̄m+1) by the following

ωj = ωj− + ε6ω̄j , ω̄j ∈ [0, 1], j = 1, 2, . . . ,m,

α(ξ̄) = ωm+1
− (ξ̄) + ε6ω̄m+1, ω̄m+1 ∈ [0, 1].

Hence, the Hamiltonian (5.7) becomes

H = 〈ω̂(ξ), ŷ〉+ 〈Ω̂(ξ), Ẑ〉+ P, (6.1)

where ω̂(ξ) = ω̃(ξ̄)⊕ ω̌0 ⊕ ω̆ with

ω̆ = α̃+
ε5.5ξ̃0√

[V̄ ]
Aξ̃, Ω̂(ξ) = β̃ + ε5.5 ξ̃0√

[V̄ ]
Bξ̃,
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ξ = ω̄ ⊕ ξ̃0 ⊕ ξ̃, ξ̃ := (ξ̃j)j∈Nd ,

ŷ = J ⊕ ρ̃0 ⊕ ρ̃, α̃ = (ω̌1, . . . , ω̌d), β̃ = (λ̌d+1, λ̌d+2, . . . ).

Lemma 6.1. Let Π = [1, 2]m+d+2. Then we have XP ∈ A(la,s, la,s+1/2) and

sup
D(s,r)×Π

|XP |r ≤ Cε4, sup
D(s,r)×Π

|∂ζXP |r ≤ Cε4.

The proof of the above lemma is the same as one of the lemma 5.2. In the
following, we verify the assumptions A, B and C in [23], for the above Hamiltonian
(6.1). Recalling (5.4), we have

A = (aij)

=


b
λi1

+$11(ξ̄, ε) a√
λi1λi2

+$12(ξ̄, ε) . . . a√
λi1λid

+$1d(ξ̄, ε)
a√

λi2λi1
+$21(ξ̄, ε) b

λi2
+$22(ξ̄, ε) . . . a√

λi2λid
+$4(ξ̄, ε)

. . . . . . . . . . . .
a√

λidλi1
+$d1(ξ̄, ε) a√

λidλi2
+$n2(ξ̄, ε) . . . b

λid
+$dd(ξ̄, ε)


d×d

,

B =


a√

λi(d+1)λi1
+$d+1,1(ξ̄, ε) . . . a√

λi(d+1)λid
+$d+1,d(ξ̄, ε)

a√
λi(d+2)λi1

+$d+2,1(ξ̄, ε) . . . a√
λi(d+2)λid

+$d+2,d(ξ̄, ε)

...
...

...


∞×d

,

where

a =
15[φ]
π2

, b =
15[φ]
4π2

. (6.2)

lim
ε→0

A =


b

i21×i21
a

i21×i22
. . . a

i21×i2d
a

i22×i21
b

i22×i22
. . . a

i22×i2d
. . . . . . . . . . . .
a

i2d×i
2
1

a
i2d×i

2
2

. . . b
i2d×i

2
d


d×d

:= D,

lim
ε→0

B =


a

i2d+1×i
2
1

. . . a
i2d+1×i

2
d

a
i2d+2×i

2
1

. . . a
i2d+2×i

2
d

...
...

...


∞×d

:= D̃.

Setting û = (i21, i
2
2, . . . , i

2
d) and v̂ = (i2d+1, i

2
d+2, . . . ), and defining the matrices

Ē := diag[û], F̄ := diag[v̂],

we can rewrite D and D̃ as

D = Ē−1AĒ−1, D̃ = F̄−1BĒ−1,

where

A =


b a . . . a
a b . . . a
. . . . . . . . . . . .
a a . . . b


d×d

, B =

b . . . b
b . . . b
...

...
...


∞×d

.
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We know that detD 6= 0 since detA = (b − a)d−1(b + (d − 1)a) 6= 0 (a, b have the
same sign). Therefore, we get detA 6= 0 provided that 0 < ε � 1. Moreover, by
the definition of ω̂, we get that

∂ω̂

∂ξ
=
∂(ω̃, ω̆0, ω̆)

∂(ω, ξ̃0, ξ̃)
= ε6ξ̃0

Im+1 0 0
0 6c0 +

∑
j∈Nd cjξj 12Y

0 12ξ̃0YT +Aξ A

 , for ξ ∈ Π,

where Im+1 denotes the (m + 1) × (m + 1) unit matrix, Y = (c1, c2, . . . , cd). Let
c′0 = 6c0 +

∑
j∈Nd cjξj . In view of c0 = O(ε−3/4), cj = O(ε−1/2) and(

1 −YA−1

0 Id

)(
c′0 12Y

12YT +Aξ A

)(
1 0

−A−1YT Id

)
=
(
c′0 − YA−1YT − Yξ 0

Aξ A

)
,

we get

det
(
c′0 − YA−1YT − Yξ 0

Aξ A

)
6= 0

provided that 0 < ε � 1. Therefore, the real map ξ 7→ ω̂(ξ) is a lipeomorphism
between Π and its imagine.

For any k ∈ Zm+2+d, we write

k = (k1, k2, k3), k1 ∈ Zm+1, k2 ∈ Z, k3 ∈ Zd.
Let

Y(ξ) = 〈k, ω̂(ξ)〉+ 〈l, Ω̂(ξ)〉

= 〈k1, ω̃(ξ̄)〉+ k2ω̌0 + 〈k3, α̃〉+ 〈k3, ε
5.5 ξ̃0√

[V̂ ]
Aξ̃〉

+ 〈l, β̃ + ε5.5 ξ̃0√
[V̂ ]

Bξ̃〉,

∆ := {ξ ∈ Π : Y(ξ) = 0}.
We need to prove that meas ∆ = 0. We discuss the following two cases.

Case 1. Let k1 = (k1, k2, . . . , km, km+1) 6= 0 and write

〈k1, ω̃(ξ̄)〉 =
m∑
i=1

kiωi + km+1α(ξ̄),

then there exists some 1 ≤ i0 ≤ m such that ki0 6= 0. Observe that ω̌0, α̃ and β̃ do
not involve the parameter ω̄. Then

∂Y(ξ)
∂ω̄i0

= ki0ε6 6= 0, 0 < ε� 1,

which implies meas ∆ = 0.
Case 2. Let k2 6= 0. Then

∂Y(ξ)
∂ξ̃0

= 6c0ε6 + 2ε6
∑
j∈Nd

cj ξ̃j 6= 0,

which implies meas ∆ = 0.
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Case 3. Let k1 = k2 = 0, then

Y(ξ) = 〈k1, ω〉+ k2ω̌0 + 〈k3, α̃〉+ 〈k3,
ε5.5√

[̂V ]
Aξ̃〉+ 〈l, β̃ + ε3Bξ̃〉

= 〈k3, α̃〉+ 〈k3,
ε5.5√

[̂V ]
Aξ̃〉+ 〈l, β̃ +

ε5.5√
[̂V ]

Bξ̃〉

= 〈k3, α̃〉+ 〈l, β̃〉+
ε5.5√

[̂V ]
〈Ak3 +BT l, ξ̃〉,

where BT is the transpose of B. (Note that A is symmetric.) We claim that either
〈k3, α̃〉+ 〈l, β̃〉 6= 0 or Ak3 +BT l 6= 0.

Since
lim
ε→0

(Ak3 +BT l) = Dk3 + D̃T l,

and
lim
ε→0

(〈k3, α̃〉+ 〈l, β̃〉) = 〈k3, α̂〉+ 〈l, β̂〉,

with α̂ = (i21, i
2
2, . . . , i

2
d) and β̂ = (i2d+1, i

2
d+2, . . . ), it suffices to show that 〈k3, α̂〉 +

〈l, β̂〉 6= 0 or Dk3 + D̃T l 6= 0. The result is proved in in[24, Lemma 6]. Hence, we
get that 〈k3, α̃〉 + 〈l, β̃〉 6= 0 or Ak3 + BT l 6= 0 as 0 < ε � 1. Moreover, it is easy
to that 〈l, Ω̂(ξ)〉 6= 0 as 0 < ε� 1, with 1 ≤ |l| ≤ 2 and ξ ∈ Π. This completes the
verification of Assumption A.

Noticing that

λj =
√
j4 + ε[V̂ ] = j2 +

ε[V̂ ]
2j2

+O(j−4),

µj =
√
λj +

∞∑
k=2

εkλ̃j,k(ξ̄, ω̃(ξ̄), ε),

we have that Ω̂j = jς + . . . with ς = 2 and Ω̂j − j2 is a Lipschitz map from Π to
l−δ∞ with δ = −2. Thus, Assumption B is fulfilled for Ω̂ with δ = −2, ς = 2, and
Ω = β̃.

Assumption C can be verified easily using Lemma 5.2, letting p̄ = s+1/2, p = s.
Now let us verify the smallness condition in [23]. By letting α = ε8−ι with

0 < ι < 8 fixed and Lemma 6.1, we have

sup
D(s,r)×Π

|XP |r + sup
D(s,r)×Π

α

M
|XP |Lr ≤ γα,

if 0 < ε < ε∗∗ with a constant ε∗∗ = ε∗∗(γ,C). This implies the smallness condition
is satisfied. Next, Let us check the conditions of [23, Theorem D] for the Hamil-
tonian (6.1). First of all, we remark that ω̂(ξ) is affine function of the parameter
ξ. and we can choose µ̃ = 1 in [23, Theorem D].

Let us run the infinite-dimensional KAM theorem for Hamiltonian (6.1). Then
there is a subset Πα ⊂ Π with

meas(Π \Πα) ≤ ĉLm+d+2Mm+d+2(diam Π)m+d+2αµ̃ ≤ Cε−1αµ̃ < ε6−ι,

and a Lipschitz continuous family of torus embedding Φ : Tm+d+2×Πα → Pa,s+1/2,
and a Lipschitz continuous map ̂̂ω : Πα → Rm+d+2, such that for each ξ ∈ Πα
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the map Φ restricted to Tm+d+2 × {ξ} is a real analytic embedding of an elliptic
rotational torus with frequencies ̂̂ω(ξ) for the Hamiltonian H at ξ. Moreover,
|̂̂ω(ξ)− ω̂(ξ)| < cε. We return from the parameter set Π to

Π∗(ω−, ωm+1
− ) = ¯̄Ω× [0, 1]d+1.

Let
Π∗ = ∪(ω−,ω

m+1
− )∈DΛ×AγΠ∗(ω−, ωm+1

− ),

where ω−, ω
m+1
− are chosen such that Π∗(ω∗−, ω

m+1
−

∗
) ∩ Π∗(ω∗∗− , ω

m+1
−

∗∗
) = ∅ if

(ω∗−, ω
m+1
−

∗
) 6= (ω∗∗− , ω

m+1
−

∗∗
). Hence, we get a subset Π∗α ⊂ Π∗ such that

Σα = Π∗α ⊂ DΛ ×Aγ × [0, 1]d+1 ⊂ Σ

with
meas(Σ \ Σε) ≤ ε.

Therefore, for the new parameter set, we have that there are a Lipschitz continuous
family of torus embedding Φ : Tm+d+2 × Σε → Pa,s+1, and a Lipschitz continuous
map ̂̂ω : Σε → Rm+d+2, such that for each ξ ∈ Σε the map Φ restricted to Tm+d+2×
{ξ} is a real analytic embedding of an elliptic rotational torus with frequencieŝ̂ω(ξ) = (ω̃(ξ̄), (ω̂j)j∈Nd∪{0}) for the Hamiltonian H at ξ. Also

|Φ− Φ0|r +
α

M
|Φ− Φ0|Lr ≤ cε3−(3−ι) = cει, (6.3)

|̂̂ω − ω0|r +
α

M
|̂̂ω(ξ)− ω0(ξ)|L ≤ cε3, (6.4)

where ω0(ξ) = ω̂(ξ) and ξ = (ω, α(ξ̄), ξ̃0, ξ̃1, . . . , ξ̃d). Therefore, all motions starting
from the torus Φ(Tm+d+2 ×Σε) are quasi-periodic with frequencies ̂̂ω(ξ). By (6.3)
and (6.4), those motions can written as follows:

ρ̃0(t) = O(ε3), θ̂0(t) = ω̂0t+O(ει),

ρ̃j(t) = O(ε3), θ̂j(t) = ω̂jt+O(ει), j ∈ Nd,
‖Z(t)‖a,s+1 = O(ε), θ(t) = ω̃(ξ̄)t,

where Z = (zj)j /∈Nd and we have chosen the initial phase θ̂j(0) = 0. Returning the
original equation (1.3), we may get the solution described in Theorem 1.1.
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