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WEAK SOLUTIONS TO DISCRETE NONLINEAR TWO-POINT
BOUNDARY-VALUE PROBLEMS OF KIRCHHOFF TYPE

BLAISE KONE, ISMAËL NYANQUINI, STANISLAS OUARO

Abstract. In this article, we prove the existence of weak solutions to a family
of discrete boundary-value problems whose right-hand side belongs to a dis-

crete Hilbert space. As an extension, we prove the existence of weak solutions

for problems whose right-hand side depends on the solution.

1. Introduction

In this article, we study the nonlinear discrete boundary-value problem

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1))) = f(k), k ∈ Z[1, T ]

u(0) = ∆u(T ) = 0,
(1.1)

where T ≥ 2 is a positive integer and ∆u(k) = u(k + 1) − u(k) is the forward dif-
ference operator. Throughout this paper, we denote by Z[a, b] the discrete interval
{a, a+ 1, . . . , b} where a and b are integers and a < b.

We consider in (1.1) two different boundary conditions: a Dirichlet boundary
condition (u(0) = 0) and a Neumann boundary condition (∆u(T ) = 0). In the lit-
erature, the boundary condition considered in this paper is called a mixed boundary
condition. We also consider the function space

W = {v : Z[0, T + 1]→ R such that v(0) = ∆v(T ) = 0}.
W is a T -dimensional Hilbert space (see [1]) with the inner product

(u, v) =
T∑
k=1

u(k)v(k), ∀u, v ∈W.

The associated norm is defined by

‖u‖ =
( T∑
k=1

|u(k)|2
)1/2

.

For the data f and a, we assume the following.

f : Z[1, T ]→ R, (1.2)
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a(k, .) : R→ R for k ∈ Z[0, T ] and there exists a mapping A :
Z[0, T ]×R→ R satisfying a(k, ξ) = ∂

∂ξA(k, ξ) and A(k, 0) = 0
for all k ∈ Z[0, T ],

(1.3)

(a(k, ξ)− a(k, η))(ξ − η) > 0 ∀k ∈ Z[0, T ] and ξ, η ∈ R such that ξ 6= η, (1.4)

|ξ|p(k) ≤ a(k, ξ)ξ ≤ p(k)A(k, ξ) ∀k ∈ Z[0, T ] and ξ ∈ R. (1.5)

Moreover, in this paper, we assume that

p : Z[0, T ]→ (1,+∞). (1.6)

We also assume that the function M : (0,+∞) → (0,+∞) is continuous and
nondecreasing and there exist positive reals number B1, B2 with B1 ≤ B2 and
α ≥ 1 such that

B1t
α−1 ≤M(t) ≤ B2t

α−1 for t ≥ t∗ > 0. (1.7)

The function M(A(k− 1,∆u(k− 1))) in the left-hand side of (1.1) is more general
than the one in [7]. Indeed, if we take M(t) = 1, (1.1) is the problem studied by
Koné et al [7].

Problem (1.1) has its origin in the theory of nonlinear vibration. For instance,
the following equation describes the free vibration of a stretched string (see [11])

ρ
∂2u

∂t2
=
(
T0 +

Ea

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
(1.8)

where ρ > 0 is the mass per unit length, T0 is the base tension, E is the Young
modulus, a is the area of cross section and L is the initial length of the string.
(1.8) takes into account the change of the tension on the string which is caused by
the change of its length during the vibration. The nonlocal equation of this type
was first proposed by Kirchhoff in 1876 (see [6]). After that, several physicists also
consider such equations for their researches in the theory of nonlinear vibrations
theoretically or experimentally [3,4,9,11]. Moreover mathematically, the solvability
of several Kirchhoff type quasilinear hyperbolic equations have been extensively
discussed. As far as we know, the first study which deals with anisotropic discrete
boundary-value problems of p(.)-Kirchhoff type difference equation was done by
Yucedag (see [12]). In this paper, we improve the work by Yucedag [12] since
our main operator is more general than the one in [12]. As examples of functions
satisfying assumptions (1.3)–(1.7), we can give the following.

• M(A(k, ξ)) = M( 1
p(k) |ξ|

p(k)) = 1, where M(t) = 1 and a(k, ξ) = |ξ|p(k)−2ξ,
for k ∈ Z[0, T ] and ξ ∈ R.
• M(A(k, ξ)) = a + b

p(k)

[(
1 + |ξ|2

)p(k)/2 − 1
]
, where M(t) = a + bt and

a(k, ξ) =
(
1 + |ξ|2

)(p(k)−2)/2
ξ, for all k ∈ Z[0, T ] and ξ ∈ R.

The remaining part of this article is organized as follows: section 2 is devoted
to mathematical preliminaries. The main existence result is stated and proved in
section 3. Finally, in section 4, we discuss some extensions.

2. Preliminaries

We will use the following symbols.

p− = min
k∈Z[0,T ]

p(k), p+ = max
k∈Z[0,T ]

p(k).
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It is useful to introduce other norms on W , namely

|u|m =
( T∑
k=1

|u(k)|m
)1/m

∀u ∈W and m ≥ 2.

We have the following inequalities (see [2, 8]):

T (2−m)/(2m)|u|2 ≤ |u|m ≤ T 1/m|u|2 ∀u ∈W and m ≥ 2. (2.1)

In the sequel, we will use the following auxiliary result.

Lemma 2.1 ( [5]). There exist two positive constants C1 and C2 such that

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ C1

( T+1∑
k=1

|∆u(k − 1)|2
)p−/2

− C2, (2.2)

for all u ∈W with ‖u‖ > 1.

Next we have the discrete Wirtinger’s inequality, see [1, Theorem 12.6.2, page
860].

Lemma 2.2. For any function u(k), k ∈ Z[0, T ] satisfying u(0) = 0, the following
inequality holds

4 sin2
( π

2(2T + 1)

) T∑
k=1

|u(k)|2 ≤
T∑
k=1

|∆u(k − 1)|2. (2.3)

3. Existence of weak solutions

In this section, we study the existence of weak solution of (1.1).

Definition 3.1. A weak solution of (1.1) is a function u ∈W such that

M(
T+1∑
k=1

A(k−1,∆u(k−1)))
T+1∑
k=1

a(k−1,∆u(k−1))∆v(k−1) =
T∑
k=1

f(k)v(k) (3.1)

for all v ∈W .

Note that, since W is a finite dimensional space, the weak solutions coincide
with the classical solutions of the problem (1.1).

Theorem 3.2. Assume that (1.2)-(1.7) hold. Then, there exists at least one weak
solution of (1.1).

For the proof of the above theorem, we define the energy functional corresponding
to problem (1.1), J : W → R as follows:

J(u) = M̂(
T+1∑
k=1

A(k − 1,∆u(k − 1)))−
T∑
k=1

f(k)u(k), (3.2)

where M̂(t) =
∫ t
0
M(s) ds. We first establish some basic properties of J .
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Proposition 3.3. The functional J is well-defined on E and is of class C1(W,R)
with derivative given by

〈J ′(u), v〉 = M(
T+1∑
k=1

A(k − 1,∆u(k − 1)))
T+1∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

−
T∑
k=1

f(k)v(k),

(3.3)

for all u, v ∈W .

The proof of the above proposition can be found in [10].
We now define the functional I : H → R by

I(u) = M̂(
T+1∑
k=1

A(k − 1,∆u(k − 1))).

We need the following lemma for the proof of Theorem 3.2.

Lemma 3.4. The functional I is weakly lower semi-continuous.

Proof. By (1.3) and (1.4), we have that A is convex with respect to the second
variable. Thus, it is enough to show that I is lower semi-continuous. For this, we
fix u ∈ H and ε > 0. Since I is convex, we deduce that for any v ∈ H,

I(v) ≥ I(u) + 〈I ′(u), v − u〉

≥ I(u) +M(
T+1∑
k=1

A(k − 1,∆u(k − 1)))
T+1∑
k=1

a(k − 1,∆u(k − 1))

× (∆v(k − 1)−∆u(k − 1))

≥ I(u)−
(
M(

T+1∑
k=1

A(k − 1,∆u(k − 1)))
) T+1∑
k=1

|a(k − 1,∆u(k − 1))|

× |∆v(k − 1)−∆u(k − 1)|

≥ I(u)− C0

T∑
k=1

|a(k − 1,∆u(k − 1))|(|v(k)− u(k) + u(k − 1)− v(k − 1)|)

≥ I(u)− C0

T∑
k=1

|a(k − 1,∆u(k − 1))|(|v(k)− u(k)|+ |u(k − 1)− v(k − 1)|),

where C0 =
(

1 +M(
∑T+1
k=1 A(k − 1,∆u(k − 1)))

)
. We denote

X1 =
T∑
k=1

|a(k − 1,∆u(k − 1))||v(k)− u(k)|,

X2 =
T∑
k=1

|a(k − 1,∆u(k − 1))||u(k − 1)− v(k − 1)|.

By using Schwartz inequality, we obtain

X1 ≤
( T∑
k=1

|a(k − 1,∆u(k − 1))|2
)1/2( T∑

k=1

|v(k)− u(k)|2
)1/2
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≤
( T+1∑
k=1

|a(k − 1,∆u(k − 1))|2
)1/2

‖v − u‖

and

X2 ≤
( T∑
k=1

|a(k − 1,∆u(k − 1))|2
)1/2( T∑

k=1

|u(k − 1)− v(k − 1)|2
)1/2

≤
( T+1∑
k=1

|a(k − 1,∆u(k − 1))|2
)1/2

‖v − u‖.

Finally, we have

I(v) ≥ I(u)− C0

(
1 + 2

T+1∑
k=1

|a(k − 1,∆u(k − 1))|2
)1/2

‖v − u‖

≥ I(u)− ε,
for all v ∈W with ‖v − u‖ < δ = ε/K(T, u), where

K(T, u) = C0

(
1 + 2

T+1∑
k=1

|a(k − 1,∆u(k − 1))|2
)1/2

.

We conclude that I is weakly lower semi-continuous. The proof of Lemma 3.4 is
then complete. �

Proposition 3.5. The functional J is bounded from below, coercive and weakly
lower semi-continuous.

Proof. By Lemma 3.4, J is weakly lower semicontinuous. We will only prove the
coerciveness of the energy functional since the boundeness from below of J is a
consequence of coerciveness. By (1.5) and (1.7), we deduce that

J(u) = M̂(
T+1∑
k=1

A(k − 1,∆u(k − 1)))−
T∑
k=1

f(k)u(k)

≥ B1

α(p+)α
( T+1∑
k=0

|∆u(k − 1)|p(k−1)
)α
−

T∑
k=1

f(k)u(k).

To prove the coercivity of J , we may assume that ‖u‖ > 1 and we get from the
above inequality and Lemma 2.1, that

J(u) ≥ B1

α(p+)α
[
C1

( T+1∑
k=1

|∆u(k − 1)|2
)p−/2

− C2

]α
−

T∑
k=1

f(k)u(k)

≥ B1C
α
1

α(p+)α
( T+1∑
k=1

|∆u(k − 1)|2
)αp−/2

−K(α,C2)Cα2

−
( T∑
k=1

|f(k)|2
)1/2( T∑

k=1

|u(k)|2
)1/2

.

Using Wirtinger’s discrete inequality, we obtain

J(u) ≥ B1C
α
1

α(p+)α
(

4 sin2

(
π

2(2T + 1)

) T+1∑
k=1

|u(k)|2
)αp−/2
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−K ′ −
( T∑
k=1

|f(k)|2
)1/2( T∑

k=1

|u(k)|2
)1/2

≥ B1C
α
1 2αp

−

α(p+)α
(

sinαp
−
( π

2(2T + 1)

))( T+1∑
k=1

|u(k)|2
)αp−/2

−K ′ −K1‖u‖

≥ B1C
α
1 2αp

−

α(p+)α
(

sinαp
− ( π

2(2T + 1)
))
‖u‖αp

−
−K ′ −K1‖u‖,

where K1 and K ′ are two positive constants. Hence, as αp− > 1, then J is coercive.
�

By Proposition 3.5, J has a minimizer which is a weak solution of (1.1).

4. Extensions

4.1. Extension 1. In this section, we show that the existence result obtained for
(1.1) can be extended to more general discrete boundary-value problems of the form

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1))) + |u(k)|q(k)−2u(k)

= f(k), k ∈ Z[1, T ]

u(0) = ∆u(T ) = 0,

(4.1)

where T ≥ 2 is a positive integer and where we assume that q : Z[1, T ]→ (1,+∞).
By a weak solution of problem (4.1), we understand a function u ∈W such that

M(
T+1∑
k=1

A(k − 1,∆u(k − 1)))
T+1∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

+
T∑
k=1

|u(k)|q(k)−2u(k)v(k)

=
T∑
k=1

f(k)v(k), for any v ∈W.

(4.2)

Theorem 4.1. Under assumptions (1.2)-(1.7), problem (4.1) has at least one weak
solution.

Proof. For u ∈W ,

J(u) = M̂(
T+1∑
k=1

A(k − 1,∆u(k − 1))) +
T∑
k=1

1
q(k)
|u(k)|q(k) −

T∑
k=1

f(k)u(k) (4.3)

is such that J ∈ C1(W ; R) is weakly lower semi-continuous and we have

〈J ′(u), v〉 = M(
T+1∑
k=1

A(k − 1,∆u(k − 1)))
T+1∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

+
T∑
k=1

|u(k)|q(k)−2u(k)v(k)−
T∑
k=1

f(k)v(k),

for all u, v ∈ W . This implies that the weak solutions of (4.1) coincide with the
critical points of J . Next, we prove that J is bounded from below and coercive in
order to complete the proof. �
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Since
T∑
k=1

1
q(k)
|u(k)|q(k) ≥ 0,

it follows that

J(u) ≥ M̂(
T+1∑
k=1

A(k − 1,∆u(k − 1)))−
T∑
k=1

f(k)u(k). (4.4)

Using Proposition 3.5, we deduce that J is bounded from below and coercive.

4.2. Extension 2. In this section, we show that the existence result obtained for
(1.1) can be extended to more general discrete boundary-value problems of the form

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1))) + λ|u(k)|β
+−2u(k)

= f(k, u(k)), k ∈ Z[1, T ]

u(0) = ∆u(T ) = 0,

(4.5)

where T ≥ 2 is a positive integer, λ ∈ R+ and f : Z[1, T ]× R→ R is a continuous
function with respect to the second variable for all (k, z) ∈ Z[1, T ]× R.

For k ∈ Z[1, T ] and every t ∈ R, we put F (k, t) =
∫ t
0
f(k, τ)dτ . By a weak

solution of problem (4.5), we understand a function u ∈W such that

M(
T+1∑
k=1

A(k − 1,∆u(k − 1)))
T+1∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

+ λ

T∑
k=1

|u(k)|β
+−2u(k)v(k)

=
T∑
k=1

f(k, u(k))v(k), for all v ∈W.

(4.6)

We assume that there exists a positive constant C3 such that

|f(k, t)| ≤ C3(1 + |t|β(k)−1), for all (k, t) ∈ Z[1, T ]× R, (4.7)

where 1 < β− < αp−.

Theorem 4.2. Under assumptions (1.3)–(1.7) and (4.7), there exists λ∗ > 0 such
that for λ ∈ [λ∗,+∞), problem (4.5) has at least one weak solution.

Proof. Let g(u) =
∑T
k=1 F (k, u(k)), then g′ : W → W is completely continuous

and thus, g is weakly lower semi-continuous. Therefore, for u ∈W ,

J(u) = M̂(
T+1∑
k=1

A(k − 1,∆u(k − 1))) +
λ

β+

T∑
k=1

|u(k)|β
+
−

T∑
k=1

F (k, u(k)) (4.8)

is such that J ∈ C1(W ; R), is weakly lower semi-continuous and we have

〈J ′(u), v〉 = M(
T+1∑
k=1

A(k − 1,∆u(k − 1)))
T+1∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

+ λ

T∑
k=1

|u(k)|β
+−2u(k)v(k)−

T∑
k=1

f(k, u(k))v(k),
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for all u, v ∈ W . This implies that the weak solutions of problem (4.5) coincide
with the critical points of J . We then have to prove that J is bounded below and
coercive to complete the proof.

For u ∈W such that ‖u‖ > 1,

J(u) ≥ B1C
α
1 2αp

−

α(p+)α
(

sinαp
−
( π

2(2T + 1)

))
‖u‖αp

−

+
λ

β+

T∑
k=1

|u(k)|β
+
−K ′ −

T∑
k=1

F (k, u(k))

≥ B1C
α
1 2αp

−

α(p+)α
(

sinαp
−
( π

2(2T + 1)

))
‖u‖αp

−
+

λ

β+

T∑
k=1

|u(k)|β
+
−K ′

− C ′
T∑
k=1

(
1 + |u(k)|β(k)

)
≥ B1C

α
1 2αp

−

α(p+)α
(

sinαp
−
( π

2(2T + 1)

))
‖u‖αp

−
+

λ

β+

T∑
k=1

|u(k)|β
+
−K ′ − C ′T

− C ′
( T∑
k=1

|u(k)|β(k)
)

≥ B1C
α
1 2αp

−

α(p+)α
(

sinαp
−
( π

2(2T + 1)

))
‖u‖αp

−
+

λ

β+

T∑
k=1

|u(k)|β
+
−K ′ − C ′T

− C ′
( T∑
k=1

|u(k)|β
−

+
T∑
k=1

|u(k)|β
+
)

≥ B1C
α
1 2αp

−

α(p+)α
(

sinαp
−
( π

2(2T + 1)

))
‖u‖αp

−

+ (
λ

β+
− C ′)

T∑
k=1

|u(k)|β
+
−K ′ − C ′T −K‖u‖β

−

≥ B1C
α
1 2αp

−

α(p+)α
(

sinαp
−
( π

2(2T + 1)

))
‖u‖αp

−
−K ′ − C ′T −K‖u‖β

−
,

where we put λ∗ = C ′β+ and where K, K ′ and C ′ are positive constants. Further-
more, by the fact that 1 < β− < αp−, it turns out that

J(u) ≥ B1C
α
1 22αp

−

α(p+)α
(

sinαp
−
( π

2(2T + 1)

))
‖u‖αp

−
−K ′ − C ′T −K‖u‖β

−
→ +∞

as ‖u‖ → +∞, where K is a positive constant. Therefore, J is coercive. �

4.3. Extension 3. In this section, we show that the existence result obtained for
(1.1) can be extended to more general discrete boundary-value problems of the form

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1))) = f(k, u(k)), k ∈ Z[1, T ]

u(0) = ∆u(T ) = 0,
(4.9)



EJDE-2015/105 WEAK SOLUTIONS 9

where T ≥ 2. We suppose that F+(k, t) =
∫ t
0
f+(k, τ)dτ is such that there exist

two positive constants C4 and C5 such that

f+(k, t) ≤ C4 + C5|t|β−1, for all (k, t) ∈ Z[1, T ]× R, (4.10)

where 1 < β < αp−. By a weak solution of problem (4.9), we understand a function
u ∈W such that

M(
T+1∑
k=1

A(k − 1,∆u(k − 1)))
T+1∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

=
T∑
k=1

f(k, u(k))v(k), for all v ∈W.

(4.11)

Theorem 4.3. Under assumptions (1.3)-(1.7) and (4.10), problem (4.9) has at
least one weak solution.

Proof. As f = f+ − f−, letting

F+(k, t) =
∫ t

0

f+(k, τ)dτ, F−(k, t) =
∫ t

0

f−(k, τ)dτ,

we have

J(u) = M̂(
T+1∑
k=1

A(k − 1,∆u(k − 1)))−
T∑
k=1

F (k, u(k))

= M̂(
T+1∑
k=1

A(k − 1,∆u(k − 1)))−
T∑
k=1

F+(k, u(k)) +
T∑
k=1

F−(k, u(k))

≥ M̂(
T+1∑
k=1

A(k − 1,∆u(k − 1)))−
T∑
k=1

F+(k, u(k)).

Therefore, similarly to the proof of Theorem 4.2, the statement of Theorem 4.3
follows immediately. �
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