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SIGN-CHANGING SOLUTIONS OF A FOURTH-ORDER
ELLIPTIC EQUATION WITH SUPERCRITICAL EXPONENT

KAMAL OULD BOUH

Abstract. In this article we study the nonlinear elliptic problem involving
nearly critical exponent

∆2u = |u|8/(n−4)+εu in Ω,

∆u = u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn with n ≥ 5, and ε is a positive
parameter. We show that, for ε small, there is no sign-changing solution with

low energy which blow up at exactly two points. Moreover, we prove that this

problem has no bubble-tower sign-changing solutions.

1. Introduction and statement of results

In this article, we consider the semi-linear elliptic problem with supercritical
nonlinearity

∆2u = |u|p−1+εu in Ω,
∆u = u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in Rn, n ≥ 5, ε is a positive real parameter
and p+1 = 2n

n−4 is the critical Sobolev exponent for the embedding ofH2(Ω)∩H1
0 (Ω)

into Lp+1(Ω).
Problem (1.1) is related to the limiting problem (when ε = 0) which exhibits

a lack of compactness. In fact, van Der Vorst [25, 26] (see also [19]) showed that
(1.1) with ε = 0 has no positive solutions if Ω is a starshaped domain. Whereas
Ebobisse and Ould Ahmedou [13] proved that (1.1) with ε = 0 has a positive
solution provided that some homology group of Ω is non trivial. This topological
condition is sufficient, but not necessary, as examples of contractible domains Ω
on which a positive solution exists as shown in [14] (see also [15]). Note that
some problems of type (1.1) were studied in case of Riemannian manifolds, see for
example [17] and [20].

In view of this qualitative change of the situation for (1.1) with ε = 0, it is
interesting to study the problem (1.1) with ε < 0 and ε > 0 and to understand
what happens to the solutions of (1.1) (if they exist) as ε→ 0.

Observe that, when ε < 0, the existence of solutions of (1.1) has been proved in
[5, 7] (see [3, 4, 9] for the Laplacian case) for each ε ∈ (1 − p, 0). For the positive
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solutions, Chou and Geng [10] made the first study, when Ω is a convex domain.
They gave the asymptotic behavior of the low energy positive solution. They used
the method of moving planes to show that the blow-up point is away from the
boundary of the domain. The process is standard if the domain is convex. We
note that, for non convex regions, this method still works in the Laplacian case
through the applications of Kelvin transformations, see [16] (since the problem is
invariant under these transformations). However, the Navier boundary conditions
are not invariant under the Kelvin transformation of the biharmonic operator. But
the method of moving planes also works for convex domains, see [10]. To remove
the convexity assumption, Ben Ayed and El Mehdi [5] used another method based
on some ideas introduced by Bahri in [1]. This result is the analogous one to the
one in [24] and [16] where the Laplacian operator was studied.

Concerning the supercritical case, ε > 0, the problem (1.1) becomes more delicate
since we lose the Sobolev embedding which is an important point to overcome. We
recall that, when the biharmonic operator in (1.1) is replaced by the Laplacian
one, there are many works devoted to the study of the positive solutions of the
counterpart of (1.1). It was proved in [6] that (1.1) has no positive solution which
blows up at a single point. This result shows that the situation is different from the
subcritical case. However, Del Pino et al [11] (see also [18]) gave an existence result
for two blow up points, provided that Ω satisfies some geometrical conditions. In
sharp contrast to this, very little study has been made concerning the sign-changing
solutions, see [8].

It is well known that problem (1.1) (with ε < 0) has always a positive least
energy solution uε which is obtained by solving the variational problem

inf J(u) where J(u) :=

∫
Ω
|∆u|2( ∫

Ω
|u|p+1+ε

)2/(p+1+ε)
u ∈ H2(Ω) ∩H1

0 (Ω), u 6≡ 0.

Removing the assumption of the positivity of the solutions, the study of the
asymptotic behavior becomes difficult. The main difficulty is that the limit problem,
after a change of variable, which is

∆2u = |u|p−1u in Rn, (1.2)

has many sign-changing solutions which are unknown. However, an interesting
information about the energy shows that [14, Lemma 2]∫

Rn

|∆w|2 > 2Sn/4, (1.3)

for each sign-changing solution w of (1.2), where S denotes the best minimizers of
the Sobolev inequality on the whole space, that is

S = inf{|∆u|2L2(Rn)|u|
−2
L2n/(n−4)(Rn)

: ∆u ∈ L2, u ∈ L2n/(n−4), u 6≡ 0}.

When we add the positivity assumption, the solutions of (1.2) are the family

δ(a,λ)(x) = c0
λ(n−4)/2

(1 + λ2|x− a|2)(n−4)/2
, c0 =

(
n(n− 4)(n2 − 4)

)(n−4)/8
, (1.4)

with λ > 0 and a ∈ Rn.
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The space H2(Ω)∩H1
0 (Ω) is equipped with the norm ‖ · ‖ and its corresponding

inner product 〈·, ·〉 defined by

‖u‖ =
(∫

Ω

|∆u|2
)1/2

, 〈u, v〉 =
∫

Ω

∆u∆v, u, v ∈ H2(Ω) ∩H1
0 (Ω). (1.5)

When we study problem (1.2) in a bounded smooth domain Ω, we need to introduce
the function Pδ(a,λ) which is the projection of δ(a,λ) on H1

0 (Ω). It satisfies

∆2Pδ(a,λ) = ∆2δ(a,λ) in Ω; ∆Pδ(a,λ) = Pδ(a,λ) = 0 on ∂Ω.

These functions are almost positive solutions of (1.1). Our first result deals with
the low energy sign-changing solution of (1.1) with ε > 0. We prove that there
is no solution which blows up at exactly two points. More precisely, we have the
following result.

Theorem 1.1. Let Ω be any smooth bounded domain in Rn with n ≥ 5. There
exists ε0 > 0, such that for each ε ∈ (0, ε0), problem (1.1) has no sign-changing
solution uε which satisfies

uε = Pδ(aε,1,λε,1) − Pδ(aε,2,λε,2) + vε, (1.6)

with the L∞-norm of uε at the power ε (|uε|ε∞) begin bounded and

aε,i ∈ Ω, λε,id(aε,i, ∂Ω)→∞ for i = 1, 2

〈Pδ(aε,1,λε,1), P δ(aε,2,λε,2)〉 → 0 and ‖vε‖ → 0 as ε→ 0.

We point out that there are other important phenomena in sign-changing solu-
tions. Indeed, it is possible to find solutions having bubble over bubble (bubble-
tower solutions). In the case of the Laplacian operator, Pistoia and Weth [21]
constructed a family of sign-changing solutions of (1.1) (ε < 0) with k bubbles,
k ≥ 2, concentrated at the same point. This result gives a new phenomenon com-
pared with the positive case. In their paper, they conjectured that this phenomenon
cannot appear when ε > 0. In [8], we gave an affirmative answer for the conjecture
of Pistoia and Weth. The following result deals with phenomenon of bubble-tower
solutions for the biharmonic problem (1.1) with supercritical exponent.

Theorem 1.2. Let Ω be any smooth bounded domain in Rn with n ≥ 5. There
exists ε0 > 0, such that for each ε ∈ (0, ε0), problem (1.1) has no solution uε of the
form

uε =
k∑
i=1

(−1)i+1Pδ(aε,i,λε,i) + vε, (1.7)

with λε,1 ≤ λε,2 ≤ · · · ≤ λε,k and |uε|ε∞ bounded, where k ≥ 2, aε,i ∈ Ω,
min(λε,i, λε,j)|aε,i − aε,j | is bounded, and vε → 0 in H1

0 (Ω), λε,id(aε,i, ∂Ω)→ +∞,
〈Pδ(aε,i,λε,i), P δ(aε,j ,λε,j)〉 → 0, for i 6= j, as ε→ 0.

Note that Theorem 1.2 deals with the bubble-tower solutions at one point. How-
ever Theorem 1.1 says that there are no solutions which blow up at two points.
Combining the ideas of the proof of Theorems 1.1 and 1.2, we are able to prove the
following result.

Theorem 1.3. Let Ω be any smooth bounded domain in Rn with n ≥ 5. There
exists ε0 > 0, such that for each ε ∈ (0, ε0), problem (1.1) has no solution uε of the
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form

uε =
m∑
i=1

(−1)i+1Pδ(aε,i,λε,i) +
k∑

i=m+1

(−1)i−mPδ(aε,i,λε,i) + vε := u1
ε + u2

ε + vε,(1.8)

with |uε|ε∞ bounded, ‖vε‖ → 0, aε,i → a for each i ≤ m, aε,i → b for each i ≥ m+1
with a 6= b, and, for j = 1, 2, if ujε contains more than one bubble then it satisfies
the assumptions of Theorem 1.2.

The proof of our results will be by contradiction. Thus, throughout this paper
we will assume that there exist solutions (uε) of (1.1) which satisfy (1.6) or (1.7). In
Section 2, we will obtain some information about such (uε) which allow us to develop
Sections 3 which deal with some useful estimates to the proof of our Theorems.
Finally, in Section 4, we combine these estimates to obtain a contradiction. Hence
the proof of our results.

2. Preliminary results

In this Section, we assume that there exist solutions (uε) of (1.1) which satisfy

uε =
k∑
i=1

(−1)i+1Pδ(aε,i,λε,i) + vε, (2.1)

with |uε|ε∞ bounded, k ≥ 2, aε,i ∈ Ω, and as ε → 0, ‖vε‖ → 0, λε,id(aε,i, ∂Ω) →
+∞, 〈Pδ(aε,i,λε,i), P δ(aε,j ,λε,j)〉 → 0 for i 6= j. We will collect some useful informa-
tion used in the next sections. First, from (2.1), it is easy to see that the following
remark holds.

Remark 2.1. Let (uε) be a family of sign-changing solutions of (1.1) satisfying
(2.1). Then

(i) uε ⇀ 0 as ε→ 0,
(ii)

∫
Ω
|uε|p+1+ε =

∫
Ω
|∆uε|2 = kSn/4 + o(1),

(iii) Mε,+ := maxΩ uε → +∞, Mε,− := −minΩ uε → +∞ as ε→ 0.

Secondly, arguing as in [2] and [22], we see that for uε satisfying (2.1), there is
a unique way to choose αi, ai, λi and v such that

uε =
k∑
i=1

(−1)i+1αiPδ(ai,λi) + v, (2.2)

with
αi ∈ R, αi → 1,

ai ∈ Ω, λi ∈ R∗+, λid(ai, ∂Ω)→ +∞,
v → 0 in H2(Ω) ∩H1

0 (Ω), v ∈ E,
(2.3)

where E denotes the subspace of H1
0 (Ω) defined by

E :=
{
w : 〈w,ϕ〉 = 0, ∀ϕ ∈ span{Pδi, ∂Pδi/∂λi, ∂Pδi/∂aji , i ≤ k; j ≤ n}

}
. (2.4)

Here, aji denotes the j-th component of ai and in the sequel, in order to simplify
the notations, we set

δ(ai,λi) = δi, P δ(ai,λi) = Pδi. (2.5)
In the following, we always assume that uε (which satisfies (2.1)) is written as in
(2.2) and (2.3) holds.
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Lemma 2.2. Let uε satisfying the assumption of above theorems. Then λi occur-
ring in (2.2) satisfies

λεi → 1 as ε→ 0, for each i ≤ k. (2.6)

Proof. By Remark 2.1, we know that∫
Ω

|uε|p+1+ε = kSn/4 + o(1) as ε→ 0. (2.7)

Furthermore,∫
Ω

|uε|p+1+ε =
∫

Ω

−∆uεuε =
∫

Ω

|uε|p−1+εuε

(∑
(−1)i+1αiPδi

)
+O(‖v‖2). (2.8)

Observe that∫
Ω

|uε|p−1+εuε

(∑
(−1)i+1αiPδi

)
=
∑

αp+ε+1
i

∫
Ω

Pδp+ε+1
i +O

(∑
j 6=i

∫
Ω

Pδp+εi Pδj

)
+O

(∑∫
Ω

αiPδ
p+ε
i |v|+

∑∫
Ω

αiPδi|v|p+ε
)

:=
∑

Ai,

(2.9)

where

Ai := αp+ε+1
i

∫
Ω

Pδp+ε+1
i +O

(∑
j 6=i

∫
Ω

Pδp+εi Pδj +
∫

Ω

Pδp+εi |v|+
∫

Ω

Pδi|v|p+ε
)
.

Easy computations show that∫
Ω

Pδp+1+ε
i = λ

ε(n−4)/2
i

(
Sn/4 + o(1)

)
,∫

Ω

Pδp+εi |v| = λ
ε(n−4)/2
i O(|v|Lp+1),∫

Ω

Pδi|v|p+ε = λ
ε(n−4)/2
i O(|v|p+εLp+1).

Recall that for i 6= j (see [1])∫
Rn

δpi δj =
∫

Rn

δpj δi = cεij +O
(
ε
n/(n−4)
ij log ε−1

ij

)
,

where c is a positive constant and, for i 6= j, εij is defined by

εij =
(λi
λj

+
λj
λi

+ λiλj |ai − aj |2
)(4−n)/2

. (2.10)

Hence, we obtain∫
Ω

Pδp+εi Pδj = O
(
λ
ε(n−4)/2
i

∫
Ω

Pδpi Pδj

)
= λ

ε(n−4)/2
i O(εij), for i 6= j.

Thus
Ai = αp+ε+1

i λ
ε(n−4)/2
i

(
Sn/4 + o(1)

)
. (2.11)

Therefore (2.8), (2.9), and (2.11) provide us with∫
Ω

|uε|p+1+ε =
(∑

αp+1+ε
i λ

ε(n−4)/2
i

)(
Sn/4 + o(1)

)
+ o(1). (2.12)

Combining (2.7), (2.12), and the fact that αi satisfies (2.3), the lemma follows. �
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Remark 2.3 ([6, 24] ). We recall the estimate

δεi (x)− cε0λ
ε(n−4)/2
i = O

(
ε log(1 + λ2

i |x− ai|2)
)

in Ω, (2.13)

which will be very useful in the next section.

3. Some useful estimates

As usual in this type of problems, we first deal with the v-part of uε, in order to
show that it is negligible with respect to the concentration phenomenon.

Lemma 3.1. The function v defined in (2.2), satisfies the estimate

‖v‖

≤ cε+ c


∑
i

1
(λidi)n−4 +

∑
i6=j εij(log ε−1

ij )(n−4)/n if n < 12,∑
i

1
(λidi)(n+4)/2−ε(n−4) +

∑
i 6=j ε

(n+4)/2(n−4)
ij (log ε−1

ij )(n+4)/2n ifn ≥ 12,

where εij is defined in (2.10) and di := d(ai, ∂Ω) for i ≤ k.

Proof. Since uε =
∑

(−1)i+1αiPδi + v is a solution of (1.1) and v ∈ E (see (2.4)),
we obtain ∫

Ω

−∆uεv = ‖v‖2 =
∫

Ω

|uε|p−1+εuεv

=
∫

Ω

|
∑

(−1)i+1αiPδi|p−1+ε(
∑

(−1)i+1αiPδi)v

+ p

∫
Ω

|
∑

(−1)i+1αiPδi|p−1+εv2 + o(‖v‖2).

Hence, we have
Q(v, v) = f(v) + o(‖v‖2), (3.1)

where

Q(v, v) =‖v‖2 − p
∫

Ω

|
∑

(−1)i+1αiPδi|p−1+εv2,

f(v) =
∫

Ω

|
∑

(−1)i+1αiPδi|p−1+ε(
∑

(−1)i+1αiPδi)v.

Using Remark 2.3 and according to [1], it is easy to see that

Q(v, v) = ‖v‖2 − p
k∑
i=1

∫
Ω

(Pδi)p−1+εv2 + o(‖v‖2)

is positive definite; that is, there exists c > 0 independent of ε, satisfying Q(v, v) ≥
c‖v‖2, for each v ∈ E. Then, from (3.1) we get

‖v‖2 = O(‖f(v)‖).

Now, using Lemma 2.2, we obtain

f(v) =
∑

(−1)i+1

∫
Ω

(αiPδi)p+εv

+O
(∑
i 6=j

∫
Ω

(δiδj)p/2|v|+
∑
i 6=j

∫
Ω

δp−1
i δj |v|(if n < 12)

)
.

(3.2)
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Using Remark 2.3 and the fact that v ∈ E, we obtain∣∣ ∫
Ω

Pδp+εi v
∣∣

= |
∫
δp+εi v|+O

(∫
δp−1+ε
i θi|v|

)
≤ cε

∫
log(1 + λ2

i |x− ai|2)δpi |v|+ c|θi|L∞
∫
δp−1+ε
i |v|

≤ c‖v‖
(
ε+

1
(λidi)n−4

(if n < 12) +
1

(λidi)
n+4

2 +ε(n−4)
(if n ≥ 12)

)
,

where θi := θai,λi
:= δi − Pδi.

For the other integrals of (3.2), we use Holder’s inequality and we obtain for
i 6= j ∫

Ω

(δiδj)p/2|v| ≤ c‖v‖
(∫

Ω

(δiδj)n/(n−4)
)(n+4)/2n

≤ c‖v‖ε(n+4)/2(n−4)
ij (log ε−1

ij )(n+4)/2n

and if n < 12, we have p− 1 = 8/(n− 4) > 1; therefore∫
Ω

δp−1
i δj |v| ≤ c‖v‖

(∫
Ω

(δiδj)n/(n−4)
)(n−4)/n

≤ c‖v‖εij(log ε−1
ij )(n−4)/n. (3.3)

Combining (3.2)–(3.3), the proof follows. �

Now, we need to introduce some notations before to state the crucial point in the
proof of our Theorems. We denote by G the Green’s function defined by : ∀x ∈ Ω

∆2G(x, .) = cnδx in Ω,

∆G(x, .) = G(x, .) = 0 on ∂Ω,

where δx is the Dirac mass at x and cn = (n− 4)(n− 2)ωn, with ωn is the area of
the unit sphere of Rn. We denote by H the regular part of G, that is,

H(x1, x2) = |x1 − x2|4−n −G(x1, x2) for (x1, x2) ∈ Ω2 \ Γ

with Γ = {(y, y) : y ∈ Ω}.

Proposition 3.2. Assume that n ≥ 5 and let αi, ai and λi be the variables defined
in (2.2) with k = 2. We have∣∣∣αic1n− 4

2
H(ai, ai)
λn−4
i

− αjc1
(
λi
∂ε12

∂λi
+
n− 4

2
H(a1, a2)

(λ1λ2)(n−4)/2

)
+ αi

n− 4
2

c2ε
∣∣∣

≤ cε2 + c

{∑
k=1,2

1
(λkdk)n−2 + ε

n
n−4
12 log ε−1

12 + ε2
12(log ε−1

12 )
2(n−4)

n if n ≥ 6),∑
k=1,2

1
(λkdk)2 + ε2

12(log ε−1
12 )2/5 if n = 5,

(3.4)
where i, j ∈ {1, 2} with i 6= j and c1, c2 are positive constants.

Proof. Let

c1 = c
2n

n−4
0

∫
Rn

dx

(1 + |x|2)(n+4)/2
, c2 =

n− 4
2

c
2n

n−4
0

∫
Rn

log(1+|x|2)
|x|2 − 1

(1 + |x|2)n+1
dx.
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It suffices to prove the proposition for i = 1. Multiplying (1.1) by λ1∂Pδ1/∂λ1 and
integrating on Ω, we obtain

α1

∫
Ω

δp1λ1
∂Pδ1
∂λ1

− α2

∫
Ω

δp2λ1
∂Pδ2
∂λ2

=
∫

Ω

|uε|p−1+εuελ1
∂Pδ1
∂λ1

. (3.5)

Using [1], we derive∫
Ω

δp1λ1
∂Pδ1
∂λ1

=
n− 4

2
c1
H(a1, a1)
λn−4

1

+O
( log(λ1d1)

(λ1d1)n−1

)
,∫

Ω

δp2λ1
∂Pδ1
∂λ1

= c1

(
λ1
∂ε12

∂λ1
+
n− 4

2
H(a1, a2)

(λ1λ2)(n−4)/2

)
+R,

where R satisfies

R = O
( ∑
k=1,2

log(λkdk)
(λkdk)n−1

+ ε
n

n−4
12 log ε−1

12

)
. (3.6)

For the other term of (3.5), we have∫
Ω

|uε|p−1+εuελ1
∂Pδ1
∂λ1

=
∫

Ω

|α1Pδ1 − α2Pδ2|p−1+ε(α1Pδ1 − α2Pδ2)λ1
∂Pδ1
∂λ1

+ (p+ ε)
∫

Ω

|α1Pδ1 − α2Pδ2|p−1+εvλ1
∂Pδ1
∂λ1

+O
(
‖v‖2 + ε

n
n−4
12 log ε−1

12

)
.

(3.7)

The above integral can be written as∫
Ω

|α1Pδ1 − α2Pδ2|p−1+εvλ1
∂Pδ1
∂λ1

=
∫

Ω

(α1Pδ1)p−1+εvλ1
∂Pδ1
∂λ1

+O
(∫

Ω\A
Pδp−1

2 Pδ1|v|+
∫
A

Pδp−1
1 Pδ2|v|

)
,

(3.8)

where A = {x : 2α2Pδ2 ≤ α1Pδ1}. Observe that, for n ≥ 12, we have p − 1 =
8/(n− 4) ≤ 1, thus∫

Ω\A
Pδp−1

2 Pδ1|v|+
∫
A

Pδp−1
1 Pδ2|v| ≤ c

∫
Ω

|v|(δ1δ2)
n+4

2(n−4)

≤ c‖v‖ε(n+4)/2(n−4)
12 (log ε−1

12 )(n+4)/2n.

For n < 12, we have∫
Ω\A

Pδp−1
2 Pδ1|v|+

∫
A

Pδp−1
1 Pδ2|v| ≤ cε12(log ε−1

12 )(n−4)/n‖v‖. (3.9)

For the other integral in (3.8), using [1], [24] and Remark 2.3, we obtain∫
Ω

Pδp−1+ε
1 vλ1

∂Pδ1
∂λ1

= O
(
‖v‖
[
ε+

( 1
(λ1d1)inf(n−4,(n+4)/2)

(if n 6= 12) +
log(λ1d1)
(λ1d1)4

(if n = 12)
)])

.

It remains to estimate the second integral of (3.7). We have∫
Ω

|α1Pδ1 − α2Pδ2|p−1+ε(α1Pδ1 − α2Pδ2)λ1
∂Pδ1
∂λ1
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=
∫

Ω

(α1Pδ1)p+ελ1
∂Pδ1
∂λ1

−
∫

Ω

(α2Pδ2)p+ελ1
∂Pδ1
∂λ1

− (p+ ε)
∫

Ω

α2Pδ2(α1Pδ1)p−1+ελ1
∂Pδ1
∂λ1

+O
(
ε

n
n−4
12 log ε−1

12

)
.

Now, using Remark 2.3 and [1], we have∫
Ω

Pδp+ε1 λ1
∂Pδ1
∂λ1

=
n− 4

2

(
c2ε+ 2c1

H(a1, a1)
λn−4

1

)
+O

(
ε2 +

log(λ1d1)
(λ1d1)n−1

+
1

(λ1d1)2
(if n = 5)

)
,∫

Ω

Pδp+ε2 λ1
∂Pδ1
∂λ1

= c1

(
λ1
∂ε12

∂λ1
+
n− 4

2
H(a1, a2)

(λ1λ2)(n−4)/2

)
+R2,

p

∫
Ω

Pδ2Pδ
p−1+ε
1 λ1

∂Pδ1
∂λ1

= c1

(
λ1
∂ε12

∂λ1
+
n− 4

2
H(a1, a2)

(λ1λ2)(n−4)/2

)
+R1, (3.10)

where for i = 1, 2,

Ri = O
(
εε12(log ε−1

12 )
n−4

n

)
+
(
ε

n
n−4
12 (log ε−1

12 ) +
log(λidi)
(λidi)n

if n ≥ 8
)

+
(ε12(log ε−1

12 )
n−4

n

(λidi)n−4
if n < 8

)
Therefore, combining (3.5)–(3.10), and Lemma 3.1, the proof of Proposition 3.2
follows. �

4. Proof of main theorems

Proof of Theorem 1.1. Arguing by contradiction, let us suppose that the problem
(1.1) has a solution uε as stated in Theorem 1.1. This solution has to satisfy (2.2)
and from Proposition 3.2, we have

c1
n− 4

2
H(ai, ai)
λn−4
i

− c1
(
λi
∂ε12

∂λi
+
n− 4

2
H(a1, a2)

(λ1λ2)(n−4)/2

)
+
n− 4

2
c2ε

= o
(
ε+

∑
k=1,2

1
(λkdk)n−4

+ ε12

)
, for i = 1, 2.

(4.1)

Furthermore, an easy computation shows that

λi
∂ε12

∂λi
= −n− 4

2
ε12

(
1− 2

λj
λi
ε

2/n−4
12

)
, for i, j = 1, 2; j 6= i. (4.2)

Without loss of generality, we can assume that λ2 ≥ λ1. We distinguish two cases
and in each one, we will find a contradiction which implies our theorem.

Case 1. λ1λ2|a1−a2|2
λ2/λ1

→ +∞. In this case, it is easy to obtain

ε12 =
1

(λ1λ2|a1 − a2|2)(n−4)/2
+ o(ε12), (4.3)

which implies that

λi
∂ε12

∂λi
= −n− 4

2
1

(λ1λ2|a1 − a2|2)(n−4)/2
+ o(ε12) for i = 1, 2. (4.4)
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Then from (4.1) and (4.4), we obtain

c1
2

(H(a1, a1)
λn−4

1

+
H(a2, a2)
λn−4

2

)
+

c1
(λ1λ2)(n−4)/2

( 1
|a1 − a2|n−4

−H(a1, a2)
)

+ c2ε

= o
(
ε+

∑
k=1,2

1
(λkdk)n−4

+ ε12

)
.

Using the fact that

G(a1, a2) :=
1

|a1 − a2|n−4
−H(a1, a2) > 0,

ε12 = O
( H(a1, a2)

(λ1λ2)(n−4)/2
+

G(a1, a2)
(λ1λ2)(n−4)/2

)
,

we derive a contradiction in this case.
Case 2. λ1λ2|a1−a2|2

λ2/λ1
→ c ≥ 0. In this case, we remark that λ2/λ1 → +∞ (since

ε12 → 0). Multiplying (4.1) by 2 for i = 2 and adding to (4.1) for i = 1, we obtain:

c1

(H(a1, a1)
λn−4

1

+ 2
H(a2, a2)
λn−4

2

)
− 2c1
n− 4

(
λ1
∂ε12

∂λ1
+ 2λ2

∂ε12

∂λ2

)
− 3H(a1, a2)

(λ1λ2)(n−4)/2
+ 3c2ε

= o
(
ε+

∑
k=1,2

1
(λkdk)n−4

+ ε12

)
.

(4.5)

Now, using (4.2) and the fact that λ2 ≥ λ1, an easy computation shows that

− λ1
∂ε12

∂λ1
− 2λ2

∂ε12

∂λ2
≥ n− 4

4
ε12. (4.6)

Furthermore, since H(a1, a2) ≤ cd4−n
1 and λ2/λ1 →∞, we obtain

H(a1, a2)
(λ1λ2)(n−4)/2

= o
( 1

(λ1d1)n−4

)
. (4.7)

Then we derive a contradiction from (4.5), (4.6) and (4.7). Our proof is thereby
complete. �

Proof of Theorem 1.2. Arguing by contradiction, let us assume that problem (1.1)
has solutions (uε) as stated in Theorem 1.2. From Section 2, these solutions have
to satisfy (2.2) and (2.3). As in the proof of Proposition 3.2, we have for each
i = 1, . . . , k

c1
n− 4

2
H(ai, ai)
λn−4
i

+ c1
∑
j 6=i

(−1)j+1
(
λi
∂εij
∂λi

+
n− 4

2
H(ai, aj)

(λiλj)(n−4)/2

)
+
n− 4

2
c2ε

= o
(
ε+

k∑
j=1

1
(λjdj)n−4

+
∑
r 6=j

εrj

)
.

(4.8)
Observe that, if j < i, we have λj |ai − aj | is bounded (by the assumption) which
implies that

|ai − aj | = o(dj), di/dj = 1 + o(1)∀i, j, εij ≥ c(λj/λi)(n−4)/2 ∀j < i, (4.9)
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where c is a positive constant. Using (4.9), easy computations show that

ε(i−1)j + εi(j+1) = o(εij) ∀i < j,

H(ai, aj)
(λiλj)(n−4)/2

= o(
1

(λ1d1)n−4
) if (i, j) 6= (1, 1).

(4.10)

Thus, using (4.10), (4.8) can be written as

c1
n− 4

2
H(a1, a1)
λn−4

1

− c1λ1
∂ε12

∂λ1
+
n− 4

2
c2ε = o

(
ε+

1
(λ1d1)n−4

+
∑
r 6=j

εrj

)
, (4.11)

−c1
∂ε(k−1)k

∂λk
+
n− 4

2
c2ε = o

(
ε+

1
(λ1d1)n−4

+
∑
r 6=j

εrj

)
, (4.12)

and for 1 < i < k,

− c1λi
∂ε(i−1)i

∂λi
− c1λi

∂εi(i+1)

∂λi
+
n− 4

2
c2ε = o

(
ε+

1
(λ1d1)n−4

+
∑
r 6=j

εrj

)
. (4.13)

Using (4.2) and (4.12), we derive that

ε = o
( 1

(λ1d1)n−4
+
∑
r 6=j

εij

)
, ε(k−1)k = o

( 1
(λ1d1)n−4

+
∑
r 6=j

εrj

)
. (4.14)

Now, using (4.14) and (4.12) with k − 1 instead of k, we derive the estimate of
ε(k−2)(k−1) and by induction we get

ε(i−1)i = o
( 1

(λ1d1)n−4
+
∑
r 6=j

εrj

)
for i = 2, . . . , k. (4.15)

Finally, using (4.10), (4.14), (4.15) and (4.11), we obtain

H(a1, a1)
λn−4

1

= o(
1

(λ1d1)n−4
),

which gives a contradiction. Hence, our theorem is proved. �

Proof of Theorem 1.3. Arguing by contradiction, let us assume that problem (1.1)
has solutions (uε) as stated in Theorem 1.3. From Section 2, these solutions have
to satisfy (2.2) and (2.3). Without loss of generality, in the sequel, we will assume
that λ1d1 ≤ λm+1dm+1. As in the proof of Theorem 1.2, (4.8) is satisfied for each
i = 1, . . . , k. Furthermore, (4.10) holds if i, j ≤ m or i, j > m (in the last case, we
require that (i, j) 6= (m+ 1,m+ 1)).

Observe that since a 6= b, it is easy to obtain that |ai − aj | ≥ c > 0 for each
i ≤ m and j ≥ m+ 1. Hence for i ≤ m and j ≥ m+ 1 we have

λr
∂εij
∂λr

= −n− 4
2

1
(λiλj |ai − aj |2)(n−4)/2

+ o(εij), for r = i, j, (4.16)

εij +
H(ai, aj)

(λiλj)(n−4)/2
= o
(
ε1(m+1) +

1
(λ1d1)n−4

)
for (i, j) 6= (1,m+ 1). (4.17)

Now using (4.10), (4.16) and (4.17), we derive that (4.13) holds for each i 6∈ {1,m+
1}. However, since the first bubble in the second bubble tower u2

ε has negative sign,
for i = 1,m+ 1, we have

c1
H(ai, ai)
λn−4
i

− 2c1
n− 4

λi
∂εi(i+1)

∂λi
+ c1ε1(m+1) + c2ε = o

(
ε+

1
(λ1d1)n−4

+
∑
r 6=j

εrj

)
.
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Finally, arguing as in Theorem 1.2, we derive a contradiction. Hence our result is
proved. �
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