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OSCILLATION OF MEROMORPHIC SOLUTIONS TO LINEAR
DIFFERENTIAL EQUATIONS WITH COEFFICIENTS OF

[p, q]-ORDER

HONG-YAN XU, JIN TU

Abstract. We study the relationship between “small functions” and the de-
rivative of solutions to the higher order linear differential equation

f (k) + Ak−1f (k−1) + · · ·+ A0f = 0, (k ≥ 2)

Here Aj(z) (j = 0, 1, . . . , k− 1) are entire functions or meromorphic functions

of [p, q]-order.

1. Introduction and statement of main results

The study of oscillation theory for linear differential equations in the complex
plane C was started by Bank and Laine [2, 3]. After their well-known work, many
important results have been obtained, see for example [19, 20].

We assume that the reader knows the standard notations and the fundamental
results of the Nevanlinna value distribution theory of meromorphic functions [12,
15]. In addition, we use σ(f), λ(f) and λ(f) to denote the order, the exponent of
convergence of the zero-sequence, and the exponent of convergence of the nonzero
zero sequence of a meromorphic function f(z), respectively. We also denote by τ(f)
the type of an entire function f(z) with 0 < σ(f) = σ < +∞ (see [15]).

We use mE =
∫
E
dt and mlE =

∫
E
dt
t to denote the linear measure and the

logarithmic measure of a set E ⊂ [1,+∞), respectively. We denote by S(r, f) any
quantity satisfying S(r, f) = o(T (r, f)), as r → +∞, possibly outside of a set with
finite linear measure. A meromorphic function ψ(z) is called a small function with
respect to f if T (r, ψ) = S(r, f).

For results on the growth of solutions to equations of the form

f ′′ +A(z)f ′ +B(z)f = 0, (1.1)

with A(z) and B(z)(6≡ 0) are entire functions, the reader is referred to [1, 7, 8, 11,
14].

In 1996, Kwon [18] investigated the hyper-order of the solutions of (1.1) and
obtained the following result.
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Theorem 1.1 ([18]). Let A(z) and B(z) be entire functions such that σ(A) < σ(B)
or σ(B) < σ(A) < 1/2. Then every solution f 6≡ 0 of (1.1) satisfies σ2(f) ≥
max{σ(A), σ(B)}.

In 2006, Chen and Shon [9] investigated the zeros concerning small functions and
fixed points of solutions of second order linear differential equations and obtained
the following results.

Theorem 1.2 ([9]). Let Aj(z) 6≡ 0 (j = 1, 2) be entire functions with σ(Aj) < 1,
suppose that a, b are complex numbers that satisfy ab 6= 0 and arg a 6= arg b or
a = cb (0 < c < 1). If ϕ(z) 6≡ 0 is an entire function of finite order, then every
non-trivial solution f of equation

f ′′ +A1(z)eazf ′ +A2(z)ebzf = 0

satisfies λ(f − ϕ) = λ(f ′ − ϕ) = λ(f ′′ − ϕ) =∞.

Theorem 1.3. [9] Let A1(z) 6≡ 0, ϕ(z) 6≡ 0, Q(z) be entire functions with σ(A1) <
1, 1 < σ(Q) <∞ and σ(ϕ) <∞, then every non-trivial solution f of equation

f ′′ +A1(z)eazf ′ +Q(z)f = 0

satisfies λ(f −ϕ) = λ(f ′−ϕ) = λ(f ′′−ϕ) =∞, where a 6= 0 is a complex number.

In 2012, Wu and Chen [24] investigate the problem on the fixed-points of solu-
tions of some second order differential equation with transcendental entire function
coefficients and obtained the following theorems.

Theorem 1.4 ([24, Theorem 1]). Let Aj(z) 6≡ 0(j = 0, 1) be entire functions,
P (z) be a polynomial satisfying σ(A1) < degP (z) and 0 < σ(A0) < 1/2, and let
ϕ(z)( 6≡ 0) be an entire function of finite order. Then every non-trivial solution f
of equation

f ′′ +A1(z)eP (z)f ′ +A0(z)f = 0

satisfies λ(f − ϕ) =∞.

Theorem 1.5 ([24, Theorem 2]). Under the assumptions of Theorem 1.4, every
non-trivial solution f of the equation

f ′′ +A1(z)eP (z)f ′ +A0(z)f = 0

satisfies
(i) λ(f − z) = λ(f ′ − z) = λ(f ′′ − z) = σ(f) =∞;

(ii) g(z) has infinitely many fixed points and λ(g − z) = ∞, where g(z) =
d0f(z) + d1f

′(z) + d2f
′′(z), d0d2 6= 0.

An interesting subject arises naturally about the problems of the zeros concerning
small function and fixed points of solutions of differential equations

f (k) +Ak−1f
(k−1) + · · ·+A0f = 0, (k ≥ 2) (1.2)

where Aj(z) (j = 0, 1, . . . , k − 1) are entire functions.
In 2000s, Beläıdi [4], Beläıdi and El Farissi [6] (see also [10, 22, 23]) investigated

the fixed points and the relationship between small functions and differential poly-
nomials of solutions of (1.2) and obtained some results which improve Theorem
1.3.
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Recently, the growth of solutions of higher order linear differential equation with
meromorphic coefficients of [p, q]-order was studied and some results were obtained
in [5, 21].

In this article, we study the zeros of small functions and the fixed points of
solutions to equation (1.2) with entire or meromorphic coefficients of [p, q]-order
and obtain some results that extend the work of Chen and Beläıdi.

Before stating our theorems, we introduce the concepts of entire functions of
[p, q]-order (see [16, 17, 21]). Juneja and co-authors [16, 17] introduced the con-
cept of entire functions of [p, q]-order, and studied some of their properties for p, q
integers satisfying p > q ≥ 1.

Definition 1.6. If f(z) is a transcendental entire function, the [p, q]-order of f(z)
is defined by

σ[p,q](f) = lim sup
r→∞

logp+1M(r, f)
logq r

= lim sup
r→∞

logp T (r, f)
logq r

,

where p, q are two integers and p > q ≥ 1.

Remark 1.7. For sufficiently large r ∈ [1,∞), we define logi+1 r = logi(log r)
(i ∈ N) and expi+1 r = exp(expi r) (i ∈ N) and exp0 r = r = log0 r, exp−1 r = log r.

Definition 1.8. The [p, q]-type of an entire function f of [p, q]-order σ (0 < σ <∞)
is defined by

τ[p,q] = τ[p,q](f) = lim sup
r→∞

logpM(r, f)
(logq−1 r)σ

.

And the [p, q] exponent of convergence of the zero sequence of f is defined by

λ[p,q] = λ[p,q](f) = lim sup
r→∞

logp n(r, 1
f )

logq r
= lim sup

r→∞

logpN(r, 1
f )

logq r
,

and the [p, q] exponent of convergence of the distinct zero sequence of f is defined
by

λ[p,q] = λ[p,q](f) = lim sup
r→∞

logp n(r, 1
f )

logq r
= lim sup

r→∞

logpN(r, 1
f )

logq r
.

Let ϕ(z) be an entire function with σ[p,q](ϕ) < σ[p,q](f), the [p, q] exponent of
convergence of zeros and distinct zeros of f(z)− ϕ(z) are defined to be

λ[p,q](f − ϕ) = lim sup
r→∞

logpN(r, 1
f−ϕ )

logq r
, λ[p,q](f − ϕ) = lim sup

r→∞

logpN(r, 1
f−ϕ )

logq r
,

especially if ϕ(z) = z, we use λ[p,q](f − z) and λ[p,q](f − z) to denote the [p, q] ex-
ponent of convergence of fixed points and distinct fixed points of f(z), respectively.

Next we state our main results.

Theorem 1.9. It Aj(z) (j = 0, 1, . . . , k − 1) are entire functions and satisfy one
of the following two conditions:

(i) max{σ[p,q](Aj) : j = 1, 2, . . . , k − 1} < σ[p,q](A0) <∞;
(ii) max{σ[p,q](Aj) : j = 1, 2, . . . , k − 1} ≤ σ[p,q](A0) <∞ and

max{τ[p,q] (Aj)|σ[p,q](Aj) = σ[p,q](A0) > 0} = τ1 < τ[p,q](A0) = τ ,
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then for every solution f 6≡ 0 of (1.2) and for any entire function ϕ(z) 6≡ 0 satisfying
σ[p+1,q](ϕ) < σ[p,q](A0). Moreover

λ[p+1,q](f − ϕ) = λ[p+1,q](f ′ − ϕ) = λ[p+1,q](f ′′ − ϕ)

= λ[p+1,q](f (i) − ϕ) = σ[p+1,q](f)

= σ(A0), (i ∈ N).

Throughout this paper we assume that A0 does not vanish identically.

Theorem 1.10. If Aj(z), j = 0, 1, . . . , k− 1 are meromorphic functions satisfying
max{σ[p,q] (Aj) : j = 1, 2, . . . , k − 1} < σ[p,q](A0) and δ(∞, A0) > 0, then for every
meromorphic solution f 6≡ 0 of (1.2) and for any meromorphic function ϕ(z) 6≡ 0
satisfying σ[p+1,q](ϕ) < σ[p,q](A0), we have

λ[p+1,q](f (i) − ϕ) = λ[p+1,q](f (i) − ϕ) ≥ σ[p,q](A0)(i = 0, 1, . . . ),

where f (0) = f .

Example 1.11. For the equation

f ′′ +
e2z + ez − 1

1− ez
f ′ +

−e2z

1− ez
f = 0, (1.3)

we can easily see that this equation has a solution f(z) = ee
z

+ ez. The func-
tions e2z+ez−1

1−ez , −e
2z

1−ez are meromorphic and satisfy σ( e
2z+ez−1
1−ez ) = σ(−e

2z

1−ez ) = 1 and

δ
(
∞, −e

2z

1−ez

)
= 1

2 . Taking ϕ(z) = ez, then σ[2,1](ϕ) < σ[1,1](−e
2z

1−ez ). Thus, we get that

λ[2,1](f ′ − ϕ) = λ[2,1](ee
z

ez) = 0 6= 1 = σ[1,1](−e
2z

1−ez ).

For p > q ≥ 1, we have the following example.

Example 1.12. Consider the equation

f ′′ +A1f
′ +A0f = 0,

where

A1 = −1 + ez − 2ee
z

+ e2e
z − 2ee

z

ez + e3e
z

ez

(1− eez )2
, A0 =

e3e
z

e2z − e2ez

e2z

(1− eez )2
.

Obviously, A0, A1 are meromorphic functions, σ[2,1](A1) = σ[2,1](A0) = 1 and

δ(∞, A0) > 0. By calculating, the equation (1.12) has a solution f(z) = ee
ez

+
ee

z

. Taking ϕ(z) = ee
z

ez, then σ[3,1](ϕ) < σ[2,1](A0). Thus, we can get that

λ[3,1](f ′ − ϕ) = λ[3,1](ee
ez

ee
z

ez) = 0 6= 1 = σ[2,1](A0).

From Theorems 1.9 and 1.10, we obtain the following corollaries.

Corollary 1.13. Under the assumptions of Theorem 1.9, if ϕ(z) = z, for every
solution f 6≡ 0 of (1.2), we have

λ[p+1,q](f − z) = λ[p+1,q](f ′ − z) = λ[p+1,q](f ′′ − z)

= λ[p+1,q](f (i) − z) = σ[p+1,q](f)

= σ[p,q](A0), (i ∈ N).

Corollary 1.14. Under the assumptions of Theorem 1.10, if ϕ(z) = z, for every
meromorphic solution f 6≡ 0 of (1.2), we have λ[p+1,q](f (i)−z) = λ[p+1,q](f (i)−z) ≥
σ[p+1,q](A0), (i = 0, 1, . . . ), where f (0) = f .
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2. Preliminary results

To prove our theorems, we require the following lemmas.

Lemma 2.1 ([25, Lemma 2.1]). Assume f 6≡ 0 is a solution of (1.2), set g = f−ϕ,
then g satisfies the equation

g(k) +Ak−1g
(k−1) + · · ·+A0g = −[ϕ(k) +Ak−1ϕ

(k−1) + · · ·+A0ϕ]. (2.1)

Lemma 2.2 ([25, Lemma 2.2]). Assume f 6≡ 0 is a solution of equation (1.2), set
g1 = f ′ − ϕ , then g1 satisfies the equation

g
(k)
1 + U1

k−1g
(k−1)
1 + · · ·+ U1

0 g1 = −[ϕ(k) + U1
k−1ϕ

(k−1) + · · ·+ U1
0ϕ], (2.2)

where U1
j = A′j+1 +Aj − A′0

A0
Aj+1, j = 0, 1, 2, . . . , k − 1 and Ak ≡ 1.

Lemma 2.3 ([25, Lemma 2.5]). Assume f 6≡ 0 is a solution of equation (1.2), set
gi = f (i) − ϕ, then gi satisfies the equation

g
(k)
i + U ik−1g

(k−1)
i + · · ·+ U i0gi = −[ϕ(k) + U ik−1ϕ

(k−1) + · · ·+ U i0ϕ], (2.3)

where U ij = U i−1
j+1

′
+ U i−1

j − Ui−1
0
′

Ui−1
0

U i−1
j+1, j = 0, 1, 2, . . . , k − 1, U i−1

k ≡ 1 and i ∈ N.

Lemma 2.4 ([21, Lemma 3.9]). Let f(z) be an entire function of [p, q]-order, then
σ[p,q](f) = σ[p,q](f ′).

Lemma 2.5 ([21, Lemma 3.10]). Let f(z) be an entire function of [p, q]-order sat-
isfying σ[p,q](f) = σ2, then there exists a set E ⊂ [1,+∞) with infinite logarithmic
measure such that for all r ∈ E, we have

lim
r→∞

logp T (r, f)
logq r

= σ2, r ∈ E.

Lemma 2.6. Let A0(z), A1(z), . . . , Ak−1(z) be entire functions with [p, q]-order and
satisfy max{σ[p,q](Aj) : j = 1, 2, . . . , k − 1} = σ1 < σ[p,q](A0) <∞, and set

U1
j = A′j+1 +Aj −

A′0
A0

Aj+1

and

U ij = U i−1
j+1

′
+ U i−1

j − U i−1
0

′

U i−1
0

U i−1
j+1,

where j = 0, 1, 2, . . . , k− 1, Ak ≡ 1, U i−1
k ≡ 1 and i ∈ N. Then there exists a set E

with infinite logarithmic measure such that for r ∈ E, we have

σ[p,q](A0) = lim
r→∞

logpm(r, U i0)
logq r

> lim sup
r→∞

max1≤j≤k−1{logpm(r, U ij)}
logq r

= σ1.

(2.4)

Proof. We will use the inductive method to prove it.
First, when i = 1, it follows that U1

j = A′j+1+Aj−A
′
0

A0
Aj+1 for j = 0, 1, 2, . . . , k−1

and Ak ≡ 1. When j = 0, that is, U1
0 = A′1 +A0 − A′0

A0
A1. Then, we have

m(r, U1
0 ) ≤ m(r,A1) +m(r,A0) +m

(
r,
A′1
A1

)
+m

(
r,
A′0
A0

)
+O(1). (2.5)
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From A0 = −A′1 + U1
0 + A′0

A0
A1, we have

m(r,A0) ≤ m(r,A1) +m(r, U1
0 ) +m

(
r,
A′1
A1

)
+m

(
r,
A′0
A0

)
+O(1). (2.6)

When j 6= 0, from the definitions of U1
j (j = 1 . . . , k), we have

m
(
r, U1

j

)
≤ m(r,Aj+1) +m(r,Aj) +m

(
r,
A′0
A0

)
+m

(
r,
A′j+1

Aj+1

)
+O(1), j = 1, 2, . . . , k − 1.

(2.7)

Since A0(z), . . . , Ak−1(z) are entire functions with max{σ[p,q](Aj) : j = 1, 2, . . . , k−
1} < σ[p,q](A0) <∞ and (2.7), we have

max
1≤j≤k−1

{m(r, U1
j )t}

≤ max
1≤j≤k−1

{m(r,Aj) + o(m(r,A0) +O(log(rT (r, f)))}+O(1),
(2.8)

holds for all r ∈ E1 − E2 (where E1 is a set of infinite logarithmic measure and
E2 is a set of finite linear measure). From (2.5), (2.6), (2.8) and Lemma 2.5, there
exists a set E ⊂ [1,+∞) with infinite logarithmic measure such that

σ[p,q](A0) = lim
r→∞

logpm(r, U1
0 )

logq r

> σ1 = lim sup
r→∞

max1≤j≤k−1{logpm(r,Aj)}
logq r

≥ lim sup
r→∞

max1≤j≤k−1{logpm(r, U1
j )}

logq r
, r ∈ E.

(2.9)

Now, suppose that (2.4) holds for i ≤ n(n ∈ N), thus, there exists a set E with
infinite logarithmic measure such that

σ[p,q](A0) = lim
r→∞

logpm(r, Un0 )
logq r

> lim sup
r→∞

max1≤j≤k−1{logpm(r, Unj )}
logq r

= σ1.

(2.10)

Next, we prove that (2.4) holds for i = n+ 1. From the assumptions of this lemma,
we have Un+1

j = Unj+1
′ + Unj −

Un
0
′

Un
0
Unj+1, (j = 0, 1, 2, . . . , k − 1) and Unk ≡ 1 for

i = n+ 1. Thus, when j = 0, it follows that Un+1
0 = Un1

′ +Un0 −
Un

0
′

Un
0
Un1 . Then, we

have

m
(
r, Un+1

0

)
≤ m (r, Un0 ) +m(r, Un1 ) +m(r,

Un0
′

Un0
) +m(r,

Un1
′

Un1
) +O(1). (2.11)

And since Un0 = −Un1
′ + Un+1

0 + Un
0
′

Un
0
Un1 , we have

m(r, Un0 ) ≤ m(r, Un+1
0 ) +m(r, Un1 ) +m(r,

Un0
′

Un0
) +m(r,

Un1
′

Un1
) +O(1). (2.12)
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When j 6= 0, it follows from the definitions of Un+1
j (j = 1, 2, . . . , k−1) and Unk ≡ 1

that

m(r, Un+1
j ) ≤ m(r, Unj+1) +m(r, Unj ) +m(r,

Unj+1
′

Unj+1

) +m(r,
Un0
′

Un0
) +O(1). (2.13)

From (2.10)–(2.13), there exists a set E with infinite logarithmic measure such that

lim
r→∞

logpm
(
r, Un+1

0

)
logq r

= lim
r→∞

logpm (r, Un0 )
logq r

= σ[p,q](A0)

> σ1 = lim sup
r→∞

max1≤j≤k−1{logpm
(
r, Unj

)
}

logq r

= lim sup
r→∞

max1≤j≤k−1{logpm(r, Un+1
j )}

logq r
, r ∈ E.

(2.14)

Thus, the proof is complete. �

Lemma 2.7. Let Hj(z) (j = 0, 1, . . . , k − 1) be meromorphic functions of finite
[p, q]-order. If

lim sup
r→∞

max1≤j≤k−1{logpm(r,Hj)}
logq r

= β1

and there exists a set E1 with infinite logarithmic measure such that

lim
r→∞

logpm(r,H0)
logq r

= β2 > β1

holds for all r ∈ E1, then every meromorphic solution f 6≡ 0 of

f (k) +Hk−1f
(k−1) + · · ·+H1f

′ +H0f = 0 (2.15)

satisfies σ[p+1,q](f) ≥ β2.

Proof. Assume that f(z) 6≡ 0 is a meromorphic solution of (2.15). From (2.15), we
have

m(r,H0) ≤ m(r,
f (k)

f
) + · · ·+m(r,

f ′

f
) +

k−1∑
j=1

m(r,Hj) +O(1). (2.16)

By the logarithmic derivative lemma and (2.16), we have

m(r,H0) ≤ O{log rT (r, f)}+
k−1∑
j=1

m(r,Hj), r 6∈ E2, (2.17)

where E2 ⊂ [1,+∞) is a set with finite linear measure. From the assumptions of
Lemma 2.7, there exists a set E1 with infinite logarithmic measure such that for all
|z| = r ∈ E1 − E2, we have

expp{(β2 − ε) logq r} ≤ O{log rT (r, f)}+ (k − 1) expp{(β1 + ε) logq r}, (2.18)

where 0 < 2ε < β2 − β1. From (20), we have σ[p+1,q](f) ≥ β2. �

Lemma 2.8 ([13]). Let f(z) be a transcendental meromorphic function and α > 1
be a given constant. Then for any given ε > 0, there exists a set E7 ⊂ [1,∞)
that has finite logarithmic measure and a constant M > 0 that depends only on α



8 H.-Y. XU, J. TU EJDE-2014/73

and (m,n)(m,n ∈ {0, . . . , k} with m < n) such that for all z satisfying |z| = r 6∈
[0, 1] ∪ E7, we have

∣∣ f (n)(z)
f (m)(z)

∣∣ ≤M(T (αr, f)
r

(logα r) log T (αr, f)
)n−m

.

Lemma 2.9 ([21, Lemma 3.13]). Let f(z) be an entire function of [p, q]-order
satisfying σ[p,q](f) = σ, τ[p,q](f) = τ , 0 < σ < ∞, 0 < τ < ∞, then for any given
β < τ , there exists a set E4 ⊂ [1,+∞) that has infinite logarithmic measure such
that for all r ∈ E4, we have

logpM(r, f) > β(logq−1 r)
σ.

Lemma 2.10. Let A0(z), A1(z), . . . , Ak−1(z) be entire functions with finite [p, q]-
order and satisfy max{σ[p,q](Aj) : j = 1, 2, . . . , k − 1} ≤ σ[p,q](A0) = σ2 < ∞ and
max{τ[p,q](Aj) |σ[p,q] (Aj) = σ[p,q](A0) > 0} = τ1 < τ[p,q](A0) = τ , and let U1

j , U
i
j

be as stated in Lemma 2.6. Then for any given ε(0 < 2ε < τ − τ1), there exists a
set E5 with infinite logarithmic measure such that

|U ij | ≤ expp{(τ1 + ε)(logq−1 r)
σ2}, |U i0| ≥ expp{(τ − ε)(logq−1 r)

σ2}, (2.19)

where i ∈ N and j = 1, 2, . . . , k − 1.

Proof. We will use the induction method for this proof.
(i) First, we prove that U ij(j = 0, 1, . . . , k − 1) satisfy (2.19) when i = 1. From

the definition U1
j = A′j+1 + Aj − A′0

A0
Aj+1(j 6= 0) and U1

0 = A′1 + A0 − A′0
A0
A1, we

have

|U1
0 | ≥ −|A1|

(
|A
′
1

A1
|+ |A

′
0

A0
|
)

+ |A0| (2.20)

and

|U1
j | ≤ |Aj+1|

(
|
A′j+1

Aj+1
|+ |A

′
0

A0
|
)

+ |Aj |, j = 1, 2, . . . , k − 1; Ak ≡ 1. (2.21)

From Lemma 2.8, Lemma 2.9 and (2.20)–(2.21), for any ε(0 < 4ε < τ − τ1), there
exists a set E5 with infinite logarithmic measure such that

|U1
0 | ≥ −2M expp{(τ1 +

ε

8
)(logq−1 r)

σ2}(T (2r,A0))2

+ expp{(τ −
ε

4
)(logq−1 r)

σ2}

≥ −2M expp{(τ1 +
ε

8
)(logq−1 r)

σ2}
(

expp{(σ2 +
ε

8
)(logq 2r)}

)2
+ expp{

(
τ − ε

4

)
(logq−1 r)

σ2}

≥ expp{
(
τ − ε

2

)
(logq−1 r)

σ2}

(2.22)
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and

|U1
j | ≤ 2M expp{(τ1 +

ε

4
)(logq−1 r)

σ2}(T (2r,A0))2

+ expp{(τ1 +
ε

4
)(logq−1 r)

σ2}

≤ 2M expp{(τ1 +
ε

4
)(logq−1 r)

σ2}
(

expp{(σ2 +
ε

8
)(logq 2r)}

)2
+ expp{(τ1 +

ε

4
)(logq−1 r)

σ2}

≤ expp{(τ1 +
ε

2
)(logq−1 r)

σ2}, j 6= 0,

(2.23)

where M > 0 is a constant, not necessarily the same at each occurrence.
(ii) Next, we show that U ij (j = 0, 1, 2, . . . , k−1) satisfy (2.19) when i = 2. From

U2
0 = U1

1
′ + U1

0 −
U1

0
′

U1
0
U1

1 and U2
j = U1

j+1
′ + U1

j −
U1

0
′

U1
0
U1
j+1 (j = 0, 1, . . . , k − 1) and

U1
k ≡ 1, we have

|U2
0 | ≥ |U1

0 | − |U1
1 |
(
|U

1
1
′

U1
1

|+ |U
1
0
′

U1
0

|
)

(2.24)

and

|U2
j | ≤ |U1

j |+ |U1
j+1|

(
|
U1
j+1
′

U1
j+1

|+ |U
1
0
′

U1
0

|
)
, j = 1, 2, . . . , k − 1. (2.25)

By the conclusions in (i), Lemma 2.8 and Lemma 2.9, (2.22)–(2.23), for all |z| =
r ∈ E5, we have

|U2
0 | ≥ −2M expp

{
(τ1 +

ε

2
)(logq−1 r)

σ2
}(

expp
{

(σ2 +
ε

8
)(logq 2r)

})2
+ expp{

(
τ − ε

2

)
(logq−1 r)

σ2}

≥ expp{(τ − ε)(logq−1 r)
σ2}

(2.26)

and

|U2
j | ≤ 2M expp{(τ1 +

ε

2
)(logq−1 r)

σ2} expp{(σ2 +
ε

8
)(logq 2r)}

+ expp{(τ1 +
ε

2
)(logq−1 r)

σ2}

≤ expp{(τ1 + ε)(logq−1 r)
σ2}, j 6= 0.

(2.27)

(iii) Now, suppose that (2.19) holds for i ≤ n(n ∈ N). Thus, for any given
ε(0 < 4ε < τ − τ1), there exists a set E5 with infinite logarithmic measure such
that

|U ij | ≤ expp{(τ1 + ε)(logq−1 r)
σ2}, |U i0| ≥ expp{(τ − ε)(logq−1 r)

σ2}, (2.28)

where i ≤ n and j = 1, 2, . . . , k − 1. From Un+1
0 = Un1

′ + Un0 −
Un

0
′

Un
0
Un1 and

Un+1
j = Unj+1

′ + Unj −
Un

0
′

Un
0
Unj+1 (j = 0, 1, . . . , k − 1) and Unk ≡ 1, we have

|Un+1
0 | ≥ |Un0 | − |Un1 |

(
|U

n
1
′

Un1
|+ |U

n
0
′

Un0
|
)

(2.29)

and

|Un+1
j | ≤ |Unj |+ |Unj+1|

(
|
Unj+1

′

Unj+1

|+ |U
n
0
′

Un0
|
)
, j = 1, 2, . . . , k − 1. (2.30)
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Then, from Lemma 2.8, Lemma 2.9 and (2.28)–(2.30), for all |z| = r ∈ E5, we have

|Un+1
j | ≤ 2M expp{(τ1 + ε)(logq−1 r)

σ2}
(

expp{(σ2 +
ε

8
)(logq 2r)}

)2
+ expp{(τ1 + ε)(logq−1 r)

σ2}
≤ expp{(τ1 + 2ε)(logq−1 r)

σ2}, j 6= 0,

(2.31)

and

|Un+1
0 | ≥ −2M exp{(τ1 + ε)(logq−1 r)

σ2}(expp{(σ2 +
ε

8
)(logq 2r)})2

+ expp{(τ − ε)(logq−1 r)
σ2}

≥ expp{(τ − 2ε)(logq−1 r)
σ2}.

(2.32)

Thus, the proof is complete. �

Lemma 2.11. Let Bj(z) (j = 0, 1, . . . , k − 1) be meromorphic functions such that
max{σ[p,q](Bj) : j = 1, 2, . . . , k − 1} = σ4 < σ[p,q](B0) = σ3 and δ := δ(∞, B0) =
limr→∞

m(r,B0)
T (r,B0)

> 0. Then every meromorphic solution f 6≡ 0 of equation

f (k) +Bk−1f
(k−1) + · · ·+B1f

′ +B0f = 0 (2.33)

satisfies σ[p+1,q](f) ≥ σ3.

Proof. Let f 6≡ 0 be a meromorphic solution of equation (2.33). Then from (2.33),
we have

m(r,B0) ≤ m(r,
f (k)

f
) +m(r,

f (k−1)

f
) + · · ·+m(r,

f ′

f
) +

k−1∑
j=1

m(r,Bj) +O(1)

≤ O{log rT (r, f)}+
k−1∑
j=1

T (r,Bj), r 6∈ E6,

(2.34)
where E6 ⊂ [1,+∞) is a set with finite linear measure. By Lemma 2.5, there exists
a set E with infinite logarithmic measure such that for all |z| = r ∈ E, we have

lim
r→∞

logp T (r,B0)
logq r

= σ3. (2.35)

Since δ := δ(∞, B0) > 0, then for any given ε(0 < 2ε < min{δ, σ3−σ4}) and for all
r ∈ E, by (37), we have

m(r,B0) ≥ (δ − ε) expp{(σ3 − ε) logq r}. (2.36)

From (2.34) and (2.36), we have

(δ−ε) expp{(σ3−ε) logq r} ≤ O{log rT (r, f)}+(k−1) expp{(σ4+ε) logq r}, (2.37)

where r ∈ E − E6. From (2.37), we obtain σ[p+1,q](f) ≥ σ3 = σ[p,q](B0). �

Lemma 2.12. Let Bj(z), j = 0, 1, . . . , k − 1 be meromorphic functions of finite
[p, q] order. If there exist positive constants σ5, β3, β4(0 < β3 < β4) and a set E8

with infinite logarithmic measure such that

max{|Bj(z)| : j = 1, 2, . . . , k − 1} ≤ expp{β3(logq−1 r)
σ5},

and
|B0(z)| ≥ expp{β4(logq−1 r)

σ5}



EJDE-2014/73 OSCILLATION OF MEROMORPHIC SOLUTIONS 11

hold for all |z| = r ∈ E8, then every meromorphic solution f 6≡ 0 of (2.33) satisfies
σ[p+1,q](f) ≥ σ5.

Proof. Suppose that f 6≡ 0 is a meromorphic function of (2.33). Then it follows
that

|B0(z)| ≤ |f
(k)

f
|+

k−1∑
j=1

|Bj(z)||
f (j)

f
|. (2.38)

By Lemma 2.8, there exists a set E7 with finite logarithmic measure such that for
all |z| = r 6∈ E7, we have

|f
(j)

f
| ≤M [T (2r, f)]2j , j = 1, 2, . . . , k. (2.39)

By (2.38), (2.39) and the assumptions of Lemma 2.12, for all |z| = r ∈ E8−E7, we
have

expp{β4(logq−1 r)
σ5} ≤Mk[T (2r, f)]2k expp{β3(logq−1 r)

σ5}. (2.40)

Since 0 < β3 < β4 and by (2.40), we have σ[p+1,q](f) ≥ σ5. �

Lemma 2.13 ([21, Lemma 3.12]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic
functions, if f is a meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A0f = F,

satisfying max{σ[p,q](F ), σ[p,q](Aj); j = 0, 1, . . . , k − 1} < σ[p,q](f), then we have
σ[p,q](f) = λ[p,q](f) = λ[p,q](f).

Lemma 2.14 ([21, Theorem 2.3]). Let Aj(z) (j = 0, 1, . . . , k−1) be entire functions
satisfying max{σ[p,q](Aj) : j = 1, 2, . . . , k − 1} ≤ σ[p,q](A0) <∞ and

max{τ[p,q](Aj)|σ[p,q](Aj) = σ[p,q](A0) > 0} < τ[p,q](A0).

Then every nontrivial solution f of (1.2) satisfies σ[p+1,q](f) = σ[p,q](A0).

3. Proofs of Theorems

Proof of Theorem 1.9. We will consider two cases as follows.
Case 1. Suppose that max{σ[p,q](Aj) : j = 1, 2, . . . , k − 1} < σ[p,q](A0) <∞.
(i) First, we prove that λ[p+1,q](f−ϕ) = σ[p+1,q](f). Assume that f is a nontrivial

solution of (1.2), from [21, Theorem 2.2], we have σ[p+1,q](f) = σ[p,q](A0). Set
g = f −ϕ. Since σ[p+1,q](ϕ) < σ[p,q](A0), then σ[p+1,q](g) = σ[p+1,q](f) = σ[p,q](A0)
and λ[p+1,q](g) = λ[p+1,q](f−ϕ). By Lemma 2.1, we get that g satisfies the equation
(2.1). Set F = ϕ(k) + Ak−1ϕ

(k−1) + · · · + A0ϕ. If F ≡ 0, then from [21], we have
σ[p+1,q](ϕ) = σ[p,q](A0), a contradiction. Then F 6≡ 0. From Lemma 2.4 and
assumption of Case 1, we have

σ[p+1,q](F ) ≤ max{σ[p+1,q](ϕ), σ[p+1,q](A0)} = max{σ[p+1,q](ϕ), 0}.
Since σ[p+1,q](ϕ) < σ[p,q](A0), we have

max{σ[p+1,q](F ), σ[p+1,q](Aj) : j = 0, 1, 2, . . . , k − 1} < σ[p+1,q](f).

By Lemma 2.13, we have λ[p+1,q](g) = λ[p+1,q](g) = σ[p+1,q](g) = σ[p,q](A0). Thus,
we have

λ[p+1,q](f − ϕ) = λ[p+1,q](f − ϕ) = σ[p+1,q](f) = σ[p,q](A0).
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(ii) Second, we prove that λ[p+1,q](f ′ − ϕ) = σ[p+1,q](f). Set g1 = f ′ − ϕ,
then σ[p+1,q](g1) = σ[p+1,q](f) = σ[p,q](A0). From Lemma 2.2, we get that g1
satisfies the equation (2.2). Set F1 = ϕ(k) +U1

k−1ϕ
(k−1) + · · ·+U1

0ϕ, where U1
j (j =

0, 1, . . . , k − 1) are stated as in Lemma 2.2. If F1 ≡ 0, from Lemma 2.6 and
Lemma 2.7, we have σ[p+1,q](ϕ) ≥ σ[p,q](A0), a contradiction with σ[p+1,q](ϕ) <
σ[p,q](A0). Hence F1 6≡ 0. From the definition of U1

j (j = 0, 1, . . . , k − 1), we
have σ[p+1,q](U1

j ) ≤ σ[p+1,q](Aj) j = 0, 1, . . . , k−1. Thus, we can get σ[p+1,q](F1) ≤
max{σ[p+1,q](ϕ), σ[p+1,q](U1

j ) : j = 0, 1, . . . , k−1}. Since σ[p+1,q](ϕ) < σ[p,q](A0), we
have max{σ[p+1,q](F1), σ[p+1,q](U1

j ) : j = 0, 1, . . . , k−1} < σ[p,q](A0) = σ[p+1,q](g1).
By Lemma 2.13, we obtain

λ[p+1,q](f ′ − ϕ) = λ[p+1,q](f ′ − ϕ) = σ[p+1,q](f).

(iii) We will prove that λ[p+1,q](f (i) − ϕ) = σ[p+1,q](f), (i > 1, i ∈ N). Set
gi = f (i) − ϕ, then σ[p+1,q](gi) = σ[p+1,q](f) = σ[p,q](A0). From Lemma 2.3, we
have gi satisfies equation (2.3). Set Fi = ϕ(k) + U ik−1ϕ

(k−1) + · · · + U i0ϕ, where
U ij(j = 0, 1, . . . , k−1; i ∈ N) are stated as in Lemma 2.3. If Fi ≡ 0, from Lemma 2.6
and Lemma 2.7, we have σ[p+1,q](ϕ) ≥ σ[p,q](A0), a contradiction with σ[p+1,q](ϕ) <
σ[p,q](A0). Hence Fi 6≡ 0. By using the same argument as in Case 1(ii), we can get

λ[p+1,q](f (i) − ϕ) = λ[p+1,q](f (i) − ϕ) = σ[p+1,q](f).

Case 2. Suppose that max{σ[p,q(Aj) : j = 1, 2, . . . , k−1} ≤ σ[p,q](A0) <∞ and
max{τ[p,q](Aj)|σ[p,q] (Aj) = σ[p,q](A0) > 0} < τ[p,q](A0).

(i) We first prove that λ[p+1,q](f−ϕ) = σ[p+1,q](f). Since f is a nontrivial solution
of (1.2), by Lemma 2.14, we have σ[p+1,q](f) = σ[p,q](A0) > 0. Set g = f − ϕ.
Since ϕ 6≡ 0 is an entire function satisfying σ[p+1,q](ϕ) < σ[p,q](A0), then we have
σ[p+1,q](g) = σ[p+1,q](f) = σ[p,q](A0) and λ[p+1,q](g) = λ[p+1,q](f−ϕ). From Lemma
2.1, we get that g satisfies equation (2.1). We will affirm F 6≡ 0. If F ≡ 0, by
Lemma 2.14, we get σ[p+1,q](ϕ) = σ[p,q](A0), a contradiction. Hence F 6≡ 0. From
the assumptions of Case 2, we get

max{σ[p+1,q](F ), σ[p+1,q](Aj) : j = 0, 1, . . . , k − 1} < σ[p+1,q](g) = σ[p,q](A0).

From Lemma 2.13, we have

λ[p+1,q](f − ϕ) = λ[p+1,q](f − ϕ) = σ[p+1,q](f) = σ[p,q](A0).

(ii) Now we prove that λ[p+1,q](f ′ − ϕ) = σ[p+1,q](f). Let g1 = f ′ − ϕ. Since
σ[p+1,q](ϕ) < σ[p,q](A0), we have σ[p+1,q](g1) = σ[p+1,q](f) = σ[p,q](A0). By Lemma
2.2, we get that g1 satisfies equation (2.2). If F1 ≡ 0, from Lemma 2.10 and
Lemma 2.12, we have σ[p+1,q](ϕ) ≥ σ[p,q](A0). Then we can get a contradiction
with σ[p+1,q](ϕ) < σ[p,q](A0). Therefore, we have F1 6≡ 0. By (2.2) and Lemma
2.13, we have

λ[p+1,q](f ′ − ϕ) = λ[p+1,q](f ′ − ϕ) = σ[p+1,q](f) = σ[p,q](A0).

Similar to the arguments as in Case 1 (iii) and by using Lemmas 2.3, 2.10 and 2.12,
we obtain

λ[p+1,q](f (i) − ϕ) = λ[p+1,q](f (i) − ϕ) = σ[p+1,q](f) = σ[p,q](A0), (i ∈ N).

Thus, the proof is complete. �
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Proof of Theorem 1.10. According to the conditions of Theorem 1.2, we can easily
obtain the conclusions by using the similar argument as in Theorem 1.9 and Lemma
2.11. �
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