Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 72, pp. 1–6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BOUNDARY DIFFERENTIABILITY FOR INHOMOGENEOUS INFINITY LAPLACE EQUATIONS

GUANGHAO HONG

ABSTRACT. We study the boundary regularity of the solutions to inhomogeneous infinity Laplace equations. We prove that if $u \in C(\overline{\Omega})$ is a viscosity solution to $\Delta_{\infty} u := \sum_{i,j=1}^{n} u_{x_i} u_{x_j} u_{x_i x_j} = f$ with $f \in C(\Omega) \cap L^{\infty}(\Omega)$ and for $x_0 \in \partial\Omega$ both $\partial\Omega$ and $g := u|_{\partial\Omega}$ are differentiable at x_0 , then u is differentiable at x_0 .

1. INTRODUCTION

Infinity Laplace equation $\Delta_{\infty} u = 0$ arose as the Euler equation of L^{∞} variational problem of $|\nabla u|$, or equivalently, absolutely minimizing Lipschitz extension (AML) problem. This problem was initially studied by Aronsson [1] at the classical solutions level from 1960's. In 1993, Jensen [7] proved that a function $u(x) \in C(\Omega)$ is an AML:

for any
$$V \subset \subset \Omega$$
, $Lip(u, V) = Lip(u, \partial V)$

if and only if u(x) is a viscosity solution to $\Delta_{\infty} u = 0$. Moreover, for any bounded domain $\Omega \subset \mathbb{R}^n$ and $g \in C(\partial\Omega)$, the Dirichlet problem:

$$\Delta_{\infty} u = 0 \text{ in } \Omega, \quad u = g \text{ on } \partial \Omega \tag{1.1}$$

has an unique viscosity solution. Such an solution is called an infinity harmonic function.

In 2001, Crandall, Evans and Gariepy [3] proved that a function $u(x) \in C(\Omega)$ is an infinity harmonic function if and only if u satisfies the following *comparison* with cone property: for any $V \subset \Omega$ and and $c(x) = a + b|x - x_0|$,

$$\begin{split} u(x) &\leq c(x) \text{ on } \partial\{V \setminus \{x_0\}\} \Rightarrow u(x) \leq c(x) \text{ in } V, \\ u(x) &\geq c(x) \text{ on } \partial\{V \setminus \{x_0\}\} \Rightarrow u(x) \geq c(x) \text{ in } V. \end{split}$$

This comparison property turns out to be a very useful tool in the study of many aspects of this equation. Especially, it implies the following conclusions as a direct result [3].

Lemma 1.1. Let $u(x) \in C(\Omega)$ satisfy comparison with cone property, $x_0 \in \Omega$, $0 < r < \operatorname{dist}(x_0, \partial \Omega)$. Then

²⁰⁰⁰ Mathematics Subject Classification. 35J25, 35J70, 49N60.

Key words and phrases. Boundary regularity; infinity Laplacian; comparison principle; monotonicity.

^{©2014} Texas State University - San Marcos.

Submitted December 17, 2013. Published March 16, 2014.

G. HONG

EJDE-2014/72

(1) the slope functions

$$S_r^+(x_0) := \max_{x \in \partial B(x_0, r)} \frac{u(x) - u(x_0)}{r}, \quad S_r^-(x_0) := \max_{x \in \partial B(x_0, r)} \frac{u(x_0) - u(x)}{r}$$

are non-negative and non-decreasing as a function of r for fixed x_0 . So the limits $S^{\pm}(x_0) := \lim_{r \to 0} S_r^{\pm}(x_0)$ exist.

- (2) $S^+(x_0) = S^-(x_0) := S(x_0).$
- (3) S(x) is upper-semicontinuous, i.e., $\limsup_{y\to x} S(y) \leq S(x)$ for all $x \in \Omega$.

The lemma implies locally Lipschitz continuity of u immediately. Crandall and Evans [2] applied this lemma to prove that at any interior point x_0 , a blow-up limit

$$v(x) = \lim_{r_j \to 0} \frac{u(x_0 + r_j x) - u(x_0)}{r_j}$$

of an infinity harmonic function u must be a linear function, i.e., $v(x) = a \cdot x$ for some $a \in \mathbb{R}^n$ with $|a| = S(x_0)$. The sketch of their proof is the following. Firstly, (3) of Lemma 1.1 implies $Lip(v, \mathbb{R}^n) \leq S(x_0)$. Secondly, for any R > 0 fixed, for every j there exists a maximal direction $e_j \in \mathbb{R}^n$ with $|e_j| = 1$ such that $u(x_0 + Rr_j e_j) =$ $\max_{x \in \partial B_{Rr_j}(x_0)} u(x)$. The sequence $\{e_j\}$ must have an accumulating point say e^+ , then $v(Re^{+}) = Re^{+}$. For all R, we will have the same e^{+} . By considering the minimum directions we will get an e^- and moreover $e^- = -e^+$. So v is tight on the line te^+ , $t \in (-\infty, \infty)$. Finally, a Lipschitz function on \mathbb{R}^n that is tight on a line must be linear. However, this result does not imply the differentiability of u in general since for different sequences r_j one may get different linear functions v although they must have same slope $S(x_0)$. Ten years later, by using much deeper pde techniques Evans and Smart [4] proved that the blow-up limits are unique and accomplished the proof of interior differentiability. The continuously differentiability is still left open as the most prominent problem in this field although in 2 dimension C^1 and $C^{1,\alpha}$ regularity was achieved by Savin [10] and Evans-Savin [4] respectively.

Boundary regularity for infinity harmonic function was initially studied by Wang and Yu [11]. They proved the following result.

Theorem 1.2. For $n \geq 2$, let $\Omega \subset \mathbb{R}^n$ be a bounded domain with $\partial \Omega \in \mathbb{C}^1$ and $g \in \mathbb{C}^1(\mathbb{R}^n)$. Assume that $u \in \mathbb{C}(\overline{\Omega})$ is the viscosity solution of the infinity Laplace equation (1.1). Then u is differentiable on the boundary, i.e., for any $x_0 \in \partial \Omega$, there exists $Du(x_0) \in \mathbb{R}^n$ such that

$$u(x) = u(x_0) + Du(x_0) \cdot (x - x_0) + o(|x - x_0|), \quad \forall x \in \overline{\Omega}.$$

The boundary differentiability is much easier than interior differentiability. They defined the slope functions near and on the boundary by

$$S_{r}^{+}(x) = \sup_{y \in \partial(B(x,r) \cap \Omega) \setminus \{x\}} \frac{u(y) - u(x)}{|y - x|} \text{ and } S_{r}^{-}(x) = \sup_{y \in \partial(B(x,r) \cap \Omega) \setminus \{x\}} \frac{u(x) - u(y)}{|y - x|}$$

for $x \in \overline{\Omega}$ and r > 0 small. $S_r^{\pm}(x)$ are still monotone and have limits $S^{\pm}(x)$. But $S^+(x) \neq S^-(x)$ in general if $x \in \partial \Omega$. Denote $S(x) := \max\{S^+(x), S^-(x)\}$. S(x) is upper-semicontinuous $\forall x \in \overline{\Omega}$ with the assumption that both $\partial \Omega$ and g are C^1 . They applied a similar argument as in [2] and proved that any blow-up limit of u at a boundary point x_0 is a linear function $v(x) = e \cdot x$ with $|e| = S(x_0)$ on the half

 $\mathbf{2}$

EJDE-2014/72

space $\mathbb{R}^n_+ = \{x_n > 0\}$. But this time it is very easy to prove the uniqueness of blowup limits since the tangential part of e is already given by the boundary data. So $e = (\sqrt{S(x_0)^2 - |D_T g(x_0)|^2}, D_T g(x_0))$ or $e = (-\sqrt{S(x_0)^2 - |D_T g(x_0)|^2}, D_T g(x_0))$. The former happens when $S(x_0) = S^+(x_0)$ and the latter happens when $S(x_0) = S^-(x_0)$.

It is not natural to put C^1 assumption on the boundary conditions in order to prove merely differentiability of a solution. In a recent work [6] we improved Wang-Yu's Theorem to the following sharp version.

Theorem 1.3. Let $\Omega \subset \mathbb{R}^n$ be a domain and $u \in C(\overline{\Omega})$ is an infinity harmonic function in Ω . Assume that for $x_0 \in \partial\Omega$, $\partial\Omega$ and $g := u|_{\partial\Omega}$ are differentiable at x_0 . Then u is differentiable at x_0 .

Under this weaker assumption, it is not true that S(x) is upper-semicontinuous at x_0 . However we managed to show that $\limsup_{x\to x_0} S(x) \leq S(x_0)$ if $x \to x_0$ in a non-tangentially way. This is enough to imply $Lip(v, \mathbb{R}^n_+) \leq S(x_0)$.

The inhomogeneous infinity Laplace Equation $\Delta_{\infty} u = f$ was studied by Lu and Wang [9]. They proved existence and uniqueness of a viscosity solution of the Dirichlet problem

$$\Delta_{\infty} u = f \text{ in } \Omega, \quad u = g \text{ on } \partial \Omega \tag{1.2}$$

under the conditions that $\Omega \subset \mathbb{R}^n$ is bounded, $f \in C(\Omega)$ with $\inf_{\Omega} f > 0$ or $\sup_{\Omega} f < 0$ and $g \in C(\partial\Omega)$. They also proved some comparison principles and stability results. Lindgren [8] investigated the interior regularity of viscosity solutions of (1.2). He proved that the blow-ups are linear if $f \in C(\Omega) \cap L^{\infty}(\Omega)$ and u is differentiable if $f \in C^1(\Omega) \cap L^{\infty}(\Omega)$. For inhomogeneous equation (1.2), the slope functions $S_r^{\pm}(x)$ is not monotone anymore, but so is $S_r^{\pm}(x) + r$ [8, Corollary 1]. Hence the limits $S^{\pm}(x) := \lim_{r \to 0} S_r^{\pm}(x)$ still exist and the arguments in [2] and [4] work.

In this paper, we combine the techniques used in [6, 8, 11] to prove boundary differentiability for inhomogeneous infinity Laplace equation.

Theorem 1.4. Let $\Omega \subset \mathbb{R}^n$ and $u \in C(\overline{\Omega})$ is a viscosity solution of the inhomogeneous infinity Laplace equation (1.2). Assume that $f \in C(\Omega) \cap L^{\infty}(\Omega)$ and for $x_0 \in \partial\Omega$, both $\partial\Omega$ and g are differentiable at x_0 . Then u is differentiable at x_0 .

2. Proof of Theorem 1.4

Without lost of generality, we may assume that $x_0 = 0$ and the tangential plane of $\partial\Omega$ at 0 is $\{x = (x', x_n) \in \mathbb{R}^n : x_n = 0\}$. Denote $B(x, r) := \{y \in \mathbb{R}^n : |y - x| < r\}$ for $x \in \mathbb{R}^n$, B(r) := B(0, r), $\hat{B}(x', r) := \{y' \in \mathbb{R}^{n-1} : |y' - x'| < r\}$ for $x' \in \mathbb{R}^{n-1}$ and $\hat{B}(r) := \hat{B}(0, r)$. We assume for some $0 < r_0 < 1$,

$$\Omega \cap B(r_0) = \{ x \in B(r_0) : x_n > f(x') \},\$$

where $f \in C(\hat{B}(r_0))$ is differentiable at 0 with f(0) = Df(0) = 0. Denote $\hat{g}(x') = g(x', f(x'))$ for $x' \in \hat{B}(r_0)$, then $\hat{g}(x') \in C(\hat{B}(r_0))$ is differentiable at 0.

We will prove the following easier conclusion first and then apply it to prove Theorem 1.4.

Proposition 2.1. Assume that u, f, Ω and g satisfy the conditions in Theorem 1.4. We assume additionally $\hat{g}(x') \in C^1(\hat{B}(r_0))$. Then u is differentiable at 0.

For $x \in \overline{\Omega} \cap B_{r_0/2}$ and $0 < r < r_0/2$, we define

$$S_r^+(x) = \sup_{y \in \partial(B(x,r) \cap \Omega) \setminus \{x\}} \frac{u(y) - u(x)}{|y - x|}$$

and

4

$$S_r^-(x) = \sup_{y \in \partial(B(x,r) \cap \Omega) \setminus \{x\}} \frac{u(x) - u(y)}{|y - x|}.$$

We make the following two assumptions on the solution u of (1.2) as in [8]:

(A1)
$$S_r^{\pm}(x) \ge 1$$
 for all x and r ;
(A2) $-\frac{3}{4} \le f \le -\frac{1}{4}$.

This is not a restriction since we can define

$$\tilde{u}(x_1,\ldots,x_{n+2}) = \frac{u(x_1,\ldots,x_n)}{4^{\frac{1}{3}} \|f\|_{L^{\infty}(\Omega)}^{\frac{1}{3}}} + x_{n+1} - \frac{3^{\frac{1}{3}}}{2^{\frac{1}{3}} \cdot 4} |x_{n+2}|^{\frac{3}{4}}$$

to make \tilde{u} satisfy the assumptions. Any regularity result (up to $C^{1,\frac{1}{3}}$) on \tilde{u} in general dimension also holds for u.

Lemma 2.2. Under the assumptions and notation above, $S_r^{\pm}(x)+r$ is non-decreasing for all $x \in \overline{\Omega} \cap B_{r_0/2}$ and $0 < r < \frac{r_0}{2}$. So the limit $S^{\pm}(x) := \lim_{r \to 0} S_r^{\pm}(x) + r$ exist.

Proof. Fix a point $x \in \overline{\Omega} \cap B_{r_0/2}$ and $0 < r < \frac{r_0}{2}$. Define

$$\phi(y) := u(x) + S_r^+(x) r^{\frac{r}{S_r^+(x)}} \cdot |y - x|^{1 - \frac{r}{S_r^+(x)}}.$$

Direct computation shows that

$$\Delta_{\infty}\phi(y) = S_r^+(x)^3 r^{\frac{3r}{S_r^+(x)}} \left(-\frac{r}{S_r^+(x)}\right) |y-x|^{-\frac{3r}{S_r^+(x)}} \le -S_r^+(x)^2 \le -1 < f$$

when $y \in B_r(x) \cap \Omega \setminus \{x\}$. And $\phi(y) \ge u(y)$ on $\partial(B(x,r) \cap \Omega) \cup \{x\}$. So $\phi(y) \ge u(y)$ in $B(x,r) \cap \Omega$ from the comparison principle [9, Theorem 3].

For $0 < \rho < r$, let $y \in \partial(B(x,\rho) \cap \Omega) \setminus \{x\}$. If $y \in \partial\Omega \cap B(x,\rho) \setminus \{x\}$ then $y \in \partial\Omega \cap B(x,r) \setminus \{x\}$, so $\frac{u(y)-u(x)}{|y-x|} \leq S_r^+(x)$. If $y \in \partial B(x,\rho) \cap \Omega$, then

$$\frac{u(y) - u(x)}{|y - x|} \le \frac{\phi(y) - u(x)}{\rho} = S_r^+(x) (\frac{r}{\rho})^{\frac{r}{S_r^+(x)}}.$$

Hence, $S_{\rho}^+(x) \leq S_r^+(x)(\frac{r}{\rho})^{\frac{r}{S_r^+(x)}}$. Therefore,

$$\liminf_{\rho \to r} \frac{S_r^+(x) - S_\rho^+(x)}{r - \rho} \ge \liminf_{\rho \to r} \frac{S_r^+(x)(1 - (\frac{r}{\rho})^{\overline{S_r^+(x)}})}{r - \rho} = -1.$$

The same argument applies to $S_r^-(x)$.

Define $S(x) := max\{S^+(x), S^-(x)\}\)$ we prove that S(x) is upper-semicontinuous at 0 under the conditions of Proposition 1.

Lemma 2.3. For any $\epsilon > 0$, there exists $r(\epsilon, u) > 0$, such that

$$\sup_{x\in\bar{\Omega}\cap B(r)}S(x)\leq S(0)+\epsilon.$$

EJDE-2014/72

Proof. For $\epsilon > 0$, since $\hat{g}(x') \in C^1(\hat{B}(r_0))$ and $|D\hat{g}(0)| \leq S(0)$, there exists $r_1 > 0$ such that

$$\sup_{x \neq y \in \partial\Omega \cap B(r_1)} \frac{|u(x) - u(y)|}{|x - y|} \le \sup_{x \neq y \in \partial\Omega \cap B(r_1)} \frac{|\hat{g}(x') - \hat{g}(y')|}{|x' - y'|} \le S(0) + \frac{\epsilon}{3}.$$
 (2.1)

Since $\lim_{r\to 0} S_r(0) = S(0)$, there exists $0 < r_2 \le \min(r_1/2, \frac{\epsilon}{3})$, such that

$$S_{r_2}(0) \le S(0) + \frac{\epsilon}{4}.$$

From the continuity of u, there exists $0 < r_3 \ll r_2$, such that

$$\sup_{y \in \partial B(x,r_2) \cap \Omega} \frac{|u(y) - u(x)|}{r_2} \le S(0) + \frac{\epsilon}{3} \quad \text{for} \quad x \in \bar{\Omega} \cap B(r_3).$$
(2.2)

From (2.1) and (2.2), we have

$$S_{r_2}(x) = \sup_{y \in \partial(B(x,r_2) \cap \Omega) \setminus \{x\}} \frac{|u(y) - u(x)|}{|y - x|} \le S(0) + \frac{\epsilon}{3} \quad \text{for} \quad x \in \partial\Omega \cap B(r_3).$$

From Lemma 2.2, we have

$$\frac{|u(y) - u(x)|}{|y - x|} \le S_{r_2}(x) + r_2 \le S(0) + \frac{2\epsilon}{3}$$
(2.3)

for $x \in \partial \Omega \cap B(r_3)$ and $y \in \Omega \cap B(r_3)$. From the continuity of u again, there exists $0 < r_4 \le r_3/2$, such that

$$\sup_{y \in \partial B(x, r_3/2) \cap \Omega} \frac{|u(y) - u(x)|}{r_3/2} \le S(0) + \frac{2\epsilon}{3} \quad \text{for } x \in \bar{\Omega} \cap B(r_4).$$
(2.4)

From (2.3) and (2.4) and Lemma 2.2, we have

$$S(x) \leq S_{r_3/2}(x) + \frac{r_3}{2} = \sup_{y \in \partial(B(x, r_3/2) \cap \Omega) \setminus \{x\}} \frac{|u(y) - u(x)|}{|y - x|} + \frac{r_3}{2} \leq S(0) + \epsilon$$

for $x \in \overline{\Omega} \cap B(r_4)$. Finally we choose $r(\epsilon, u) = r_4$.

x

The rest of the proof of Proposition 1 is the same as that in [11]. We have described the idea in the introduction and refer the readers to [11] for the details.

Now we prove the non-tangentially upper-semicontinuity of S(x) at 0 under the conditions of Theorem 1.4 and assumptions (A1) and (A2).

Lemma 2.4. Given any $0 < \theta \ll 1$, we have that for all $0 < \epsilon < \frac{1}{8}$, there exists $r(\epsilon, \theta, u) > 0$, such that

$$\sup_{x \in \bar{\Omega} \cap B(r) \cap \{x_n \ge \theta | x'|\}} S(x) \le S(0) + \epsilon.$$

The proof of Lemma 2.4 is essentially same as the proof of [6, Lemma 2] for the homogeneous equation. Several places need minor modification, but this can be easily justified. So we omit the proof and refer the readers to [6].

With the result in Lemma 2.4 the rest of the proof of Theorem 1.4 follows the same way as in the homogeneous equation case.

References

- Aronsson, G.: Extension of functions satisfying Lipschitz conditions, Arkiv f
 ür Mate. 6 (1967), 551-561.
- [2] Crandall, M. G.; Evans, L.C.: A remark on infinity harmonic functions, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Vina del Mar-Valparaiso, 2000). Electron. J. Differ. Equ. Conf. 6 (2001), 123-129.
- [3] Crandall, M. G.; Evans, L. C.; Gariepy, R. F.: Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differ. Equ. 13 (2001), No.2, 123-139.
- [4] Evans, L. C.; Savin, O.: C^{1,α} regularity for infinity harmonic functions in two dimensions, Calc. Var. Partial Differ. Equ., **32** (2008), No.3, 325-347.
- [5] Evans, L. C.; Smart, C. K.: Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differ. Equ., 42 (2011), No.1-2, 289-299.
- [6] Hong, G.: Boundary differentiability of infinity harmonic functions, Nonl. Anal.: TMA, 93 (2013), 15-20.
- [7] Jensen, R.: Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient, Arch. Rat. Mech. Anal., 123 (1993), 51-74.
- [8] Lindgren, E.: On the regularity of solutions of the inhomogeneous infinity Laplace equation, preprint.
- [9] Lu, G.; Wang, P.: Inhomogeneous infinity Laplace equation, Advances in Mathematics, 217(4) (2008), 1838-1868.
- [10] Savin, O.: C¹ regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal., **176** (2005), No.3, 351-361.
- [11] Wang, C. Y.; Yu, Y. F.: C¹-boundary regularity of planar infinity harmonic functions, Math. Res. Let., **19** (2012) No. 4, 823-835.

Guanghao Hong

SCHOOL OF MATHEMATICS AND STATISTICS, XI'AN JIAOTONG UNIVERSITY, XI'AN, 710049, CHINA *E-mail address:* ghhongmath@gmail.com