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INFINITELY MANY SOLUTIONS FOR ELLIPTIC BOUNDARY
VALUE PROBLEMS WITH SIGN-CHANGING POTENTIAL

WEN ZHANG, XIANHUA TANG, JIAN ZHANG

Abstract. In this article, we study the elliptic boundary value problem

−∆u + a(x)u = g(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω and

the potential a(x) is allowed to be sign-changing. We establish the existence

of infinitely many nontrivial solutions by variant fountain theorem developed
by Zou for sublinear nonlinearity.

1. Introduction

We study the semilinear elliptic boundary-value problem
−∆u+ a(x)u = g(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, g ∈
C(Ω̄×RN ,RN ) and a ∈ LN/2(Ω). In this article, we are interested in the existence
and multiplicity of solutions for problem (1.1) when g(x, u) is sublinear.

The semilinear elliptic equation has found a great deal of interest in the previous
years. With the aid of variational methods, the existence and multiplicity of non-
trivial solutions for problem (1.1) or similar (1.1) have been extensively investigated
in the literature over the past several decades. See [2, 3, 4, 5, 7, 8, 10, 6, 11, 12, 21,
22] and the references therein.

There are some works devoted to the superquadratic situation and asymptoti-
cally quadratic situation for problem (1.1), see for instance [6, 7, 8, 9]. In [6], Li
and Willem [1] established the existence of a nontrivial solution for (1.1) under the
following Ambrosetti-Rabinowitz type superquadratic condition

(G1) there exist µ > 2 and L > 0 such that

0 < µG(x, u) ≤ ug(x, u), for all |u| ≥ L,
where G(x, u) =

∫ u
0
g(x, t)dt. The role of (G1) is to ensure the boundedness of

the Palais-Smale (PS) sequences of the energy functional. This is very crucial

2000 Mathematics Subject Classification. 35J25, 35J60.
Key words and phrases. Semilinear elliptic equations; boundary value problems;

sublinear; sign-changing potential.
c©2014 Texas State University - San Marcos.

Submitted September 8, 2013. Published February 21, 2014.

1



2 W. ZHANG, X. TANG, J. ZHANG EJDE-2014/53

in applying the critical point theory. However, there are many functions which
are superlinear at infinity, but do not satisfy the condition (G1), for example the
superlinear function

G(x, u) = |u|2
(

ln(
1
3
|u|4 − |u|2 + 1)

)3

.

Jiang and Tang [7] used the Li-Willem local linking theorem [6] to obtain a non-
trivial solution under the following weak superquadratic condition and other basic
conditions,

(G2) G(x, u)/|u|2 →∞, as |u| → ∞ uniformly in x,
(G3) there are constants β > 2N(p−1)

N+2 (2 < p < 2∗), a1 > 0 and L > 0 such that

ug(x, u)− 2G(x, u) ≥ a1|u|β , for all |u| ≥ L.
This result generalized the one of Li and Willem. Very recently, Zhang and Liu [9]
also considered the (G2) type superquadratic condition, but the authors weakened
the condition (G3) to the following condition

(G4) there exists constant % > max{2N/(N + 2), N(p − 2)/2} and d > 0 such
that

lim inf
|u|→∞

ug(x, u)− 2G(x, u)
|u|%

≥ d uniformly for x ∈ Ω.

They obtained the existence and multiplicity of solutions by variant fountain theo-
rem developed by Zou [21] when g(x, u) is odd. From this, we know that the result
in [9] also generalized the one in [7] even [6]. For other superquadratic problem with
pinching condition, we refer readers to [10]. For the asymptotically quadratic situ-
ation, He and Zou [8] obtained the existence of infinitely many nontrivial solutions
under the following assumptions:

(G5) G(x, u) = 1
2α|u|

2 +F (x, u), where α /∈ σ(−∆ +a), σ denotes the spectrum;
(G6) there exist γi ∈ (1, 2), bi > 0, i = 1, 2 such that b1|u|γ1 ≤ F (x, u),

|Fu(x, u)| ≤ b2|u|γ1−1 for all (x, u) ∈ Ω× R.
However, for the subquadratic case, there is no work concerning on this case up to
now. Motivated by the above fact, in this paper our aim is to study the existence of
infinitely many solutions for problem (1.1) when f(x, u) satisfies sublinear in u at
infinity. Our tool is the variant fountain theorem established in Zou [21]. Compared
to the above two cases, our result is different and extend the above results to some
extent.

We will use the following assumptions:
(F1) G(x, u) ≥ 0, for all (x, u) ∈ Ω×R, and there exist constants µ ∈ [1, 2) and

r1 > 0 such that

g(x, u)u ≤ µG(x, u), ∀x ∈ Ω, |u| ≥ r1;

(F2) lim|u|→0
G(x,u)
|u|2 =∞ uniformly for x ∈ Ω, and there exist constants c1, r2 >

0 such that

G(x, u) ≤ c1|u|, ∀x ∈ Ω, |u| ≤ r2;

(F3) There exists a constant d > 0 such that

lim inf
|u|→∞

G(x, u)
|u|

≥ d > 0 uniformly for x ∈ Ω;
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The main result of this article is the following theorem.

Theorem 1.1. Suppose that (F1)–(F3), and that g(x, u) is odd hold. Then (1.1)
possesses infinitely many nontrivial solutions.

As a motivation we recall that there are a large number of articles devoted to
the study of the sublinear case. Among these problems are the second-order Hamil-
tonian system in Tang and Lin [14] and Sun et al.[15], the Schrödinger equation in
Zhang and Wang [17], the Schrödinger-Maxwell equation in Sun [16], the fourth-
order elliptic equations in Ye and Tang [18] and Zhang et al.[13]. lt is worth pointing
out that these papers all considered the definite case that the quadratic of energy
functional is positive definite. In the present article, we study the indefinite case,
compared to the definite case, the indefinite case becomes more general.

2. Variational setting and proof of the main result

First we establish the variational setting for problem (1.1) to prove our main
result. Since a ∈ LN/2(Ω), we know that the following form defined on H1

0 (Ω) is
bounded (see [20, Proposition VI.1.2]).

Q(u, v) =
∫

Ω

(〈∇u,∇v〉+ a(x)uv)dx, ∀u, v ∈ H1
0 (Ω), (2.1)

where 〈·, ·〉 denotes the standard inner product in RN . Denote A0 = −∆ + a
the associated self-adjoint operator in L2 ≡ L2(Ω) with domain D(A0). From
[20, Theorem VI.1.4], we know that D(A0) is dense as a subspace of H1

0 (Ω) and
the spectrum of A0 consists of only eigenvalues numbered λ1 ≤ λ2 ≤ · · · → ∞
(counted with multiplicity) and the corresponding eigenfunctions {ei}i∈N(A0ei =
λiei), forming an orthogonal basis in L2. Let |A0| be the absolute value of A0 and
|A0|1/2 be the square root of |A0| with domain D(|A0|1/2). Let E = D(|A0|1/2)
and define the inner product on E as

(u, v)0 := (|A0|1/2u, |A0|1/2v)2 + (u, v)2,

and the induced norm
‖u‖0 := (u, u)1/2

0 ,

where (·, ·)2 denotes the usual inner product in L2. Then E is a Hilbert space. The
following Lemma is the Lemma 2.1 in [9], here we omit its proof.

Lemma 2.1. The norm ‖ · ‖0 in E = H1
0 (Ω) is equivalent to the usual Sobolev

norm ‖ · ‖1,2 in H1
0 (Ω).

Set
n− = ]{i|λi < 0}, n0 = ]{i|λi = 0}, n̄ = n− + n0, (2.2)

and let
L2 = L− ⊕ L0 ⊕ L+ (2.3)

be the orthogonal decomposition in L2 with

L− = span{e1, . . . , en−}, L0 = span{en−+1, . . . , en̄},

L+ = (L− ⊕ L0)⊥ = span{en̄+1, . . . }.

Now we introduce the following inner product on E = H1
0 (Ω),

(u, v) = (|A0|1/2u, |A0|1/2v)2 + (u0, v0)2
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and the corresponding norm
‖u‖ = (u, u)1/2,

where u = u− + u0 + u+ and v = v− + v0 + v+ with respect to the decomposition
(2.3). Clearly, the norms ‖ · ‖ and ‖ · ‖0 are equivalent. Throughout the following
sections, we take (E, (·, ·), ‖ · ‖) as our working space and denote by E∗ its dual
space with the associated operator norm ‖·‖E∗ . It is easy to check that E possesses
the orthogonal decomposition

E = E− ⊕ E0 ⊕ E+ (2.4)

with
E− = L−, E0 = L0, E+ = E ∩ L+ = span{en̄+1, . . . }, (2.5)

where the closure is taken with respect to the norm ‖ · ‖. Evidently, the above
decomposition is also orthogonal in L2. Similar to [9, Lemma 2.3], we have the
following Lemma

Lemma 2.2. The space E is compactly embedded in Lp = Lp(Ω) for 1 ≤ p < 2∗

and continuously embedded in L2∗ = L2∗(Ω), hence for every 1 ≤ p < 2∗, there
exists τp > 0 such that

|u|p ≤ τp‖u‖, ∀u ∈ E, (2.6)

where | · |p denotes the usual norm in Lp for all 1 ≤ p < 2∗, (2∗ = 2N
N−2 ).

Let A0 = U |A0| be the polar decomposition of A0 (see [19]), where U is the
partial isometry and commutes with A0, |A0| and |A0|1/2. For any u ∈ D(A0) and
v ∈ E, we have

Q(u, v) =
∫

Ω

(〈∇u,∇v〉+ a(x)uv)dx

= (A0u, v)2 = (|A0|Uu, v)2

= (|A0|1/2Uu, |A0|1/2v)2.

(2.7)

Since D(A0) is dense in E, then (2.7) holds for all u, v ∈ E. Moreover, by definition,

Q(u, v) = ((P+ − P−)u, u) = ‖u+‖2 − ‖u−‖2 (2.8)

for all
u = u− + u0 + u+ ∈ E = E− ⊕ E0 ⊕ E+,

where P± : E → E± are the respective orthogonal projections.
Now, we define a functional Φ on E by

Φ(u) =
1
2

∫
Ω

(|∇u|2 + a(x)u2)dx−Ψ(u)

=
1
2
Q(u, u)−Ψ(u)

=
1
2
‖u+‖2 − 1

2
‖u−‖2 −Ψ(u),

(2.9)

where Ψ(u) =
∫

Ω
G(x, u)dx for all u = u− + u0 + u+ ∈ E = E− ⊕ E0 ⊕ E+. By

(F1) and (F2), there exists a constant c2 > 0 such that

G(x, u) ≤ c2(1 + |u|µ), ∀(x, u) ∈ Ω× R. (2.10)

From (2.10) and Lemma 2.1, we know Φ and Ψ are well defined. Furthermore, by
virtue of [9, Proposition 2.4], we have the following Lemma.
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Lemma 2.3. Under assumptions (F1) and (F2), Ψ ∈ C1(E,R) and Ψ′ : E → E∗

is compact, and hence Φ ∈ C1(E,R). Moreover,

〈Ψ′(u), v〉 =
∫

Ω

g(x, u)vdx,

〈Φ′(u), v〉 = (u+, v)− (u−, v)− 〈Ψ′(u), v〉

= (u+, v)− (u−, v)−
∫

Ω

g(x, u)vdx.

(2.11)

for all u, v ∈ E = E− ⊕ E0 ⊕ E+ with u = u− + u0 + u+ and v = v− + v0 + v+,
respectively.

Let E be a Banach space with the norm ‖ ·‖ and E = ⊕j∈NXj with dimXj <∞
for any j ∈ N. Set Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj . Consider the C1-functional
Φλ : E → R defined by

Φλ(u) := A(u)− λB(u), λ ∈ [1, 2].

The following variant fountain theorem was established in [21].

Theorem 2.4 ([21, Theorem 2.2]). Assume that the functional Φλ defined above
satisfies

(T1) Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Moreover,
Φλ(−u) = Φλ(u) for all (λ, u) ∈ [1, 2]× E.

(T2) B(u) ≥ 0, for all u ∈ E; and B(u) → ∞ as ‖u‖ → ∞ on any finite
dimensional subspace of E.

(T3) There exists ρk > rk > 0 such that

ak(λ) := inf
u∈Zk‖u‖=ρk

Φλ(u) ≥ 0 > βk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u),

for all λ ∈ [1, 2], and

ξk(λ) := inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, uλn
∈ Yn such that

Φ′λn
|Yn(uλn) = 0, Φλn(uλn)→ ηk ∈ [ξk(2), βk(1)] as n→∞.

Particularly, if {uλn
} has a convergent subsequence for every k, then Φ1 has in-

finitely many nontrivial critical points {uk} ∈ E \ {0} satisfying Φ1(uk) → 0− as
k →∞.

To apply Theorem 2.4 in the proof of our main result, on the space E, we define
the functionals A,B,Φλ as follows:

A(u) =
1
2
‖u+‖2, B(u) =

1
2
‖u−‖2 +

∫
Ω

G(x, u)dx, (2.12)

Φλ(u) = A(u)− λB(u) =
1
2
‖u+‖2 − λ(

1
2
‖u−‖2 +

∫
Ω

G(x, u)dx) (2.13)

for all u ∈ E and λ ∈ [1, 2]. From Lemma 2.3, we know that Φλ ∈ C1(E,R) for all
λ ∈ [1, 2]. We choose an orthonormal basis {ej : j ∈ N} and let Xj = span{ej} for
all j ∈ N. Note that Φ1 = Φ, where Φ is the functional defined in (2.9). We also
need the following lemmas:

Lemma 2.5. Let (F1) and (F3) be satisfied. Then B(u) ≥ 0 for all u ∈ E.
Furthermore, B(u)→∞ as ‖u‖ → ∞ on any finite dimensional subspace of Ẽ ⊂ E.
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Proof. From (F1) and (2.12), we know that B(u) ≥ 0. We claim that for any finite
dimensional subspace Ẽ ⊂ E, there exists ε > 0 such that

meas({x ∈ Ω : |u(x)| ≥ ε‖u‖}) ≥ ε, ∀u ∈ Ẽ \ {0}, (2.14)

where meas(·) denotes the Lebesgue measure in RN . Arguing indirectly, we assume
that there exists a sequence {un}n∈N ⊂ Ẽ \ {0} such that

meas({x ∈ Ω : |un(x)| ≥ ‖un‖
n
}) < 1

n
, ∀n ∈ N.

Let vn = un

‖un‖ ∈ Ẽ. Then ‖vn‖ = 1 for all n ∈ N, and

meas({x ∈ Ω : |vn(x)| ≥ 1
n
}) < 1

n
, ∀n ∈ N. (2.15)

Passing to a subsequence if necessary, we may assume vn → v0 in E, for some
v0 ∈ Ẽ. Since Ẽ is of finite dimension. Evidently, ‖v0‖ = 1. In view of Lemma 2.2
and the equivalent of any two norms on Ẽ, we have∫

Ω

|vn − v0|dx→ 0 as n→∞. (2.16)

Since v0 6= 0, there exists a constant δ0 > 0 such that

meas({x ∈ Ω : |v0(x)| ≥ δ0}) ≥ δ0. (2.17)

For each n ∈ N, let

Λn = {x ∈ Ω : |vn(x)| < 1
n
}, Λcn = Ω \ Λn = {x ∈ Ω : |vn(x)| ≥ 1

n
}.

Set
Λ0 = {x ∈ Ω : |v0(x)| ≥ δ0},

where δ0 is the constant in (2.17). Then for n large enough, by (2.15) and (2.17),
we have

meas(Λn ∩ Λ0) ≥ meas(Λ0)−meas(Λcn) ≥ δ0 −
1
n
≥ δ0

2
.

Consequently, for n large enough, there holds∫
Ω

|vn − v0|dx ≥
∫

Λn∩Λ0

|vn − v0|dx

≥
∫

Λn∩Λ0

(|v0| − |vn|)dx

≥ (δ0 −
1
n

) ·meas(Λn ∩ Λ0)

≥ δ2
0

4
> 0.

This is in contradiction to (2.16). Therefore (2.14) holds. For the ε given in (2.14),
let

Λu = {x ∈ Ω : |u(x)| ≥ ε‖u‖}, ∀u ∈ Ẽ \ {0}.
Then by (2.14), we have

meas(Λu) ≥ ε, ∀u ∈ Ẽ \ {0} (2.18)

By (F3), we know there exists r3 > 0 such that

G(x, u) ≥ d

2
|u|, ∀(x, u) ∈ Ω× R with |u| ≥ r3. (2.19)
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Combing (2.12) and (2.19), we obtain

B(u) =
1
2
‖u−‖2 +

∫
Ω

G(x, u)dx

≥
∫

Ω

d

2
|u|dx ≥

∫
Λu

d

2
|u|dx

≥ d

2
ε‖u‖ ·meas(Λu)

≥ d

2
ε2‖u‖.

This implies that B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace
Ẽ ⊂ E. The proof is complete. �

Lemma 2.6. Suppose that (F1)–(F3) hold. Then there exists k1 > 0 and a sequence
ρk → 0+ as k →∞ such that

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) > 0, ∀k > k0, (2.20)

ξk(λ) := inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞ uniformly for λ ∈ [1, 2], (2.21)

βk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u), ∀k ∈ N, (2.22)

where Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj for all k ∈ N.

Proof. (a) Firstly, we show that (2.20) and (2.21) hold. Choosing appropriate k, so
that Zk ⊂ E+ for k > k1 = n̄+ 1. For any u ∈ E with ‖u‖ ≤ ε, for all 0 < ε < r2,
we claim that there holds

|u| ≤ ε < r2, (2.23)

where r2 is the constant in (F2). If not, then there exists a positive constant ε0

such that |u| ≥ ε0. Therefore, ‖u‖ ≥ c|u|1 ≥ cε0 ·meas(Ω) for some c > 0, which
contradicts with ‖u‖ ≤ ε. Thus, |u| ≤ ε < r2. Then for any k > k1 = n̄ + 1 and
u ∈ Zk ⊂ E+ with ‖u‖ ≤ ε, for all 0 < ε < r2, by (F2) and the definitions of Φλ(u)
and G, we have

Φλ(u) =
1
2
‖u+‖2 − λ(

1
2
‖u−‖2 +

∫
Ω

G(x, u)dx)

≥ 1
2
‖u+‖2 − 2

∫
Ω

G(x, u)dx

≥ 1
2
‖u+‖2 − 2

∫
Ω

c1|u|dx

≥ 1
2
‖u+‖2 − 2c1|u|1

=
1
2
‖u‖2 − 2c1|u|1.

(2.24)

Let

lk = sup
u∈Zk\{0}

|u|1
‖u‖2

, ∀k ∈ N. (2.25)

Then
lk → 0 as k →∞, (2.26)
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by the Rellich embedding theorem (see [22]), consequently, (2.24) and (2.25) imply
that

Φλ(u) ≥ 1
2
‖u‖2 − 2c1lk‖u‖, (2.27)

for any k > k1 = n̄+1 and u ∈ E+ with ‖u‖ ≤ ε, for all 0 < ε < r2. For any k ∈ N,
let

ρk = 8c1lk. (2.28)
Then by (2.26), we have

ρk → 0 as k →∞, (2.29)
Thus, for any k > k1 = n̄+ 1, by direct computation, we obtain

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) ≥ ρ2
k

4
> 0.

By (2.27), for any k ≥ k1 and u ∈ Zk with ‖u‖ ≤ ρk, we have

Φλ(u) ≥ −2c1kkρk (2.30)

for all λ ∈ [1, 2] and u ∈ Zk with ‖u‖ ≤ ρk. Therefore

−2c1kkρk ≤ inf
u∈Zk,‖u‖≤ρk

Φλ(u) ≤ 0, ∀k ≥ k1,

which together with (2.26)and(2.29) implies

ξk(λ) := inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞ uniformly for λ ∈ [1, 2].

(b) Now, we show that (2.22) holds. For any k ∈ N, there exists a constant
Mk > 0 such that

|u|2 ≥Mk‖u‖, ∀u ∈ Yk, (2.31)
which dues to norms | · |2 and ‖ · ‖ are equivalent on finite dimensional subspace Yk.
By (F2) and the definition of G, for any k ∈ N, there exists a constant δk > 0 such
that

G(x, u) ≥ |u|
2

M2
k

, ∀|u| ≤ δk. (2.32)

For any k ∈ N and u ∈ E with ‖u‖ ≤ ε, for all 0 < ε ≤ δk, similar to (2.23), we
have

|u| ≤ ε ≤ δk.
Thus, by (2.31) and (2.32), for any k ∈ N and u ∈ Yk with ‖u‖ ≤ ε, for all
0 < ε ≤ δk, we have

Φλ(u) ≤ 1
2
‖u+‖2 −

∫
Ω

G(x, u)dx

≤ 1
2
‖u‖2 − |u|

2
2

M2
k

≤ 1
2
‖u‖2 − ‖u‖2 = −1

2
‖u‖2, ∀λ ∈ [1, 2].

(2.33)

Now for any k ∈ N, if we choose

0 < rk < min{ρk, ε}, ∀0 < ε ≤ δk,
then (2.33) implies

βk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u) ≤ −r
2
k

2
< 0, ∀k ∈ N.
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The proof is complete. �

Proof of Theorem 1.1. By (2.6) and (2.13), we easily obtain that Φλ maps bounded
sets uniformly for λ ∈ [1, 2]. Obviously, Φλ(−u) = Φλ(u) for all (λ, u) ∈ [1, 2]× E
since G(x, u) is even in u. Consequently, condition (T1) of Theorem 2.4 holds.
Lemma 2.5 shows that condition (T2) holds, while Lemma 2.6 implies that condition
(T3) holds for all k ≥ k1, where k1 is given there. Therefore, by Theorem 2.4, for
each k ≥ k1, there exist λn → 1, uλn

∈ Yn such that

Φ′λn
|Yn

(uλn
) = 0, Φλn

(uλn
)→ ηk ∈ [ξk(2), βk(1)], as n→∞. (2.34)

For the sake of simplicity, in the remaining proof of Theorem 2.4, we let un = uλn

for all n ∈ N. Note that Yn is a finite dimensional subspace, thus we only need to
prove the following claims to complete the proof of Theorem 1.1.
Claim 1. {un} is bounded in E. By the assumptions on G(x, u), for the constant
r3 given in (2.19), there exists a constant R1 > 0 such that

|G(x, u)− 1
2
g(x, u)u| ≤ R1 ∀x ∈ Ω, |u| ≤ r3. (2.35)

By (2.19), (2.34), (2.35) and (F1), we have

−Φλn
(un) =

1
2

Φ′λn
|Yn

(un)un − Φλn
(un)

= λn

∫
Ω

[G(x, un)− 1
2
g(x, un)un]dx

≥ λn
∫

Ωn

[G(x, un)− 1
2
g(x, un)un]dx− λnR1 ·meas(Ω)

≥ λn(2− µ)
2

∫
Ωn

G(x, un)dx− λnR1 ·meas(Ω)

≥ dλn(2− µ)
4

∫
Ωn

|un|dx− λnR1 ·meas(Ω), ∀n ∈ N,

where Ωn := {x ∈ Ω : |un| ≥ r3}, d and r3 are the constants in (2.19). It follows
from (2.34) that there exists a constant R2 > 0 such that∫

Ωn

|un|dx ≤ R2, ∀n ∈ N. (2.36)

For any n ∈ N, let χn : Ω→ R be the indicator of Ωn; that is,

χn(x) =

{
1, x ∈ Ωn,
0, x 6∈ Ωn,

∀n ∈ N.

Then by the definition of Ωn and (2.36), we know that

|(1− χn)un|∞ ≤ r3, |χnun|1 ≤ R2, ∀n ∈ N.
Since any two norms on finite-dimensional space E0⊕E− are equivalent, we obtain

‖u−n + u0
n‖2 = (u−n + u0

n, un)

= (u−n + u0
n, (1− χn)un) + (u−n + u0

n, χnun)

≤ ‖(1− χn)un‖ · ‖u−n + u0
n‖+ ‖χnun‖ · ‖u−n + u0

n‖
≤ (c3|(1− χn)un|1 + c4|χnun|1)‖u−n + u0

n‖
≤ (c3|(1− χn)un|∞ ·meas(Ω) + c4|χnun|1)‖u−n + u0

n‖
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≤ (c3r3 ·meas(Ω) + c4R2)‖u−n + u0
n‖, ∀n ∈ N,

where c3, c4 > 0. Therefore,

‖u−n + u0
n‖ ≤ c3r3 ·meas(Ω) + c4R2 := R3, ∀n ∈ N. (2.37)

Similar arguments as in the proof of (2.37) imply that

‖u−n ‖ ≤ R3, ∀n ∈ N. (2.38)

Note that

‖u+
n ‖2 = 2Φλn(un) + λn‖u−n ‖2 + 2λn

∫
Ω

G(x, u)dx, ∀n ∈ N.

Combining (2.10), (2.34), (2.37), (2.38) with the Sobolev embedding theorem, we
obtain

‖un‖2 = ‖u−n + u0
n‖2 + ‖u+

n ‖2

= ‖u−n + u0
n‖2 + 2Φλn

(un) + λn‖u−n ‖2 + 2λn
∫

Ω

G(x, u)dx

≤ R4 + 4c2|un|µµ
≤ R4 + 4c2c5‖un‖µ, ∀n ∈ N,

(2.39)

for some R4, c5 > 0, c2 is the constant in (2.10). Since µ < 2, (2.39) implies that
{un} is bounded in E.

Claim 2. {un} has a convergent subsequence in E. Since {un} is bounded in E,
E is reflexible and dim(E0 ⊕ E−) <∞, without loss of generality, we assume

u−n → u−0 , u0
n → u0

0, u+
n ⇀ u+

0 , un ⇀ u0 as n→∞ (2.40)

for some u0 = u−0 + u0
0 + u+

0 ∈ E = E− ⊕ E0 ⊕ E+. By the Riesz Representation
Theorem, Φ′λn

|Yn
: Yn → Y ∗n and Ψ′ : E → E∗ can be viewed as Φ′λn

|Yn
: Yn → Yn

and Ψ′ : E → E, respectively, where Y ∗n is the dual space of Yn. Note that

0 = Φ′λn
|Yn

(un) = u+
n − λnPnΨ′(un), ∀n ∈ N,

where Pn : E → Yn is the orthogonal projection for all n ∈ N; that is,

u+
n = λnPnΨ′(un), ∀n ∈ N. (2.41)

In view of the compactness of Ψ′ and (2.40), the right-hand of (2.41) converges
strongly in E and hence u+

n → u+
0 in E. Together with (2.40), we get un → u0 in

E.
Now, from the last assertion of Theorem 2.4, we know that Φ = Φ1 has infinitely

many nontrivial critical points. Therefore, (1.1) possesses infinitely many nontrivial
solutions. The proof of Theorem 1.1 is complete. �
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