Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 51, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

# GROWTH OF SOLUTIONS TO SECOND-ORDER COMPLEX DIFFERENTIAL EQUATIONS 

NAN LI, LIANZHONG YANG


#### Abstract

In this article, we study the existence of non-trivial subnormal solutions for second-order linear differential equations. We show that under certain conditions some differential equations do not have subnormal solutions, also that the hyper-order of every solution equals one.


## 1. Introduction

In this article, we use standard notation from the value distribution theory of meromorphic functions (see [8, 12]). In addition, we denote the order of growth of $f(z)$ by $\sigma(f)$. The hyper-order of $f(z)$ is defined by

$$
\sigma_{2}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

Consider the second order homogeneous linear periodic differential equation

$$
\begin{equation*}
f^{\prime \prime}+P\left(e^{z}\right) f^{\prime}+Q\left(e^{z}\right) f=0 \tag{1.1}
\end{equation*}
$$

where $P(z)$ and $Q(z)$ are polynomials in $z$ and not both constants. It is well known that every solution $f$ of $(1.1)$ is entire.

For be a meromorphic function $f$, define

$$
\begin{equation*}
\sigma_{e}(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{r} \tag{1.2}
\end{equation*}
$$

to be the e-type order of $f$. If $f \not \equiv 0$ is a solution of $(1.1)$ satisfying $\sigma_{e}(f)=0$, then we say that $f$ is a nontrivial subnormal solution of (1.1).

Wittich 10, Gundersen and Steinbart [7, Xiao 11 etc. have investigated the subnormal solution of 1.1 , and obtained good results. In 2007, Chen and Shon [3] studied the existence of subnormal solutions of the general equation

$$
\begin{equation*}
f^{\prime \prime}+\left(P_{1}\left(e^{z}\right)+P_{2}\left(e^{-z}\right)\right) f^{\prime}+\left(Q_{1}\left(e^{z}\right)+Q_{2}\left(e^{-z}\right)\right) f=0 \tag{1.3}
\end{equation*}
$$

and obtained the following results.
Theorem 1.1. Let $P_{j}(z), Q_{j}(z)(j=1,2)$ be the polynomials in $z$. If

$$
\begin{equation*}
\operatorname{deg} Q_{1}>\operatorname{deg} P_{1} \quad \text { or } \quad \operatorname{deg} Q_{2}>\operatorname{deg} P_{2} \tag{1.4}
\end{equation*}
$$

2000 Mathematics Subject Classification. 30D35, 34M10.
Key words and phrases. Differential equation; subnormal solution; hyper order.
(C)2014 Texas State University - San Marcos.

Submitted September 25, 2013. Published February 19, 2014.
then (1.3) has no nontrivial subnormal solution, and every solution of 1.3 satisfies $\sigma_{2}(f)=1$.
Theorem 1.2. Let $P_{j}(z), Q_{j}(z)(j=1,2)$ be the polynomials in $z$. If $\operatorname{deg} Q_{1}<\operatorname{deg} P_{1} \quad$ and $\quad \operatorname{deg} Q_{2}<\operatorname{deg} P_{2}$
and $Q_{1}+Q_{2} \not \equiv 0$, then 1.3 has no nontrivial subnormal solution, and every solution of 1.3 satisfies $\sigma_{2}(f)=1$.

Question. What can we said when $\operatorname{deg} P_{1}=\operatorname{deg} Q_{1}$ and $\operatorname{deg} P_{2}=\operatorname{deg} Q_{2}$ for 1.3)? We will prove the following theorem.

Theorem 1.3. . Let

$$
\begin{gathered}
P_{1}(z)=a_{n} z^{n}+\cdots+a_{1} z+a_{0} \\
Q_{1}(z)=b_{n} z^{n}+\cdots+b_{1} z+b_{0} \\
P_{2}(z)=c_{m} z^{m}+\cdots+c_{1} z+c_{0} \\
Q_{2}(z)=d_{m} z^{m}+\cdots+d_{1} z+d_{0}
\end{gathered}
$$

where $a_{i}, b_{i}(i=0, \ldots, n), c_{j}, d_{j}(j=0, \ldots, m)$ are constants, $a_{n} b_{n} c_{m} d_{m} \neq 0$. Suppose that $a_{n} d_{m}=c_{m} b_{n}$ and any one of the following three hypotheses holds:
(i) there exists $i$ satisfying $\left(-\frac{b_{n}}{a_{n}}\right) a_{i}+b_{i} \neq 0,0<i<n$; (ii) there exists $j$ satisfying $\left(-\frac{b_{n}}{a_{n}}\right) c_{j}+d_{j} \neq 0,0<j<m$;
(iii)

$$
\left(-\frac{b_{n}}{a_{n}}\right)^{2}+\left(-\frac{b_{n}}{a_{n}}\right)\left(a_{0}+c_{0}\right)+b_{0}+d_{0} \neq 0
$$

Then (1.3) has no non-trivial subnormal solution, and every non-trivial solution $f$ satisfies $\sigma_{2}(f)=1$.

We remark that the equation

$$
f^{\prime \prime}+\left(e^{2 z}+e^{-z}+1\right) f^{\prime}+\left(2 e^{2 z}+2 e^{-z}-2\right) f=0
$$

has a subnormal solution $f_{0}=e^{-2 z}$. Here $n=2, m=1, a_{2}=1, b_{2}=2$, $a_{1}=b_{1}=0, c_{1}=1, d_{1}=2, a_{0}+c_{0}=1, b_{0}+d_{0}=-2,\left(-\frac{b_{2}}{a_{2}}\right) \cdot a_{1}+b_{1}=0$, and $\left(-\frac{b_{2}}{a_{2}}\right)^{2}+\left(-\frac{b_{2}}{a_{2}}\right)\left(a_{0}+c_{0}\right)+b_{0}+d_{0}=0$. This shows that the restrictions (i)-(iii) in Theorem 1.3 are sharp.

Another problem we want to consider in this paper is what condition will guarantee the more general form

$$
\begin{equation*}
f^{\prime \prime}+\left(P_{1}\left(e^{\alpha z}\right)+P_{2}\left(e^{-\alpha z}\right)\right) f^{\prime}+\left(Q_{1}\left(e^{\beta z}\right)+Q_{2}\left(e^{-\beta z}\right)\right) f=0 \tag{1.6}
\end{equation*}
$$

where $P(z), Q(z)$ are polynomials in $z, \alpha, \beta$ are complex constants, does not have a non-trivial subnormal solution? We will prove the following theorems.

Theorem 1.4. Let

$$
\begin{gathered}
P_{1}(z)=a_{1 m_{1}} z^{m_{1}}+\cdots+a_{11} z+a_{10} \\
P_{2}(z)=a_{2 m_{2}} z^{m_{2}}+\cdots+a_{21} z+a_{20} \\
Q_{1}(z)=b_{1 n_{1}} z^{n_{1}}+\cdots+b_{11} z+b_{10} \\
Q_{2}(z)=b_{2 n_{2}} z^{n_{2}}+\cdots+b_{21} z+b_{20}
\end{gathered}
$$

where $m_{k} \geq 1, n_{k} \geq 1(k=1,2)$ are integers, $a_{1 i_{1}}\left(i_{1}=0,1, \ldots, m_{1}\right)$, $a_{2 i_{2}}\left(i_{2}=\right.$ $\left.0,1, \ldots, m_{2}\right), b_{1 j_{1}}\left(j_{1}=0,1, \ldots, n_{1}\right), b_{2 j_{2}}\left(j_{2}=0,1, \ldots, n_{2}\right), \alpha$ and $\beta$ are complex
constants, $a_{1 m_{1}} a_{2 m_{2}} b_{1 n_{1}} b_{2 n_{2}} \neq 0, \alpha \beta \neq 0$. Suppose $m_{1} \alpha=c_{1} n_{1} \beta\left(0<c_{1}<1\right)$ or $m_{2} \alpha=c_{2} n_{2} \beta\left(0<c_{2}<1\right)$. Then 1.6 has no non-trivial subnormal solution and every non-trivial solution $f$ satisfies $\sigma_{2}(f)=1$.
Theorem 1.5. Let

$$
\begin{gathered}
P_{1}(z)=a_{1 m_{1}} z^{m_{1}}+\cdots+a_{11} z+a_{10} \\
P_{2}(z)=a_{2 m_{2}} z^{m_{2}}+\cdots+a_{21} z+a_{20} \\
Q_{1}(z)=b_{1 n_{1}} z^{n_{1}}+\cdots+b_{11} z+b_{10} \\
Q_{2}(z)=b_{2 n_{2}} z^{n_{2}}+\cdots+b_{21} z+b_{20}
\end{gathered}
$$

where $m_{k} \geq 1, n_{k} \geq 1(k=1,2)$ are integers, $a_{1 i_{1}}\left(i_{1}=0,1, \ldots, m_{1}\right), a_{2 i_{2}}\left(i_{2}=\right.$ $\left.0,1, \ldots, m_{2}\right), b_{1 j_{1}}\left(j_{1}=0,1, \ldots, n_{1}\right), b_{2 j_{2}}\left(j_{2}=0,1, \ldots, n_{2}\right), \alpha$ and $\beta$ are complex constants, $a_{1 m_{1}} a_{2 m_{2}} b_{1 n_{1}} b_{2 n_{2}} \neq 0, \alpha \beta \neq 0$. Suppose $m_{1} \alpha=c_{1} n_{1} \beta\left(c_{1}>1\right)$ and $m_{2} \alpha=c_{2} n_{2} \beta\left(c_{2}>1\right)$. Then (1.6) has no non-trivial subnormal solution and every non-trivial solution $f$ satisfies $\sigma_{2}(f)=1$.

Note that a subnormal solution $f_{0}=e^{-z}+1$ satisfies the equation

$$
f^{\prime \prime}-\left[e^{3 z}+e^{2 z}+e^{-z}\right] f^{\prime}-\left[e^{2 z}+e^{-z}\right] f=0
$$

Here $\alpha=\frac{1}{2}, \beta=1 / 3, m_{1}=6, m_{2}=2, n_{1}=6, n_{2}=3, m_{1} \alpha=\frac{3}{2} n_{1} \beta$ and $m_{2} \alpha=n_{2} \beta$. This shows that the restrictions that $m_{1} \alpha=c_{1} n_{1} \beta\left(c_{1}>1\right)$ and $m_{2} \alpha=c_{2} n_{2} \beta\left(c_{2}>1\right)$ can not be omitted.

## 2. Some Lemmas

Let $P(z)=(a+i b) z^{n}+\ldots$ be a polynomial with degree $n \geq 1$. and $z=r e^{i \theta}$. We will we denote $\delta(P, \theta)=a \cos (n \theta)-b \sin (n \theta)$.
Lemma 2.1 ([8). Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ be a polynomial with $a_{n} \neq 0$. Then, for every $\varepsilon>0$, there exists $r_{0}>0$ such that for all $r=|z|>r_{0}$ we have the inequalities

$$
(1-\varepsilon)\left|a_{n}\right| r^{n} \leq|P(z)| \leq(1+\varepsilon)\left|a_{n}\right| r^{n}
$$

Lemma 2.2 ([8]). Let $g:(0,+\infty) \rightarrow \mathbb{R}$ and $h:(0,+\infty) \rightarrow \mathbb{R}$ be monotone increasing functions such that $g(r) \leq h(r)$ outside of an exceptional set $E$ of finite logarithmic measure. Then, for any $\alpha>1$, there exists $r_{0}>0$ such that $g(r) \leq$ $h(\alpha r)$ holds for all $r>r_{0}$.
Lemma 2.3. 5 Let $f(z)$ be a transcendental meromorphic function with $\sigma(f)=$ $\sigma<\infty$. Let $H=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{q}, j_{q}\right)\right\}$ be a finite set of distinct pairs of integers that satisfy $k_{i}>j_{i} \geq 0$, for $i=1,2, \ldots, q$. And let $\varepsilon>0$ be a given constant. Then there exists a set $E \subset[0,2 \pi)$ that has linear measure zero, such that if $\psi \in[0,2 \pi) \backslash E$, then there is a constant $R_{0}=R_{0}(\psi)>1$ such that for all $z$ satisfying $\arg z=\psi$ and $|z| \geq R_{0}$ and for all $(k, j) \in H$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\sigma-1+\varepsilon)} \tag{2.1}
\end{equation*}
$$

Lemma 2.4 ([6, 9]). Let $f(z)$ be an entire function and suppose that $\left|f^{(k)}(z)\right|$ is unbounded on some ray $\arg z=\theta$. Then, there exists an infinite sequence of points $z_{n}=r_{n} e^{i \theta}(n=1,2, \ldots)$, where $r_{n} \rightarrow \infty$, such that $f^{(k)}\left(z_{n}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{n}\right)}{f^{(k)}\left(z_{n}\right)}\right| \leq \frac{1}{(k-j)!}\left|z_{n}\right|^{(k-j)}(1+o(1)) \quad(j=0, \ldots, k-1) \tag{2.2}
\end{equation*}
$$

Lemma 2.5 ([2]). Let $f(z)$ be an entire function with $\sigma(f)=\sigma<\infty$. Let there exists a set $E \subset[0,2 \pi)$ with linear measure zero, such that for any $\arg z=\theta_{0}$ $\in[0,2 \pi) \backslash E,\left|f\left(r e^{i \theta_{0}}\right)\right| \leq M r^{k} \quad\left(M=M\left(\theta_{0}\right)>0\right.$ is a constant, $k(>0)$ is constant independent of $\left.\theta_{0}\right)$. Then $f(z)$ is a polynomial of $\operatorname{deg} f \leq k$.
Lemma 2.6 (1]). Let $A$ and $B$ be entire functions of finite order. If $f(z)$ is a solution of the equation

$$
f^{\prime \prime}+A f^{\prime}+B f=0
$$

then $\sigma_{2}(f) \leq \max \{\sigma(A), \sigma(B)\}$.
Lemma 2.7 (4). Let $f(z)$ be an entire function of infinite order with $\sigma_{2}=\alpha(0 \leq$ $\alpha<\infty)$, and a set $E \subset[1, \infty)$ have a finite logarithmic measure. Then, there exists $\left\{z_{k}=r_{k} e^{i \theta_{k}}\right\}$ such that $\left|f\left(z_{k}\right)\right|=M\left(r_{k}, f\right), \theta_{k} \in[0,2 \pi), \lim _{k \rightarrow \infty} \theta_{k}=\theta_{0} \in[0,2 \pi)$, $r_{k} \notin E, r_{k} \rightarrow \infty$, and such that
(1) if $\sigma_{2}(f)=\alpha(0<\alpha<\infty)$, then for any given $\varepsilon_{1}\left(0<\varepsilon_{1}<\alpha\right)$,

$$
\begin{equation*}
\exp \left\{r_{k}^{\alpha-\varepsilon_{1}}\right\}<\nu\left(r_{k}\right)<\exp \left\{r_{k}^{\alpha+\varepsilon_{1}}\right\} \tag{2.3}
\end{equation*}
$$

(2) if $\sigma(f)=\infty$ and $\sigma_{2}(f)=0$, then for any given $\varepsilon_{2}\left(0<\varepsilon_{2}<1 / 2\right)$, and any large $M(>0)$, we have, for $r_{k}$ sufficiently large,

$$
\begin{equation*}
r_{k}^{M}<\nu\left(r_{k}\right)<\exp \left\{r_{k}^{\varepsilon_{2}}\right\} \tag{2.4}
\end{equation*}
$$

Lemma 2.8 ([5]). Let $f$ be a transcendental meromorphic function, and $\alpha>1$ be $a$ given constant. Then there exists a set $E \subset(1, \infty)$ with finite logarithmic measure and a constant $B>0$ that depends only on $\alpha$ and $i, j(0 \leq i<j \leq 2)$, such that for all $z$ satisfying $|z|=r \notin E \cup[0,1]$,

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leq B\left(\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right)^{j-i} \tag{2.5}
\end{equation*}
$$

Remark 2.9 ([3]). From the proof of Lemma 2.8 , we can see that the exceptional set $E$ satisfies that if $a_{n}$ and $b_{m}(n, m=1,2, \ldots)$ denote all zeros and poles of $f$, respectively, $O\left(a_{n}\right)$ and $O\left(b_{m}\right)$ denote sufficiently small neighborhoods of $a_{n}$ and $b_{m}$, respectively, then

$$
E=\left\{|z|: z \in\left(\cup_{n=1}^{+\infty} O\left(a_{n}\right)\right) \cup\left(\cup_{m=1}^{+\infty} O\left(b_{m}\right)\right)\right\}
$$

Hence, if $f(z)$ is a transcendental entire function, and $z$ is a point that satisfies $|f(z)|$ to be sufficiently large, then $(2.5)$ holds.

## 3. Proof of Theorem 1.3

Suppose that $f(z)$ is a non-trivial subnormal solution of 1.3 . Let

$$
h(z)=e^{\left(b_{n} / a_{n}\right) z} f(z)
$$

then $h(z)$ is a non-trivial subnormal solution of

$$
\begin{aligned}
& h^{\prime \prime}+\left(2\left(-\frac{b_{n}}{a_{n}}\right)+P_{1}\left(e^{z}\right)+P_{2}\left(e^{-z}\right)\right) h^{\prime} \\
+ & \left(\left(-\frac{b_{n}}{a_{n}}\right)^{2}+\left(-\frac{b_{n}}{a_{n}}\right)\left(P_{1}\left(e^{z}\right)+P_{2}\left(e^{-z}\right)\right)+Q_{1}\left(e^{z}\right)+Q_{2}\left(e^{-z}\right)\right) h=0
\end{aligned}
$$

Since any one of the following three hypotheses holds:
(i) there exists $i$ satisfying $\left(-\frac{b_{n}}{a_{n}}\right) a_{i}+b_{i} \neq 0,0<i<n$;
(ii) there exists $j$ satisfying $\left(-\frac{b_{n}}{a_{n}}\right) c_{j}+d_{j} \neq 0,0<j<m$;
(iii)

$$
\left(\left(-\frac{b_{n}}{a_{n}}\right)^{2}+\left(-\frac{b_{n}}{a_{n}}\right)\left(a_{0}+c_{0}\right)+b_{0}+d_{0}\right) \neq 0
$$

we obtain

$$
\begin{equation*}
\left(-\frac{b_{n}}{a_{n}}\right)^{2}+\left(-\frac{b_{n}}{a_{n}}\right)\left(P_{1}\left(e^{z}\right)+P_{2}\left(e^{-z}\right)\right)+Q_{1}\left(e^{z}\right)+Q_{2}\left(e^{-z}\right) \not \equiv 0 \tag{3.1}
\end{equation*}
$$

From $a_{n} d_{m}=c_{m} b_{n}$, we obtain

$$
\begin{equation*}
\operatorname{deg} P_{2}(z)>m-1 \geq \operatorname{deg}\left[\left(-\frac{b_{n}}{a_{n}}\right) P_{2}(z)+Q_{2}(z)\right] \tag{3.2}
\end{equation*}
$$

Combining (3.1) and 3.2 with

$$
\begin{equation*}
\operatorname{deg} P_{1}(z)>n-1 \geq \operatorname{deg}\left[\left(-\frac{b_{n}}{a_{n}}\right) P_{1}(z)+Q_{1}(z)\right] \tag{3.3}
\end{equation*}
$$

we obtain the conclusion by using Theorem 1.2 .

## 4. Proof of Theorem 1.4

Suppose $f(\not \equiv 0)$ is a solution of $(1.6)$, then $f$ is an entire function. Next we will prove that $f$ is transcendental. Since $Q_{1}\left(e^{\beta z}\right)+Q_{2}\left(e^{-\beta z}\right) \not \equiv 0$, we see that any nonzero constant can not be a solution of the 1.6). Now suppose that $f_{0}=$ $b_{n} z^{n}+\cdots+b_{1} z+b_{0},\left(n \geq 1, b_{n}, \ldots, b_{0}\right.$ are constants, $\left.b_{n} \neq 0\right)$ is a polynomial solution of (1.6).
(1) $m_{1} \alpha=c_{1} n_{1} \beta\left(0<c_{1}<1\right)$. Take $z=r e^{i \theta}$, such that $\delta(\beta z, \theta)=|\beta| \cos (\arg \beta+$ $\theta)>0$, then $\delta(\alpha z, \theta)=\frac{n_{1} c_{1}}{m_{1}} \delta(\beta z, \theta)>0$. From (1.6) and Lemma 2.1, that for a sufficiently large $r$ and $\varepsilon>0$, we have

$$
\begin{array}{ll}
(1-\varepsilon)\left|b_{n}\right| r^{n}\left|b_{1 n_{1}}\right| e^{n_{1} \delta(\beta z, \theta) r}(1-o(1)) & \leq\left|Q_{1}\left(e^{\beta z}\right)+Q_{2}\left(e^{-\beta z}\right)\right| \cdot\left|f_{0}\right| \\
\leq\left|f_{0}^{\prime \prime}\right|+\left|P_{1}\left(e^{\alpha z}\right)+P_{2}\left(e^{-\alpha z}\right)\right| \cdot\left|f_{0}^{\prime}\right| & \\
\leq\left|a_{1 m_{1}}\right| e^{m_{1} \delta(\alpha z, \theta) r} n(n-1)(1+\varepsilon)\left|b_{n}\right| r^{n-1}(1+o(1)) & \\
\leq M_{1} e^{m_{1} \cdot \frac{n_{1} c_{1}}{m_{1}} \delta(\beta z, \theta) r} r^{n-1}(1+o(1)) & \\
\leq M_{1} e^{n_{1} c_{1} \delta(\beta z, \theta) r} r^{n-1}(1+o(1)) & \tag{4.1}
\end{array}
$$

where $M_{1}>0$ is some constant. Since $0<c_{1}<1$, we see that 4.1 is a contradiction.
(2) $m_{2} \alpha=c_{2} n_{2} \beta\left(0<c_{2}<1\right)$. Take $z=r e^{i \theta}$, such that $\delta(\beta z, \theta)=|\beta| \cos (\arg \beta+$ $\theta)<0$, then $\delta(\alpha z, \theta)=\frac{n_{2} c_{2}}{m_{2}} \delta(\beta z, \theta)<0$. From 1.6 and Lemma 2.1, that for a sufficiently large $r$ and $\varepsilon>0$, we have

$$
\begin{align*}
& (1-\varepsilon)\left|b_{n}\right| r^{n}\left|b_{2 n_{2}}\right| e^{-n_{2} \delta(\beta z, \theta) r}(1-o(1)) \\
& \leq\left|Q_{1}\left(e^{\beta z}\right)+Q_{2}\left(e^{-\beta z}\right)\right| \cdot\left|f_{0}\right| \\
& \leq\left|f_{0}^{\prime \prime}\right|+\left|P_{1}\left(e^{\alpha z}\right)+P_{2}\left(e^{-\alpha z}\right)\right| \cdot\left|f_{0}^{\prime}\right| \\
& \leq\left|a_{2 m_{2}}\right| e^{-m_{2} \delta(\alpha z, \theta) r} n(n-1)(1+\varepsilon)\left|b_{n}\right| r^{n-1}(1+o(1))  \tag{4.2}\\
& \leq M_{2} e^{-m_{2} \cdot \frac{n_{2} c_{2}}{m_{2}} \delta(\beta z, \theta) r} r^{n-1}(1+o(1)) \\
& \leq M_{2} e^{-n_{2} c_{2} \delta(\beta z, \theta) r} r^{n-1}(1+o(1)),
\end{align*}
$$

where $M_{2}>0$ is some constant. Since $0<c_{2}<1$, we see that 4.2 is also a contradiction. Thus we obtain that $f$ is transcendental.

By Lemma 2.6 and $\max \left\{\sigma\left(P_{1}\left(e^{\alpha z}\right)\right), \sigma\left(P_{2}\left(e^{-\alpha z}\right)\right), \sigma\left(Q_{1}\left(e^{\beta z}\right)\right), \sigma\left(Q_{2}\left(e^{-\beta z}\right)\right)\right\}=$ 1 , we see that $\sigma_{2}(f) \leq 1$. By Lemma 2.8 , we can see that there exists a subset $E \subset(1, \infty)$ having a logarithmic measure $m_{l} E<\infty$ and a constant $B>0$ such that for all $z$ satisfying $|z|=r \notin[0,1] \cup E$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq B[T(2 r, f)]^{j+1}, \quad j=1,2 \tag{4.3}
\end{equation*}
$$

(1) Suppose $m_{1} \alpha=c_{1} n_{1} \beta\left(0<c_{1}<1\right)$. Take $z=r e^{i \theta}$, such that $\delta(\beta z, \theta)>0$, then $\delta(\alpha z, \theta)=\frac{n_{1} c_{1}}{m_{1}} \delta(\beta z, \theta)>0$. From 1.6, 4.3, that for a sufficiently large $r$ and $r \notin[0,1] \cup E$, we have

$$
\begin{align*}
& (1-\varepsilon)\left|b_{1 n_{1}}\right| e^{n_{1} \delta(\beta z, \theta) r}(1-o(1)) \\
& \leq\left|Q_{1}\left(e^{\beta z}\right)+Q_{2}\left(e^{-\beta z}\right)\right| \\
& \leq\left|\frac{f^{\prime \prime}(z)}{f(z)}\right|+\left|P_{1}\left(e^{\alpha z}\right)+P_{2}\left(e^{-\alpha z}\right)\right|\left|\frac{f^{\prime}(z)}{f(z)}\right|  \tag{4.4}\\
& \leq B[T(2 r, f)]^{3}+(1+\varepsilon)\left|a_{1 m_{1}}\right| e^{m_{1} \delta(\alpha z, \theta) r} B[T(2 r, f)]^{2}(1+o(1)) \\
& \leq C[T(2 r, f)]^{3} e^{m_{1} \cdot \frac{n_{1} c_{1}}{m_{1}} \delta(\beta z, \theta) r}(1+o(1)) \\
& \leq C[T(2 r, f)]^{3} e^{n_{1} c_{1} \delta(\beta z, \theta) r}(1+o(1))
\end{align*}
$$

Since $0<c_{1}<1$, by lemma 2.2 (4.4), we obtain $\sigma_{2}(f) \geq 1$. So $\sigma_{2}(f)=1$.
Next we prove that any $f(\not \equiv 0)$ is not subnormal. If $f$ is subnormal, then for any $\varepsilon>0$,

$$
\begin{equation*}
T(r, f) \leq e^{\varepsilon r} \tag{4.5}
\end{equation*}
$$

When taking $z=r e^{i \theta}$, such that $\delta(\beta z, \theta)>0$, by 4.4) and 4.5), we deduce that

$$
\begin{align*}
(1-\varepsilon)\left|b_{1 n_{1}}\right| e^{n_{1} \delta(\beta z, \theta) r}(1-o(1)) & \leq C[T(2 r, f)]^{3} e^{n_{1} c_{1} \delta(\beta z, \theta) r}(1+o(1)) \\
& \leq C e^{6 \varepsilon r} \cdot e^{n_{1} c_{1} \delta(\beta z, \theta) r}(1+o(1)) \tag{4.6}
\end{align*}
$$

We see that 4.6) is a contradiction when $0<\varepsilon<\frac{1}{6} n_{1} \delta(\beta z, \theta)\left(1-c_{1}\right)$. Hence 1.6 has no non-trivial subnormal solution and every solution $f$ satisfies $\sigma_{2}(f)=1$.
(2) Suppose $m_{2} \alpha=c_{2} n_{2} \beta\left(0<c_{2}<1\right)$. Take $z=r e^{i \theta}$, such that $\delta(\beta z, \theta)<0$, then $\delta(\alpha z, \theta)=\frac{n_{2} c_{2}}{m_{2}} \delta(\beta z, \theta)<0$. Using the similar method as in the proof of (1), we obtain the conclusion.

## 5. Proof of Theorem 1.5

Suppose that $f(\not \equiv 0)$ is a solution of $\sqrt{1.6}$, then $f$ is an entire function. Next we will prove that $f$ is transcendental. Since $Q_{1}\left(e^{\beta z}\right)+Q_{2}\left(e^{-\beta z}\right) \not \equiv 0$, we see that any nonzero constant can not be a solution of the Eq. 1.6). Now suppose that $f_{0}=b_{n} z^{n}+\cdots+b_{1} z+b_{0},\left(n \geq 1, b_{n}, \ldots, b_{0}\right.$ are constants, $\left.b_{n} \neq 0\right)$ is a polynomial solution of (1.6).

Take $z=r e^{i \theta}$, such that $\delta(\alpha z, \theta)=|\alpha| \cos (\arg \alpha+\theta)>0$, then $\delta(\beta z, \theta)=$ $\frac{m_{1}}{c_{1} n_{1}} \delta(\alpha z, \theta)>0$. From 1.6 and Lemma 2.1. that for a sufficiently large $r$ and
$\varepsilon>0$, we have

$$
\begin{align*}
& (1-\varepsilon)\left|b_{n}\right| n r^{n-1}\left|a_{1 m_{1}}\right| e^{m_{1} \delta(\alpha z, \theta) r}(1-o(1)) \quad \leq\left|P_{1}\left(e^{\alpha z}\right)+P_{2}\left(e^{-\alpha z}\right)\right| \cdot\left|f_{0}^{\prime}\right| \\
& \leq\left|f_{0}^{\prime \prime}\right|+\left|Q_{1}\left(e^{\beta z}\right)+Q_{2}\left(e^{-\beta z}\right)\right| \cdot\left|f_{0}\right| \\
& \leq\left|b_{1 n_{1}}\right| e^{n_{1} \delta(\beta z, \theta) r} n(n-1)(1+\varepsilon)\left|b_{n}\right| r^{n}(1+o(1)) \\
& \leq M e^{n_{1} \cdot \frac{m_{1}}{c_{1} n_{1}} \delta(\alpha z, \theta) r} r^{n}(1+o(1)) \\
& \leq M e^{\frac{m_{1}}{c_{1}} \delta(\alpha z, \theta) r} r^{n}(1+o(1)), \tag{5.1}
\end{align*}
$$

where $M>0$ is some constant. Since $c_{1}>1$, we see that 5.1 is a contradiction. Thus we obtain that $f$ is transcendental.

First step. We prove that $\sigma(f)=\infty$. We assume that $\sigma(f)=\sigma<\infty$. By Lemma 2.3, we know that for any given $\varepsilon>0$, there exists a set $E \subset[0,2 \pi)$ which has linear measure zero, such that if $\psi \in[0,2 \pi) \backslash E$, then there is a constant $R_{0}=R_{0}(\psi)>1$, such that for all $z$ satisfying $\arg z=\psi$ and $|z|=r \geq R_{0}$, we have

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq r^{\sigma-1+\varepsilon} \tag{5.2}
\end{equation*}
$$

Let $H=\{\theta \in[0,2 \pi): \delta(\alpha z, \theta)=0\}$; then $H$ is a finite set. Now we take a ray $\arg z=\theta \in[0,2 \pi) \backslash(E \cup H)$, then $\delta(\alpha z, \theta)>0$ or $\delta(\alpha z, \theta)<0$. We divide the proof into the following two cases.
Case 1. If $\delta(\alpha z, \theta)>0$, then $\delta(\beta z, \theta)=\frac{m_{1}}{c_{1} n_{1}} \delta(\alpha z, \theta)>0, \delta(-\alpha z, \theta)<0$ and $\delta(-\beta z, \theta)<0$. We assert that $\left|f^{\prime}\left(r e^{i \theta}\right)\right|$ is bounded on the $\operatorname{ray} \arg z=\theta$. If $\left|f^{\prime}\left(r e^{i \theta}\right)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.4, there exists a sequence of points $z_{t}=r_{t} e^{i \theta}(t=1,2, \ldots)$ such that as $r_{t} \rightarrow \infty, f^{\prime}\left(z_{t}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f\left(z_{t}\right)}{f^{\prime}\left(z_{t}\right)}\right| \leq r_{t}(1+o(1)) \tag{5.3}
\end{equation*}
$$

By (1.6), we obtain that

$$
\begin{equation*}
-\left[P_{1}\left(e^{\alpha z_{t}}\right)+P_{2}\left(e^{-\alpha z_{t}}\right)\right]=\frac{f^{\prime \prime}\left(z_{t}\right)}{f^{\prime}\left(z_{t}\right)}+\left[Q_{1}\left(e^{\beta z_{t}}\right)+Q_{2}\left(e^{-\beta z_{t}}\right)\right] \cdot \frac{f\left(z_{t}\right)}{f^{\prime}\left(z_{t}\right)} \tag{5.4}
\end{equation*}
$$

From $\delta(\alpha z, \theta)>0$, we have

$$
\begin{gather*}
\left|P_{1}\left(e^{\alpha z_{t}}\right)+P_{2}\left(e^{-\alpha z_{t}}\right)\right| \geq(1-\varepsilon)\left|a_{1 m_{1}}\right| e^{m_{1} \delta\left(\alpha z_{t}, \theta\right) r_{t}}(1-o(1)),  \tag{5.5}\\
\left|Q_{1}\left(e^{\beta z_{t}}\right)+Q_{2}\left(e^{-\beta z_{t}}\right)\right| \leq M e^{n_{1} \delta\left(\beta z_{t}, \theta\right) r_{t}}(1+o(1)) . \tag{5.6}
\end{gather*}
$$

Substituting (5.2), 5.3, 5.5 and (5.6) in (5.4, we obtain

$$
\begin{align*}
& (1-\varepsilon)\left|a_{1 m_{1}}\right| e^{m_{1} \delta\left(\alpha z_{t}, \theta\right) r_{t}}(1-o(1)) \\
& \leq r_{t}^{\sigma-1+\varepsilon}+M e^{n_{1} \delta\left(\beta z_{t}, \theta\right) r_{t}}(1+o(1)) r_{t}(1+o(1))  \tag{5.7}\\
& \leq M r_{t}^{\sigma+\varepsilon} e^{\frac{m_{1}}{c_{1}} \delta\left(\alpha z_{t}, \theta\right) r_{t}}(1+o(1))
\end{align*}
$$

Since $c_{1}>1, \delta\left(\alpha z_{t}, \theta\right)>0$, when $r_{t} \rightarrow \infty, 5.7$ is a contradiction. Hence $\left|f^{\prime}\left(r e^{i \theta}\right)\right| \leq C$. So

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right| \leq C r \tag{5.8}
\end{equation*}
$$

Case 2. If $\delta(\alpha z, \theta)<0$, then $\delta(\beta z, \theta)=\frac{m_{2}}{c_{2} n_{2}} \delta(\alpha z, \theta)<0, \delta(-\alpha z, \theta)>0$ and $\delta(-\beta z, \theta)>0$. Using the similar method as above, we can obtain that

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right| \leq C r \tag{5.9}
\end{equation*}
$$

Since the linear measure of $E \cup H$ is zero, by 5.8 , 5.9 and Lemma 2.5 we know that $f(z)$ is a polynomial, which contradicts the assumption that $f(z)$ is transcendental. Therefore $\sigma(f)=\infty$.

Second step. We prove that 1.6 has no non-trivial subnormal solution. Now suppose that 1.6 has a non-trivial subnormal solution $f_{0}$. By the conclusion in the first step, $\sigma\left(f_{0}\right)=\infty$. By Lemma 2.6 we see that $\sigma_{2}\left(f_{0}\right) \leq 1$. Set $\sigma_{2}\left(f_{0}\right)=$ $\omega \leq 1$. By Lemma 2.8, we see that there exists a subset $E_{1} \subset(1, \infty)$ having finite logarithmic measure and a constant $B>0$ such that for all $z$ satisfying $|z|=r \notin[0,1] \cup E_{1}$, we have

$$
\begin{equation*}
\left|\frac{f_{0}^{(j)}(z)}{f_{0}(z)}\right| \leq B\left[T\left(2 r, f_{0}\right)\right]^{3}, \quad(j=1,2) \tag{5.10}
\end{equation*}
$$

From the Wiman-Valiron theory, there is a set $E_{2} \subset(1, \infty)$ having finite logarithmic measure, so we can choose $z$ satisfying $|z|=r \notin E_{2}$ and $\left|f_{0}(z)\right|=M\left(r, f_{0}\right)$. Thus, we have

$$
\begin{equation*}
\frac{f_{0}^{(j)}(z)}{f_{0}(z)}=\left(\frac{v(r)}{z}\right)^{j}(1+o(1)), \quad j=1,2 \tag{5.11}
\end{equation*}
$$

where $v(r)$ is the central index of $f_{0}(z)$.
By Lemma 2.7, we see that there exists a sequence $\left\{z_{n}=r_{n} e^{i \theta_{n}}\right\}$ such that $\left|f_{0}\left(z_{n}\right)\right|=M\left(r_{n}, f_{0}\right), \theta_{n} \in[0,2 \pi), \lim _{n \rightarrow \infty} \theta_{n}=\theta_{0} \in[0,2 \pi), r_{n} \notin[0,1] \cup E_{1} \cup E_{2}$, $r_{n} \rightarrow \infty$, and if $\omega>0$, we see that for any given $\varepsilon_{1}\left(0<\varepsilon_{1}<\omega\right)$, and for sufficiently large $r_{n}$,

$$
\begin{equation*}
\exp \left\{r_{n}^{\omega-\varepsilon_{1}}\right\}<v\left(r_{n}\right)<\exp \left\{r_{n}^{\omega+\varepsilon_{1}}\right\} \tag{5.12}
\end{equation*}
$$

and if $\omega=0$, then by $\sigma\left(f_{0}\right)=\infty$ and Lemma 2.7, we see that for any given $\varepsilon_{2}$ $\left(0<\varepsilon_{2}<1 / 2\right)$, and for any sufficiently large $M$, as $r_{n}$ is sufficiently large,

$$
\begin{equation*}
r_{n}^{M}<v\left(r_{n}\right)<\exp \left\{r_{n}^{\varepsilon_{2}}\right\} \tag{5.13}
\end{equation*}
$$

From 5.12 and (5.13), we obtain that

$$
\begin{equation*}
v\left(r_{n}\right)>r_{n}, \quad r_{n} \rightarrow \infty \tag{5.14}
\end{equation*}
$$

For $\theta_{0}$, let $\delta=\delta\left(\alpha z, \theta_{0}\right)=|\alpha| \cos \left(\arg \alpha+\theta_{0}\right)$, then $\delta<0$, or $\delta>0$, or $\delta=0$. We divide this proof into three cases.
Case 1. $\delta>0$. By $\theta_{n} \rightarrow \theta_{0}$, we see that there is a constant $N(>0)$ such that, as $n>N, \delta\left(\alpha z_{n}, \theta_{n}\right)>0$. Since $f_{0}$ is a subnormal solution, for any given $\varepsilon\left(0<\varepsilon<\frac{1}{12}\left(1-\frac{1}{c_{1}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right)\right)$, we have

$$
\begin{equation*}
\left[T\left(2 r_{n}, f_{0}\right)\right]^{3} \leq e^{6 \varepsilon r_{n}} \leq e^{\frac{1}{2}\left(1-\frac{1}{c_{1}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}} \tag{5.15}
\end{equation*}
$$

By (5.10, 5.11, 5.15, we have

$$
\begin{align*}
\left(\frac{v\left(r_{n}\right)}{r_{n}}\right)^{j}(1+o(1)) & =\left|\frac{f_{0}^{(j)}\left(z_{n}\right)}{f_{0}\left(z_{n}\right)}\right| \\
& \leq B\left[T\left(2 r_{n}, f_{0}\right)\right]^{3}  \tag{5.16}\\
& \leq B e^{\frac{1}{2}\left(1-\frac{1}{c_{1}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}, \quad j=1,2
\end{align*}
$$

Since $\delta\left(\alpha z_{n}, \theta_{n}\right)>0$, from (1.6), (5.11), we obtain that

$$
\begin{align*}
& (1-\varepsilon) \frac{v\left(r_{n}\right)}{r_{n}}\left|a_{1 m_{1}}\right| e^{m_{1} \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}(1-o(1)) \\
& \leq\left|\frac{f_{0}^{\prime}\left(z_{n}\right)}{f_{0}\left(z_{n}\right)}\left(P_{1}\left(e^{\alpha z_{n}}\right)+P_{2}\left(e^{-\alpha z_{n}}\right)\right)\right| \\
& =\left|\frac{f_{0}^{\prime \prime}\left(z_{n}\right)}{f_{0}\left(z_{n}\right)}+\left[Q_{1}\left(e^{\beta z_{n}}\right)+Q_{2}\left(e^{-\beta z_{n}}\right)\right]\right|  \tag{5.17}\\
& \leq\left(\frac{v\left(r_{n}\right)}{r_{n}}\right)^{2}(1+o(1))+(1+\varepsilon)\left|b_{1 n_{1}}\right| e^{n_{1} \delta\left(\beta z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \\
& \leq M_{1}\left(\frac{v\left(r_{n}\right)}{r_{n}}\right)^{2} e^{\frac{m_{1}}{c_{1}} \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}(1+o(1))
\end{align*}
$$

From (5.16) and 5.17, we can obtain

$$
\begin{align*}
& (1-\varepsilon)\left|a_{1 m_{1}}\right| e^{m_{1}\left(1-\frac{1}{c_{1}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}(1-o(1)) \\
& \leq M_{1} B e^{\frac{1}{2}\left(1-\frac{1}{c_{1}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \tag{5.18}
\end{align*}
$$

Since $c_{1}>1$ and $m_{1} \geq 1$, we see that (5.18) is a contradiction.
Case 2. $\delta<0$. By $\theta_{n} \rightarrow \theta_{0}$, we see that there is a constant $N(>0)$ such that, as $n>N, \delta\left(\alpha z_{n}, \theta_{n}\right)<0$. Since $f_{0}$ is a subnormal solution, for any given $\varepsilon$ $\left(0<\varepsilon<-\frac{1}{12}\left(1-\frac{1}{c_{2}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right)\right)$, we have

$$
\begin{equation*}
\left[T\left(2 r_{n}, f_{0}\right)\right]^{3} \leq e^{6 \varepsilon r_{n}} \leq e^{-\frac{1}{2}\left(1-\frac{1}{c_{2}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}} \tag{5.19}
\end{equation*}
$$

By 5.10, 5.11, 5.19 we have

$$
\begin{align*}
\left(\frac{v\left(r_{n}\right)}{r_{n}}\right)^{j}(1+o(1)) & =\left|\frac{f_{0}^{(j)}\left(z_{n}\right)}{f_{0}\left(z_{n}\right)}\right| \leq B\left[T\left(2 r_{n}, f_{0}\right)\right]^{3}  \tag{5.20}\\
& \leq B e^{-\frac{1}{2}\left(1-\frac{1}{c_{2}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}, \quad j=1,2
\end{align*}
$$

By (5.11) and 1.6), we obtain

$$
\begin{align*}
& (1-\varepsilon) \frac{v\left(r_{n}\right)}{r_{n}}\left|a_{2 m_{2}}\right| e^{-m_{2} \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}(1-o(1)) \\
& \leq\left|\frac{f_{0}^{\prime}\left(z_{n}\right)}{f_{0}\left(z_{n}\right)}\left(P_{1}\left(e^{\alpha z_{n}}\right)+P_{2}\left(e^{-\alpha z_{n}}\right)\right)\right| \\
& =\left|\frac{f_{0}^{\prime \prime}\left(z_{n}\right)}{f_{0}\left(z_{n}\right)}+\left[Q_{1}\left(e^{\beta z_{n}}\right)+Q_{2}\left(e^{-\beta z_{n}}\right)\right]\right|  \tag{5.21}\\
& \leq\left(\frac{v\left(r_{n}\right)}{r_{n}}\right)^{2}(1+o(1))+(1+\varepsilon)\left|b_{2 n_{2}}\right| e^{-n_{2} \delta\left(\beta z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \\
& \leq M_{2}\left(\frac{v\left(r_{n}\right)}{r_{n}}\right)^{2} e^{-\frac{m_{2}}{c_{2}} \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}(1+o(1))
\end{align*}
$$

From (5.20 and 5.21), we can deduce that

$$
\begin{align*}
& (1-\varepsilon)\left|a_{2 m_{2}}\right| e^{-m_{2}\left(1-\frac{1}{c_{2}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}(1-o(1)) \\
& \leq M_{2} B e^{-\frac{1}{2}\left(1-\frac{1}{c_{2}}\right) \delta\left(\alpha z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \tag{5.22}
\end{align*}
$$

Since $c_{2}>1$ and $m_{2} \geq 1$, we see that 5.22 is a contradiction.

Case 3. $\delta=0$. Then $\theta_{0} \in H=\{\theta \mid \theta \in[0,2 \pi), \delta(\alpha z, \theta)=0\}$. Since $\theta_{n} \rightarrow \theta_{0}$, for any given $\varepsilon>0$, we see that there is an integer $N(>0)$, as $n>N, \theta_{n} \in\left[\theta_{0}-\varepsilon, \theta_{0}+\varepsilon\right]$ and $z_{n}=r_{n} e^{i \theta_{n}} \in \bar{\Omega}=\left\{z: \theta_{0}-\varepsilon \leq \arg z \leq \theta_{0}+\varepsilon\right\}$. By Lemma 2.8. there exists a subset $E_{3} \subset(1, \infty)$ having finite logarithmic measure and a constant $B>0$, such that for all $z$ satisfying $|z|=r \notin[0,1] \cup E_{3}$, we have

$$
\begin{equation*}
\left|\frac{f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}\right| \leq B\left[T\left(2 r, f_{0}^{\prime}\right)\right]^{2} \tag{5.23}
\end{equation*}
$$

Now we consider the growth of $f_{0}\left(r e^{i \theta}\right)$ on a ray $\arg z=\theta \in \bar{\Omega} \backslash\left\{\theta_{0}\right\}$. Denote $\Omega_{1}=\left[\theta_{0}-\varepsilon, \theta_{0}\right), \Omega_{2}=\left(\theta_{0}, \theta_{0}+\varepsilon\right]$. We can easily see that when $\theta_{1} \in \Omega_{1}, \theta_{2} \in \Omega_{2}$, then $\delta\left(\alpha z, \theta_{1}\right) \cdot \delta\left(\alpha z, \theta_{2}\right)<0$. Without loss of generality, we suppose that $\delta(\alpha z, \theta)>$ $0\left(\theta \in \Omega_{1}\right)$ and $\delta(\alpha z, \theta)<0\left(\theta \in \Omega_{2}\right)$.

Since when $\theta \in \Omega_{1}, \delta(\alpha z, \theta)>0$. Recall $f_{0}$ is subnormal, then for any given $\varepsilon$ $\left(0<\varepsilon<\frac{1}{8}\left(1-\frac{1}{c_{1}}\right) \delta(\alpha z, \theta)\right)$,

$$
\begin{equation*}
\left[T\left(2 r, f_{0}^{\prime}\right)\right]^{2} \leq e^{4 \varepsilon r} \leq e^{\frac{1}{2}\left(1-\frac{1}{c_{1}}\right) \delta(\alpha z, \theta) r} \tag{5.24}
\end{equation*}
$$

We assert that $\left|f_{0}^{\prime}\left(r e^{i \theta}\right)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f_{0}^{\prime}\left(r e^{i \theta}\right)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.4 there exists a sequence $\left\{y_{j}=R_{j} e^{i \theta}\right\}$ such that $R_{j} \rightarrow \infty, f_{0}^{\prime}\left(y_{j}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f_{0}\left(y_{j}\right)}{f_{0}^{\prime}\left(y_{j}\right)}\right| \leq R_{j}(1+o(1)) \tag{5.25}
\end{equation*}
$$

By 5.23, 5.24, we see that for sufficiently large $j$,

$$
\begin{equation*}
\left|\frac{f_{0}^{\prime \prime}\left(y_{j}\right)}{f_{0}^{\prime}\left(y_{j}\right)}\right| \leq B\left[T\left(2 R_{j}, f_{0}^{\prime}\right)\right]^{2} \leq B e^{\frac{1}{2}\left(1-\frac{1}{c_{1}}\right) \delta\left(\alpha y_{j}, \theta\right) R_{j}} \tag{5.26}
\end{equation*}
$$

By (1.6), we deduce that

$$
\begin{align*}
& (1-\varepsilon)\left|a_{1 m_{1}}\right| e^{m_{1} \delta\left(\alpha y_{j}, \theta\right) R_{j}}(1-o(1)) \\
& \leq\left|-\left(P_{1}\left(e^{\alpha y_{j}}\right)+P_{2}\left(e^{-\alpha y_{j}}\right)\right)\right| \\
& \leq\left|\frac{f_{0}^{\prime \prime}\left(y_{j}\right)}{f_{0}^{\prime}\left(y_{j}\right)}\right|+\left|Q_{1}\left(e^{\beta y_{j}}\right)+Q_{2}\left(e^{-\beta y_{j}}\right)\right| \cdot\left|\frac{f_{0}\left(y_{j}\right)}{f_{0}^{\prime}\left(y_{j}\right)}\right|  \tag{5.27}\\
& \leq C_{1} e^{\frac{1}{2}\left(1-\frac{1}{c_{1}}\right) \delta\left(\alpha y_{j}, \theta\right) R_{j}} e^{n_{1} \delta\left(\beta y_{j}, \theta\right) R_{j}} R_{j}(1+o(1)) \\
& \leq C_{1} e^{\left[\frac{1}{2}\left(1-\frac{1}{c_{1}}\right)+\frac{m_{1}}{c_{1}}\right] \delta\left(\alpha y_{j}, \theta\right) R_{j}} R_{j}(1+o(1))
\end{align*}
$$

Since $\delta\left(\alpha y_{j}, \theta\right)>0, c_{1}>1$, we know that when $R_{j} \rightarrow \infty, 5.27$ is a contradiction. Hence

$$
\begin{equation*}
\left|f_{0}\left(r e^{i \theta}\right)\right| \leq C r \tag{5.28}
\end{equation*}
$$

on the ray $\arg z=\theta \in \Omega_{1}$.
When $\theta \in \Omega_{2}, \delta(\alpha z, \theta)<0$. Recall $f_{0}$ is subnormal, then for any given $\varepsilon$ $\left(0<\varepsilon<-\frac{1}{8}\left(1-\frac{1}{c_{2}}\right) \delta(\alpha z, \theta)\right)$,

$$
\begin{equation*}
\left[T\left(2 r, f_{0}^{\prime}\right)\right]^{2} \leq e^{4 \varepsilon r} \leq e^{-\frac{1}{2}\left(1-\frac{1}{c_{2}}\right) \delta(\alpha z, \theta) r} \tag{5.29}
\end{equation*}
$$

We assert that $\left|f_{0}^{\prime}\left(r e^{i \theta}\right)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f_{0}^{\prime}\left(r e^{i \theta}\right)\right|$ is unbounded on the ray $\arg z=\theta$, using the similar proof as above, we can obtain
that

$$
\begin{align*}
& (1-\varepsilon)\left|a_{2 m_{2}}\right| e^{-m_{2}\left(1-\frac{1}{c_{2}}\right) \delta\left(\alpha y_{j}, \theta\right) R_{j}}(1-o(1)) \\
& \leq C_{2} e^{-\frac{1}{2}\left(1-\frac{1}{c_{2}}\right) \delta\left(\alpha y_{j}, \theta\right) R_{j}} R_{j}(1+o(1)) \tag{5.30}
\end{align*}
$$

Since $\delta\left(\alpha y_{j}, \theta\right)<0$ and $c_{2}>1$, we know that when $R_{j} \rightarrow \infty$, 5.30 is a contradiction. Hence

$$
\begin{equation*}
\left|f_{0}\left(r e^{i \theta}\right)\right| \leq C r \tag{5.31}
\end{equation*}
$$

on the ray $\arg z=\theta \in \Omega_{2}$. By 5.28, 5.31, we see that $\left|f_{0}\left(r e^{i \theta}\right)\right|$ satisfies

$$
\begin{equation*}
\left|f_{0}\left(r e^{i \theta}\right)\right| \leq C r \tag{5.32}
\end{equation*}
$$

on the ray $\arg z=\theta \in \bar{\Omega} \backslash\left\{\theta_{0}\right\}$. However, since $f_{0}$ is transcendental and $\left\{z_{n}=\right.$ $\left.r_{n} e^{i \theta_{n}}\right\}$ satisfies $\left|f_{0}\left(z_{n}\right)\right|=M\left(r_{n}, f_{0}\right)$, we see that for any large $N(>2)$, as $n$ is sufficiently large,

$$
\begin{equation*}
\left|f_{0}\left(z_{n}\right)\right|=\left|f_{0}\left(r_{n} e^{i \theta_{n}}\right)\right| \geq r_{n}^{N} \tag{5.33}
\end{equation*}
$$

Since $z_{n} \in \bar{\Omega}$, by (5.32), 5.33), we see that for sufficiently, large $n$,

$$
\theta_{n}=\theta_{0} .
$$

Thus for sufficiently large $n, \delta\left(\alpha z_{n}, \theta_{n}\right)=0$ and

$$
\begin{equation*}
\left|P_{1}\left(e^{\alpha z_{n}}\right)+P_{2}\left(e^{-\alpha z_{n}}\right)\right| \leq C, \quad\left|Q_{1}\left(e^{\beta z_{n}}\right)+Q_{2}\left(e^{-\beta z_{n}}\right)\right| \leq C . \tag{5.34}
\end{equation*}
$$

By (1.6), (5.11), we obtain that

$$
\begin{align*}
& -\left(\frac{v\left(r_{n}\right)}{z_{n}}\right)^{2}(1+o(1)) \\
& =\left(P_{1}\left(e^{\alpha z_{n}}\right)+P_{2}\left(e^{-\alpha z_{n}}\right)\right)\left(\frac{v\left(r_{n}\right)}{z_{n}}\right)(1+o(1))+\left[Q_{1}\left(e^{\beta z_{n}}\right)+Q_{2}\left(e^{-\beta z_{n}}\right)\right] \tag{5.35}
\end{align*}
$$

By (5.34, 5.35) and (5.14) we obtain that

$$
\begin{equation*}
v\left(r_{n}\right) \leq 2 C r_{n} \tag{5.36}
\end{equation*}
$$

by 5.12 (or 5.13), we see that (5.36) is a contradiction. Hence (1.6) has no non-trivial subnormal solution.

Third step. We prove that all solutions of 1.6 ) satisfies $\sigma_{2}(f)=1$. If there is a solution $f_{1}$ satisfying $\sigma_{2}\left(f_{1}\right)<1$, then $\sigma_{e}\left(f_{1}\right)=0$, that is to say $f_{1}$ is subnormal, but this contradicts the conclusion in step 2 . Hence $\sigma_{2}(f)=1$. This completes the proof of Theorem 1.5 .

Acknowledgements. The authors would like to thank the editor and the referee for their valuable suggestions. This work was supported by the NNSF of China (No. 11171013 and No. 11371225).

## References

[1] Z. X. Chen; The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$ where the order $\sigma(Q)=1$, Sci. China Ser. A 45 (3) (2002) 290-300.
[2] Z. X. Chen; On the growth of solutions of a class of higher order differtial equations, Chin Ann of Math., 24B(4) (2003), 501-508.
[3] Z. X. Chen, K. H. Shon; On subnormal solutions of second order linear periodic differential equations, Sci. China Ser. A., 50 (2007), no. 6,786-800
[4] Z. X. Chen, K. H. Shon; The hyper order of solutions of second order differential equations and subnormal solutions of periodic equations, Taiwanese J. Math. 14 (2)(2010), 611-628.
[5] G. Gundersen; Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc, 37 (1988), 88-104.
[6] G. Gundersen; Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc., 305 (1988), 415-429.
[7] G. Gundersen, M. Steinbart; Subnormal solutions of second order linear differential equation with periodic coefficients, Results in Math., 25 (1994), 270-289.
[8] I. Laine; Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, (1993)
[9] I. Laine, R. Yang; Finite order solutions of complex linear differential equations, Electron. J. Differential Equations., 65 (2004), 8 pp.
[10] H. Wittich; Subnormale Lösungen der Differentialgleichung $\omega^{\prime \prime}+p\left(e^{z}\right) \omega^{\prime}+q\left(e^{z}\right) \omega=0$, Nagoya Math. J., 30 (1967), 29-37.
[11] L. P. Xiao; Nonexistence of a subnormal solution of certain second order periodic differential equations, J. Math. Anal. Appl., 402 (2013), 527-535.
[12] H. X. Yi, C. C. Yang; Uniqueness theory of meromorphic functions. Science Press, Beijing, (1995)

Nan Li
School of Mathematics, Shandong University, Jinan, Shandong Province, 250100, China. Department of Physics and Mathematics, Joensuu Campus, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland

E-mail address: nanli32787310@gmail.com
Lianzhong Yang (CORRESPONDing author)
School of Mathematics, Shandong University, Jinan, Shandong Province, 250100, China
E-mail address: lzyang@sdu.edu.cn

