Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 50, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

POSITIVE SOLUTIONS TO A NONLINEAR FRACTIONAL DIRICHLET PROBLEM ON THE HALF-LINE

HABIB MÂAGLI, ABDELWAHEB DHIFLI

Abstract

This concerns the existence of infinitely many positive solutions to the fractional differential equation $$
\begin{gathered} D^{\alpha} u(x)+f\left(x, u, D^{\alpha-1} u\right)=0, \quad x>0, \\ \lim _{x \rightarrow 0^{+}} u(x)=0, \end{gathered}
$$ where $\alpha \in(1,2]$ and f is a Borel measurable function in $\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$ satisfying some appropriate conditions.

1. Introduction

Recently, many papers on fractional differential equations have been published. The motivation for those works stems from the fact that fractional equations serve as an excellent tool to describe many phenomena in various fields of science and engineering such as control, porous media, electrochemistry, viscoelasticity, electromagnetic, etc (see [8, 10, 11, 19]). Therefore, the theory of fractional differential equations has been developed very quickly and the investigation for the existence of solutions of fractional differential equations has recently attracted a considerable attention (see [1, 2, 3, 4, 4, 5, 6, 7, 19, 12, 13, 14, 15, 17, 18, 20, 21, 22, and the references therein. For instance, in [18, the first author considered the following nonlinear fractional differential problem in the half-line $\mathbb{R}^{+}=(0, \infty)$:

$$
\begin{gather*}
D^{\alpha} u+f(x, u)=0, \quad u>0 \\
\lim _{x \rightarrow 0^{+}} u(x)=0 \tag{1.1}
\end{gather*}
$$

where $1<\alpha \leq 2$ and f be a measurable function in $\mathbb{R}^{+} \times \mathbb{R}^{+}$satisfying an appropriate condition. Then, he established the existence of infinitely many solutions of (1.1).

In this paper, we extend this result to the fractional problem

$$
\begin{gather*}
D^{\alpha} u+f\left(x, u, D^{\alpha-1} u\right)=0, \quad u>0 \text { in } \mathbb{R}^{+} \\
\lim _{x \rightarrow 0^{+}} u(x)=0 \tag{1.2}
\end{gather*}
$$

[^0]where f is a Borel measurable function in $\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$satisfying the following assumptions.
(H1) f is continuous with respect to the second and third variable.
(H2) There exist h_{1} and h_{2} two nonnegative measurable functions on $\mathbb{R}^{+} \times \mathbb{R}^{+} \times$ \mathbb{R}^{+}such that
(i) $|f(x, y, z)| \leq h(x, y, z):=y h_{1}(x, y, z)+z h_{2}(x, y, z)$ for all $x, y, z \in \mathbb{R}^{+}$.
(ii) The function h_{j} is nondecreasing with respect to the second and the third variables and satisfying $\lim _{(y, z) \rightarrow(0,0)} h_{j}(x, y, z)=0$ for $j=1,2$.
(iii) The integral $\int_{0}^{\infty} h\left(t, \omega_{\alpha}(t), 1\right) d t$ converges, where $\omega_{\alpha}(t):=\frac{t^{\alpha-1}}{\Gamma(\alpha)}$.

We recall that for a measurable function v, the Riemann-Liouville fractional integral $I^{\beta} v$ and the Riemann-Liouville derivative $D^{\beta} v$ of order $\beta>0$ are defined by

$$
I^{\beta} v(x)=\frac{1}{\Gamma(\beta)} \int_{0}^{x}(x-t)^{\beta-1} v(t) d t
$$

and

$$
D^{\beta} v(x)=\frac{1}{\Gamma(n-\beta)}\left(\frac{d}{d x}\right)^{n} \int_{0}^{x}(x-t)^{n-\beta-1} v(t) d t=\left(\frac{d}{d x}\right)^{n} I^{n-\beta} v(x)
$$

provided that the right-hand sides are pointwise defined on \mathbb{R}^{+}. Here $n=[\beta]+1$ and $[\beta]$ means the integer part of the number β and Γ is the Euler Gamma function. Moreover, we have the following well-known properties (see [11, 20]).

$$
\begin{gather*}
I^{\beta} I^{\gamma} v(x)=I^{\beta+\gamma} v(x) \quad \text { for } x \in \mathbb{R}^{+}, v \in L_{\mathrm{loc}}^{1}([0, \infty)), \beta+\gamma \geq 1 . \tag{1.3}\\
D^{\beta} I^{\beta} v(x)=v(x), \quad \text { a.e in } \mathbb{R}^{+}, v \in L_{\mathrm{loc}}^{1}([0, \infty)), \beta>0 . \tag{1.4}\\
D^{\beta} v(x)=0 \quad \text { if and only if } \quad v(x)=\sum_{j=1}^{n} c_{j} x^{\beta-j} \tag{1.5}
\end{gather*}
$$

where n is the smallest integer greater than or equal to β and $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$.
Remark 1.1. Let $1<\alpha \leq 2$. Then a simple calculus, gives for $x \geq 0$,

$$
\begin{equation*}
I^{\alpha-1}(1)(x)=\omega_{\alpha}(x) \tag{1.6}
\end{equation*}
$$

Our main result is the following.
Theorem 1.2. Assume (H1) and (H2). Then problem (1.2) has infinitely many solutions. More precisely, there exists a number $b>0$ such that for each $c \in(0, b]$, problem (1.2) has a continuous solution u satisfying

$$
u(x)=c \omega_{\alpha}(x)+\omega_{\alpha}(x) \int_{0}^{\infty}\left(1-\left(\left(1-\frac{t}{x}\right)^{+}\right)^{\alpha-1}\right) f\left(t, u(t), D^{\alpha-1} u(t)\right) d t
$$

and

$$
\lim _{x \rightarrow \infty} \frac{u(x)}{\omega_{\alpha}(x)}=\lim _{x \rightarrow \infty} D^{\alpha-1} u(x)=c
$$

Note that Theorem 1.2 generalizes a result established by Mâagli and Masmoudi [16] in the case $\alpha=2$.

In the sequel, for $\lambda \in \mathbb{R}$, we put $\lambda^{+}=\max (\lambda, 0)$ and we denote by $C([0, \infty])$ the set of continuous functions v on \mathbb{R}^{+}such that $\lim _{x \rightarrow 0^{+}} v(x)$ and $\lim _{x \rightarrow \infty} v(x)$ exist. It is easy to see that $C([0, \infty])$ is a Banach space with the norm $\|v\|_{\infty}=$ $\sup _{x \geq 0}|v(x)|$. Let

$$
E=\left\{v \in C([0, \infty)): D^{\alpha-1}\left(\omega_{\alpha} v\right) \in C([0, \infty])\right\}
$$

endowed with the norm $\|v\|=\left\|D^{\alpha-1}\left(\omega_{\alpha} v\right)\right\|_{\infty}$. Then the map

$$
\begin{aligned}
(E,\|\cdot\|) & \rightarrow\left(C([0, \infty]),\|\cdot\|_{\infty}\right) \\
v & \mapsto D^{\alpha-1}\left(\omega_{\alpha} v\right)
\end{aligned}
$$

is an isometry. It follows that $(E,\|\cdot\|)$ is a Banach space. Next we quote some results in the following lemmas that will be used later.
Lemma 1.3 (6]). Let f be a function in $C\left([0, \infty)\right.$) such that $f(0)=0$ and $D^{\alpha-1} f$ belongs to $C([0, \infty))$. Then for $x \geq 0$,

$$
I^{\alpha-1} D^{\alpha-1} f(x)=f(x)
$$

Lemma 1.4. Let $m_{1}, m_{2} \in \mathbb{R}$ such that $m_{1} \leq m_{2}$ and let $v \in C([0, \infty))$ such that $D^{\alpha-1}\left(\omega_{\alpha} v\right) \in C([0, \infty))$ and $m_{1} \leq D^{\alpha-1}\left(\omega_{\alpha} v\right)(t) \leq m_{2}$ for all $t \geq 0$. Then for each $t \geq 0$,

$$
m_{1} \leq v(t) \leq m_{2}
$$

In particular, $\|v\|_{\infty} \leq\left\|D^{\alpha-1}\left(\omega_{\alpha} v\right)\right\|_{\infty}$ and $E \subset C([0, \infty])$.
Proof. Let $v \in C([0, \infty))$ such that $D^{\alpha-1}\left(\omega_{\alpha} v\right) \in C([0, \infty))$ and

$$
\begin{equation*}
m_{1} \leq D^{\alpha-1}\left(\omega_{\alpha} v\right) \leq m_{2} \tag{1.7}
\end{equation*}
$$

Using Lemma 1.3 and 1.6 , we obtain

$$
m_{1} \omega_{\alpha} \leq I^{\alpha-1} D^{\alpha-1}\left(\omega_{\alpha} v\right)=\omega_{\alpha} v \leq m_{1} \omega_{\alpha}
$$

This implies that for each $t \geq 0$,

$$
m_{1} \leq v(t) \leq m_{2}
$$

Let $\mathcal{F}=\left\{v \in E: 0 \leq D^{\alpha-1}\left(\omega_{\alpha} v\right) \leq 1\right\}$. Then we have the following result.
Lemma 1.5. Assume (H2). Then the family of functions

$$
\left\{x \mapsto \int_{0}^{x}\left(1-\frac{t}{x}\right)^{\alpha-1} f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t, v \in \mathcal{F}\right\}
$$

is relatively compact in $C([0, \infty])$.
Proof. For $v \in \mathcal{F}$ and $x>0$, put

$$
S v(x)=\int_{0}^{x}\left(1-\frac{t}{x}\right)^{\alpha-1} f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t
$$

By (H2) and Lemma 1.4. we have for $v \in \mathcal{F}$ and $x>0$,

$$
\begin{aligned}
|S v(x)| & \leq \int_{0}^{\infty}\left|f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right)\right| d t \\
& \leq \int_{0}^{\infty} h\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t \\
& \leq \int_{0}^{\infty} h\left(t, \omega_{\alpha}(t), 1\right) d t<\infty
\end{aligned}
$$

Thus the family $S(\mathcal{F})$ is uniformly bounded.
Now, we prove the equicontinuity of $S(\mathcal{F})$ in $[0, \infty]$. Let $x, x^{\prime} \in \mathbb{R}^{+}$and $v \in \mathcal{F}$, then we have

$$
\left|S v(x)-S v\left(x^{\prime}\right)\right| \leq \int_{0}^{\infty}\left|\left(\left(1-\frac{t}{x}\right)^{+}\right)^{\alpha-1}-\left(\left(1-\frac{t}{x^{\prime}}\right)^{+}\right)^{\alpha-1}\right| h\left(t, \omega_{\alpha}(t), 1\right) d t
$$

$$
\begin{gathered}
|S v(x)| \leq \int_{0}^{x} h\left(t, \omega_{\alpha}(t), 1\right) d t \\
\left|S v(x)-\int_{0}^{\infty} f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t\right| \\
\leq \int_{0}^{\infty}\left(1-\left(\left(1-\frac{t}{x}\right)^{+}\right)^{\alpha-1}\right) h\left(t, \omega_{\alpha}(t), 1\right) d t
\end{gathered}
$$

Using Lebesgue's theorem, we deduce from the above inequalities that $S(\mathcal{F})$ is equicontinuous in $[0, \infty]$. Hence, by Ascoli's theorem, we conclude that $S(\mathcal{F})$ is relatively compact in $C([0, \infty])$.

2. Proof of Theorem 1.2

In the sequel, we denote

$$
g(x, y, z)=\omega_{\alpha}(x) h_{1}(x, y, z)+h_{2}(x, y, z), \quad \text { for } x, y, z \in \mathbb{R}^{+}
$$

By (H2) and Lebesgue's theorem,

$$
\lim _{\beta \rightarrow 0} \int_{0}^{\infty} g\left(t, \beta \omega_{\alpha}(t), \beta\right) d t=0
$$

Hence we can fix a number $0<\beta<1$ such that

$$
\int_{0}^{\infty} g\left(t, \beta \omega_{\alpha}(t), \beta\right) d t \leq \frac{1}{3}
$$

Let $b=2 \beta / 3$ and $c \in(0, b]$. To apply a fixed point argument, set

$$
\Lambda=\left\{v \in E: \frac{c}{2} \leq D^{\alpha-1}\left(\omega_{\alpha} v\right) \leq \frac{3 c}{2}\right\}
$$

Then Λ is a nonempty closed bounded and convex set in E. Now, we define the operator T on Λ by

$$
T v(x)=c+\int_{0}^{\infty}\left(1-\left(\left(1-\frac{t}{x}\right)^{+}\right)^{\alpha-1}\right) f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t, \quad x>0
$$

First, we shall prove that the operator T maps Λ into itself. Let $v \in \Lambda$. Using Lemma 1.5. we deduce that the function $T v$ is in $C([0, \infty])$. On the other hand, for $x \geq 0$ we have

$$
\begin{aligned}
\omega_{\alpha}(x) T v(x)= & \omega_{\alpha}(x)\left(c+\int_{0}^{\infty} f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t\right) \\
& -I^{\alpha}\left(f\left(., \omega_{\alpha} v, D^{\alpha-1}\left(\omega_{\alpha} v\right)\right)\right)(x)
\end{aligned}
$$

Hence, applying $D^{\alpha-1}$ on both sides of this equality, we conclude by 1.6 and 1.4 that for each $x \geq 0$,

$$
D^{\alpha-1}\left(\omega_{\alpha} T v\right)(x)=c+\int_{x}^{\infty} f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t
$$

This implies that $D^{\alpha-1}\left(\omega_{\alpha} T v\right)$ is in $C([0, \infty])$ and $T \Lambda \subset E$. Furthermore, we have for $v \in \Lambda$ and $x \geq 0$,

$$
\begin{aligned}
\left|D^{\alpha-1}\left(\omega_{\alpha} T v\right)(x)-c\right| & \leq \int_{0}^{\infty}\left|f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right)\right| d t \\
& \leq \int_{0}^{\infty} h\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{0}^{\infty} h\left(t, \frac{3 c}{2} \omega_{\alpha}(t), \frac{3 c}{2}\right) d t \\
& =\frac{3 c}{2} \int_{0}^{\infty} g\left(t, \frac{3 c}{2} \omega_{\alpha}(t), \frac{3 c}{2}\right) d t \\
& \leq \frac{3 c}{2} \int_{0}^{\infty} g\left(t, \beta \omega_{\alpha}(t), \beta\right) d t \leq \frac{c}{2}
\end{aligned}
$$

It follows that for each $x \geq 0$,

$$
\frac{c}{2} \leq D^{\alpha-1}\left(\omega_{\alpha} T v\right)(x) \leq \frac{3 c}{2}
$$

So, we conclude that Λ is invariant under T.
Next, we prove that $T \Lambda$ is relatively compact in $(E,\|\cdot\|)$. For any $v \in \Lambda$ and $x>0$,

$$
\frac{d}{d x} D^{\alpha-1}\left(\omega_{\alpha} T v\right)(x)=-f\left(x, \omega_{\alpha}(x) v(x), D^{\alpha-1}\left(\omega_{\alpha} v\right)(x)\right) \quad \text { a.e. in } \mathbb{R}^{+}
$$

Since

$$
\left|\frac{d}{d x} D^{\alpha-1}\left(\omega_{\alpha} T v\right)(x)\right| \leq h\left(x, \omega_{\alpha}(x) v(x), D^{\alpha-1}\left(\omega_{\alpha} v\right)(x)\right) \leq h\left(x, \omega_{\alpha}(x), 1\right)
$$

and $\int_{0}^{\infty} h\left(x, \omega_{\alpha}(x), 1\right) d x<\infty$, it follows that the family $\left\{D^{\alpha-1}\left(\omega_{\alpha} T v\right), v \in \Lambda\right\}$ is equicontinuous on $[0, \infty]$. Moreover, $\left\{D^{\alpha-1}\left(\omega_{\alpha} T v\right), v \in \Lambda\right\}$ is uniformly bounded. Then from Ascoli's theorem, $\left\{D^{\alpha-1}\left(\omega_{\alpha} v\right), v \in \Lambda\right\}$ is relatively compact in the space $\left(C([0, \infty]),\|\cdot\|_{\infty}\right)$. This implies that $T \Lambda$ is relatively compact in $(E,\|\cdot\|)$.

Now, we prove the continuity of T in Λ. Let $\left(v_{k}\right)$ be a sequence in Λ such that

$$
\left\|v_{k}-v\right\|=\left\|D^{\alpha-1}\left(\omega_{\alpha} v_{k}\right)-D^{\alpha-1}\left(\omega_{\alpha} v\right)\right\|_{\infty} \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Then by Lemma 1.4, $\left\|v_{k}-v\right\|_{\infty} \rightarrow 0$ as $k \rightarrow \infty$ and for any $x \in[0, \infty]$, we have

$$
\begin{aligned}
& \left|D^{\alpha-1}\left(\omega_{\alpha} T v_{k}\right)(x)-D^{\alpha-1}\left(\omega_{\alpha} T v\right)(x)\right| \\
& =\left|\int_{x}^{\infty}\left[f\left(t, \omega_{\alpha}(t) v_{k}(t), D^{\alpha-1}\left(\omega_{\alpha} v_{k}\right)(t)\right)-f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right)\right] d t\right| \\
& \leq \int_{0}^{\infty}\left|f\left(t, \omega_{\alpha}(t) v_{k}(t), D^{\alpha-1}\left(\omega_{\alpha} v_{k}\right)(t)\right)-f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right)\right| d t
\end{aligned}
$$

and

$$
\left|f\left(t, \omega_{\alpha}(t) v_{k}(t), D^{\alpha-1}\left(\omega_{\alpha} v_{k}\right)(t)\right)-f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right)\right| \leq 2 h\left(t, \omega_{\alpha}(t), 1\right)
$$

So, by (H1) and Lebesgue's theorem,

$$
\left\|T v_{k}-T v\right\|=\left\|D^{\alpha-1}\left(\omega_{\alpha} T v_{k}\right)-D^{\alpha-1}\left(\omega_{\alpha} T v\right)\right\|_{\infty} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

It follows by the Schauder fixed point theorem that there exists $v \in \Lambda$ such that $T v=v$. That is,

$$
v(x)=c+\int_{0}^{\infty}\left(1-\left(\left(1-\frac{t}{x}\right)^{+}\right)^{\alpha-1}\right) f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t, \quad \text { for } x>0
$$

We put $u(x)=\omega_{\alpha}(x) v(x)$. Then for any $x>0$, we have

$$
u(x)=c \omega_{\alpha}(x)+\omega_{\alpha}(x) \int_{0}^{\infty}\left(1-\left(\left(1-\frac{t}{x}\right)^{+}\right)^{\alpha-1}\right) f\left(t, \omega_{\alpha}(t) v(t), D^{\alpha-1}\left(\omega_{\alpha} v\right)(t)\right) d t
$$

Moreover, for $x>0$, we have

$$
\begin{align*}
\frac{c}{2} \omega_{\alpha}(x) & \leq u(x) \leq \frac{3 c}{2} \omega_{\alpha}(x) \\
\lim _{x \rightarrow \infty} \frac{u(x)}{\omega_{\alpha}(x)} & =\lim _{x \rightarrow \infty} D^{\alpha-1} u(x)=c . \tag{2.1}
\end{align*}
$$

It remains to show that u is a solution of problem 1.2). Indeed, applying D^{α} on both sides of (2.1) we obtain by (1.5) and (1.4), that

$$
D^{\alpha} u(x)=-f\left(x, u, D^{\alpha-1} u\right), \quad \text { a.e. in } \mathbb{R}^{+}
$$

This completes the proof.
Example 2.1. Let $p, q \geq 0$ such that $\max (p, q)>1$ and let k be a measurable function satisfying

$$
\int_{0}^{\infty} t^{(\alpha-1) p}|k(t)| d t<\infty
$$

Then there exists a constant $b>0$ such that for each $c \in(0, b]$, the problem

$$
\begin{gathered}
D^{\alpha} u+k(x) u^{p}\left(D^{\alpha-1} u\right)^{q}=0, \quad u>0 \quad \text { in } \mathbb{R}^{+} \\
\lim _{x \rightarrow 0^{+}} u(x)=0
\end{gathered}
$$

has a continuous solution u in \mathbb{R}^{+}satisfying $\lim _{x \rightarrow 0^{+}} \frac{u(x)}{\omega_{\alpha}(x)}=\lim _{x \rightarrow \infty} D^{\alpha-1} u(x)=$ c.

Example 2.2. Let $p>1$ and $q>1$. Let k_{1} and k_{2} be two measurable functions such that

$$
\int_{0}^{\infty}\left|k_{1}(t)\right| t^{p(\alpha-1)} d t<\infty, \quad \int_{0}^{\infty}\left|k_{2}(t)\right| d t<\infty
$$

Then there exists a constant $b>0$ such that for each $c \in(0, b]$, the problem

$$
\begin{gathered}
D^{\alpha} u+k_{1}(x) u^{p}+k_{2}(x)\left(D^{\alpha-1} u\right)^{q}=0, \quad u>0 \quad \text { in } \mathbb{R}^{+}, \\
\lim _{x \rightarrow 0^{+}} u(x)=0
\end{gathered}
$$

has a continuous solution u in \mathbb{R}^{+}satisfying

$$
\lim _{x \rightarrow 0^{+}} \frac{u(x)}{\omega_{\alpha}(x)}=\lim _{x \rightarrow \infty} D^{\alpha-1} u(x)=c .
$$

References

[1] R. P. Agarwal, D. O'Regan, S. Staněk; Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl. 371 (2010), no.1, 57-68.
[2] R. P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas; Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half line, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal. 18 (2011), no.2, 235-244.
[3] B. Ahmad; Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations, Appl. Math. Lett. 23 (2010), no.4, 390-394.
[4] B. Ahmad, J. J. Nieto; Rieman-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, Bound. Value Probl. 2011, 2011:36.
[5] Z. Bai, H. Lü; Positive solutions for boundary value problem of nonlinear fractional differential equations, J. Math. Anal. Appl. 311 (2005), no.2, 495-505.
[6] D. Delbosco, L. Rodino; Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. App. 204 (1996) 609-625.
[7] J. Deng, L. Ma; Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations, Appl. Math. Lett. 23 (2010), no. 6, 676-680.
[8] K. Diethelm, A. D. Freed; On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds.), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, (1999) 217-307.
[9] B. K. Dutta, L. K. Arora; Approximate solution of inhomogeneous fractional differential equation, Adv.Nonlinear Anal.1(2012), no.4, 335-353.
[10] R. Hilfer; Applications of fractional calculus in Physics, World Scientific,(2000).
[11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; Theory and applications of fractional differential equations, Elsevier, Amsterdam,(2006).
[12] R. C. Koeller; Application of fractional calculus to the theory of viscoelasticity, J. App. Mech. 51 (5) (1984) 299-307.
[13] P. Kumar, O. P. Agarwal; An approximate method for numerical solution of fractional differential equation, Signal Process. 86 (2006) 2602-2610.
[14] Y. Liu, W. Zhang, X. Liu; A sufficient condition for the existence of a positive solution for a nonlinear fractional differential equation with the Riemann-Liouville derivative, Appl. Math. Lett. 25 (2012), no. 11, 1986-1992.
[15] H. Mâagli; Existence of positive solutions for a nonlinear fractional differential equations, Electron. J. Differential Equations (2013), no. 29, pp. 1-5.
[16] H. Mâagli, S. Masmoudi; Existence theorems of nonlinear singular boundary value problem, Nonlinear Anal. 46 (2001), no. 4, 465-473.
[17] F. Metzler, W. Schick, H. G. Kilian, T.F. Nonnenmacher; Relaxation in filled polymers: a fractional calculus approach, J. Chem. Phys. 103 (1995) 7180-7186.
[18] S. K. Ntouyas; Boundary value problems for nonlinear fractional differential equations and inclusions with nonlocal and fractional integral boundary conditions, Opscula Math. 33(2013), no. 1, 117-138.
[19] K. S. Miller, B. Ross; An introduction to the fractional calculus and fractional differential equations, Wiley, New York,(1993).
[20] I. Podlubny; Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. App. Anal. 5 (2002) 367-386.
[21] T. Qiu, Z. Bai; Existence of positive solutions for singular fractional differential equations, Electron. J. Differential Equations (2008), no.146,pp. 1-9.
[22] Y. Zhao, S. Sun, Z. Han, Q. Li; Positive Solutions to Boundary value Problems of Nonlinear Fractional Differential Equations, Abstr. Appl. Anal. 2011, Article ID 390543, 16 pp.

Habib MÂagli
King Abdulaziz University, Rabigh Campus, College of Sciences and Arts, Department
of Mathematics, P.O. Box 344, Rabigh 21911, Saudi Arabia
E-mail address: habib.maagli@fst.rnu.tn
Abdelwaheb Dhifli
Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

E-mail address: dhifli_waheb@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 34A08.
 Key words and phrases. Fractional differential equation; Dirichlet problem; positive solution; Schauder fixed point theorem.
 © 2014 Texas State University - San Marcos.
 Submitted November 28, 2013. Published February 19, 2014.

