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EXISTENCE AND COMPARISON OF SMALLEST
EIGENVALUES FOR A FRACTIONAL

BOUNDARY-VALUE PROBLEM

PAUL W. ELOE, JEFFREY T. NEUGEBAUER

Abstract. The theory of u0-positive operators with respect to a cone in a

Banach space is applied to the fractional linear differential equations

Dα
0+u+ λ1p(t)u = 0 and Dα

0+u+ λ2q(t)u = 0,

0 < t < 1, with each satisfying the boundary conditions u(0) = u(1) = 0.
The existence of smallest positive eigenvalues is established, and a comparison

theorem for smallest positive eigenvalues is obtained.

1. Introduction

We consider the eigenvalue problems

Dα
0+u+ λ1p(t)u = 0, 0 < t < 1, (1.1)

Dα
0+u+ λ2q(t)u = 0, 0 < t < 1, (1.2)

satisfying the boundary conditions

u(0) = u(1) = 0, (1.3)

where 1 < α ≤ 2 is a real number, Dα
0+ is the standard Riemann-Liouville deriva-

tive, and p(t) and q(t) are continuous nonnegative functions on [0, 1], where neither
p(t) nor q(t) vanishes identically on any nondegenerate compact subinterval of [0, 1].

The Krein Rutman theory [14] has been employed extensively to establish the
existence of and compare smallest eigenvalues of boundary value problems for dif-
ferential equations, difference equations, and dynamic equations on time scales. For
some examples, see [4, 5, 7, 8, 9, 11, 12, 16, 18] and the references therein. A stan-
dard approach to show the existence of smallest eigenvalues is to apply the theory
of u0-positive operators [15]. Operators are defined whose eigenvalues are recipro-
cals of the eigenvalues of the original boundary value problems. These operators
are constructed by using the corresponding Green’s function; the u0-positivity of
these operators are obtained by showing the operator maps nonzero elements of
a cone into the interior of that cone. Sign properties of the Green’s function are
employed to map the cone into the cone and higher order derivatives of the Green’s
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functions are employed to map elements to the interior of the cone. The theory
of u0-positivity, as developed by Krasnosel’skii [15], gives the existence of largest
eigenvalues of the operator, with the corresponding eigenfunction existing in a cone.

In this article, we apply the standard approach, described above, to a bound-
ary value problem for a fractional differential equation. We are not aware of any
previous application of u0-positive operators to fractional differential equations.
Fixed point theory is now commonly applied to boundary value problems for frac-
tional equations; see, for example, the bibliography found in [1]. In many of these
applications, the common Banach space to employ is C[0, 1]; this space is not ap-
propriate for applications of u0-positivity to (1.1), (1.2) or (1.1), (1.3), since the
corresponding Green’s function, G(t, s), has unbounded slope at t = 0. The pri-
mary contribution of this article then is to consider an appropriate Banach space
and cone, with nonempty interior, so that theory of u0-positive operators does ap-
ply. The motivation for the Banach space used here is found in [6, Theorem 2.5]
or [17, Theorem 3.1]. The particular approach to construct the Banach space and
cone is modeled after [16]. For other work on eigenvalue problems of fractional
differential equations, see [2, 10, 19, 20].

In Section 2, we state the preliminary definitions and theorems. In Section 3,
we define the appropriate Banach space and establish the existence of and compare
smallest eigenvalues of (1.1), (1.2) and (1.1), (1.3).

2. Preliminary definitions and theorems

Definition 2.1. Let 1 < α ≤ 2. The α-th Riemann-Liouville fractional derivative
of the function u : [0, 1]→ R, denoted Dα

0+u, is defined as

Dα
0+u(t) =

1
Γ(2− α)

d2

dt2

∫ t

0

(t− s)2−α−1u(s)ds,

provided the right-hand side exists.

Definition 2.2. Let B be a Banach space over R. A closed nonempty subset P of
B is said to be a cone provided

(i) αu+ βv ∈ P, for all u, v ∈ P and all α, β ≥ 0, and
(ii) u ∈ P and −u ∈ P implies u = 0.

Definition 2.3. A cone P is solid if the interior, P◦, of P, is nonempty. A cone
P is reproducing if B = P − P; i.e., given w ∈ B, there exist u, v ∈ P such that
w = u− v.

Remark 2.4. Krasnosel’skii [15] showed that every solid cone is reproducing.

Cones give rise to partial orders on Banach spaces and to partial orders on
bounded linear operators on Banach spaces in a natural way.

Definition 2.5. Let P be a cone in a real Banach space B. If u, v ∈ B, we say
u ≤ v with respect to P if v − u ∈ P. If both M,N : B → B are bounded linear
operators, we say M ≤ N with respect to P if Mu ≤ Nu for all u ∈ P.

Definition 2.6. A bounded linear operator M : B → B is u0-positive with respect
to P if there exists u0 ∈ P\{0} such that for each u ∈ P\{0}, there exist k1(u) > 0
and k2(u) > 0 such that k1u0 ≤Mu ≤ k2u0 with respect to P.
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The following two results are fundamental to our comparison results and are
attributed to Krasnosel’skii [15]. The proof of Theorem 2.7 can be found in Kras-
nosel’skii’s book [15], and the proof of Theorem 2.8 is provided by Keener and
Travis [13] as an extension of Krasonel’skii’s results.

Theorem 2.7. Let B be a real Banach space and let P ⊂ B be a reproducing cone.
Let L : B → B be a compact, u0-positive, linear operator. Then L has an essentially
unique eigenvector in P, and the corresponding eigenvalue is simple, positive, and
larger than the absolute value of any other eigenvalue.

Theorem 2.8. Let B be a real Banach space and P ⊂ B be a cone. Let both
M,N : B → B be bounded, linear operators and assume that at least one of the
operators is u0-positive. If M ≤ N , Mu1 ≥ λ1u1 for some u1 ∈ P and some
λ1 > 0, and Nu2 ≤ λ2u2 for some u2 ∈ P and some λ2 > 0, then λ1 ≤ λ2.
Furthermore, λ1 = λ2 implies u1 is a scalar multiple of u2.

3. Comparison of smallest eigenvalues

In [3], Bai and L u showed the Green’s function for −Dα
0+u(t) = 0 satisfying

(1.3) is

G(t, s) =


[t(1−s)]α−1−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,
[t(1−s)]α−1

Γ(α) , 0 ≤ t ≤ s ≤ 1.
(3.1)

Define the Banach Space

B = {u : u = tα−1v, v ∈ C1[0, 1], v(1) = 0},
with the norm

‖u‖ = |v′|0,
where |v′|0 = supt∈[0,1] |v′(t)| denotes the usual supremum norm.

Note that for v ∈ C1[0, 1], v(1) = 0, 0 ≤ t ≤ 1,

|v(t)| = |v(t)− v(1)| =
∣∣ ∫ t

1

v′(s)ds
∣∣ ≤ (1− t)|v′| ≤ ‖u‖.

Therefore, |v|0 ≤ ‖u‖ = |v′|0 and

|u|0 = |tα−1v|0 ≤ tα−1‖u‖,
implies |u|0 ≤ ‖u‖.

Define the linear operators

Mu(t) =
∫ 1

0

G(t, s)p(s)u(s)ds (3.2)

and

Nu(t) =
∫ 1

0

G(t, s)q(s)u(s) ds. (3.3)

Theorem 3.1. The operators M,N : B → B are compact linear operators.

Proof. We first show M : B → B. Let u ∈ B. So there is a v ∈ C1[0, 1] such that
u = tα−1v. Since v ∈ C1[0, 1] and p ∈ C[0, 1], let L = |v|0 and let P = |p|0. Now

Mu(t) =
∫ 1

0

tα−1(1− s)α−1

Γ(α)
p(s)u(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds
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= tα−1
(∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.

Define

g(t) =

{
0, t = 0,

t1−α
∫ t

0
(t−s)α−1

Γ(α) p(s)u(s)ds, 0 < t ≤ 1.

First, note g ∈ C1(0, 1]. Now

|g(t)| =
∣∣t1−α ∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

∣∣
=
∣∣t1−α ∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

∣∣
≤ PLt1−α

∫ t

0

(t− s)α−1sα−1ds

≤ PLt1−αtα−1

∫ t

0

(t− s)α−1ds

=
PLtα

α
,

where PL
α ≥ 0. So limt→0+ g(t) = g(0) = 0 and g ∈ C[0, 1].

Also, for t > 0,

|g′(t)| =
∣∣∣(1− α)t−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

+ (α− 1)t1−α
∫ t

0

(t− s)α−2

Γ(α)
p(s)u(s)ds

∣∣∣
≤
∣∣∣(1− α)t−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

∣∣∣
+
∣∣∣t1−α ∫ t

0

(t− s)α−2

Γ(α− 1)
p(s)sα−1v(s)ds

∣∣∣
≤ (α− 1)PLt−αtα−1

∫ t

0

(t− s)α−1ds+ PLt1−αtα−1

∫ t

0

(t− s)α−2ds

=
(α− 1

α
+

1
α− 1

)
PLtα−1.

So, limt→0+ g′(t) = 0. Moreover, using the definition of derivative and L’Hospital’s
rule,

g′(0) = lim
t→0+

g(t)− g(0)
t

= lim
t→0+

g(t)
t

= lim
t→0+

g′(t) = 0,

and so g′ ∈ C[0, 1].
Now set

v̂(t) =
(∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.

It is an easy calculation to verify that v̂(1) = 0. Thus Mu ∈ B. So M : B → B.
The proof that N : B → B is similar.

We now show that M : B → B is a compact operator. Let L > 0 and consider

K = {u ∈ B : ‖u‖ ≤ L}
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or more appropriately consider

K̂ = {v ∈ C1[0, 1] : v(1) = 0, |v′|0 ≤ L}.

Define

M̂(v)(t) =
(∫ 1

0

(1− s)α−1

Γ(α)
p(s)sα−1v(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

)
.

To show that M is compact on B it is sufficient to show that {(M̂(v))′ : v ∈ K̂}
is uniformly bounded and equicontinuous on [0, 1]. We provide the details for
equicontinuity as the details for uniform boundedness are straightforward.

Assume |p|0 = P and assume |v|0 ≤ L. Let ε > 0. As in the calculations above
for g′, (M̂(v))′(0) = 0 and

|(M̂(v))′(t)| ≤
(α− 1

α
+

1
α− 1

)
PLtα−1.

Thus, there exists δ1 > 0 such that if |t| < δ1 then |(M̂(v))′(t)| < ε
2 .

On [δ1, 1], {(M̂(v))′ : v ∈ K̂} is shown to be equicontinuous by showing that
{(M̂(v))′′ : v ∈ K̂} is uniformly bounded. Now

(M̂(v))′(t) = (1− α)t−α
∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

+ (α− 1)t1−α
∫ t

0

(t− s)α−2

Γ(α)
p(s)u(s)ds,

and so

(M̂(v))′′(t) = −α(1− α)t−α−1

∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

− (α− 1)2t−α
∫ t

0

(t− s)α−2

Γ(α)
p(s)sα−1v(s)ds

− (α− 1)2t−α
∫ t

0

(t− s)α−2

Γ(α)
p(s)sα−1v(s)ds

+ (α− 1)(α− 2)t1−α
∫ t

0

(t− s)α−3

Γ(α− 1)
p(s)sα−1v(s)ds.

Each of the four terms can be bounded by a constant multiple of tα−2.
For the first term, notice∣∣∣t−α−1

∫ t

0

(t− s)α−1p(s)sα−1v(s)ds
∣∣∣ ≤ PLt−α−1

∣∣∣ ∫ t

0

(t− s)α−1sα−1ds
∣∣∣.

Set s = rt. So

t−α−1
∣∣∣ ∫ t

0

(t− s)α−1sα−1ds
∣∣∣ = t−α−1tα−1tα−1t

∣∣∣ ∫ 1

0

(1− r)α−1rα−1dr
∣∣∣

= tα−2|B(α, α)|,

where B denotes the beta function.
In dealing with the second and third terms, first note∣∣∣t−α ∫ t

0

(t− s)α−2

Γ(α)
p(s)sα−1v(s)ds

∣∣∣ ≤ PLt−α∣∣∣ ∫ t

0

(t− s)α−2sα−1ds
∣∣∣.
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Set s = rt. Then

t−α
∣∣∣ ∫ t

0

(t− s)α−2sα−1ds
∣∣∣ = t−αtα−2tα−1t

∣∣∣ ∫ t

0

(1− r)α−2rα−1dr
∣∣∣

= tα−2|B(α, α− 1)|.

Notice B(α, α− 1) is well-defined since 1 < α ≤ 2.
Last, we obtain an analogous estimate for the fourth term. If α = 2, this term

is zero. If 1 < α < 2, first integrate by parts to obtain∫ t

0

(t− s)α−3sα−1ds =
α− 1
α− 2

∫ t

0

(t− s)α−2sα−2ds.

Thus,∣∣∣t1−α ∫ t

0

(t− s)α−3

Γ(α− 1)
p(s)sα−1v(s)ds

∣∣∣ ≤ PLt1−α∣∣∣ ∫ t

0

(t− s)α−3sα−1ds
∣∣∣

= PLt1−α
∣∣∣α− 1
α− 2

∫ t

0

(t− s)α−2sα−2ds
∣∣∣.

Again, by setting s = rt, we obtain

t1−α
∣∣∣ ∫ t

0

(t− s)α−2sα−2ds
∣∣∣ = t1−αtα−2tα−2t

∣∣∣ ∫ t

0

(1− r)α−2rα−2dr
∣∣∣

= tα−2|B(α− 1, α− 1)|.

Again, B(α− 1, α− 1) is well-defined since 1 < α < 2. Therefore, if α 6= 2,

|(M̂(v))′′(t)| ≤ PL
[α(α− 1)|B(α, α)|

Γ(α)
+

2(α− 1)2|B(α, α− 1)|
Γ(α)

+
(α− 1)2|B(α− 1, α− 1)|

Γ(α− 1)

]
tα−2,

and if α = 2,

|(M̂(v))′′(t)| ≤ 4PL
3

.

So {(M̂(v))′′ : v ∈ K̂} is uniformly bounded on [δ1, 1].
Since {(M̂(v))′′ : v ∈ K̂} is uniformly bounded on [δ1, 1], there exists δ2 > 0

such that if |t1 − t2| < δ2, t1, t2 ∈ [δ1, 1], then |(M̂(v))′(t1)− (M̂(v))′(t2)| < ε
2 .

Set δ = min{δ1, δ2}. If |t1 − t2| < δ, t1, t2 ∈ [0, δ1], then

|(M̂(v))′(t1)− (M̂(v))′(t2)| ≤ |(M̂(v))′(t1)|+ |(M̂(v))′(t2)| < ε.

If |t1 − t2| < δ, t1, t2 ∈ [δ1, 1], then

|(M̂(v))′(t1)− (M̂(v))′(t2)| ≤ ε

2
< ε.

If |t1 − t2| < δ, 0 ≤ t1 < δ1 ≤ t2 ≤ 1, then

|(M̂(v))′(t1)− (M̂(v))′(t2)|

≤ |(M̂(v))′(t1)− (M̂(v))′(δ1)|+ |(M̂(v))′(δ1)− (M̂(v))′(t2)|

<
ε

2
+
ε

2
= ε.

Details for the operator N are similar and the proof is complete. �



EJDE-2014/43 SMALLEST EIGENVALUES 7

Define the cone
P = {u ∈ B : u(t) ≥ 0 for t ∈ [0, 1]}.

Lemma 3.2. The cone P is solid in B and hence reproducing.

Proof. Define

Ω := {u ∈ B | u(t) > 0 for t ∈ (0, 1), v(0) > 0, v′(1) < 0, where u = tα−1v}. (3.4)

We will show Ω ⊂ P◦. Let u ∈ Ω. Since v(0) > 0, there exists an ε1 > 0 such that
v(0) − ε1 > 0. Since v ∈ C1[0, 1], there exists an a ∈ (0, 1) such that v(t) > ε1
for all t ∈ (0, a). So u(t) = tα−1v(t) > ε1t

α−1 for all t ∈ (0, a). Now, since
v′(1) < 0, there exists an ε2 > 0 such that v′(1) + ε2 < 0. Then, since v(1) = 0
and −v′(1) > ε2, there exists a b ∈ (a, 1) such that v(t) > (1− t)ε2 for all t ∈ (b, 1].
Thus u(t) > bα−1(1− t)ε2 for all t ∈ (b, 1]. Also, since u(t) > 0 on [a, b], there exists
an ε3 > 0 such that u(t)− ε3 > 0 for all t ∈ [a, b].

Let ε = min
{
ε1
2 ,

bα−1ε2
2 , ε32

}
. Define Bε(u) = {û ∈ B : ‖u − û‖ < ε}. Let

û ∈ Bε(u). So û = tα−1v̂, where v̂ ∈ C1[0, 1] with v̂(1) = 0. Now

|û(t)− u(t)| ≤ tα−1‖û− u‖ < εtα−1.

So for t ∈ (0, a), û(t) > u(t)−tα−1ε > tα−1ε1−tα−1ε1/2 = tα−1ε1/2. So û(t) > 0 for
t ∈ (0, a). By the Mean Value Theorem, for t ∈ (b, 1), |û(t)−u(t)| ≤ (1−t)‖û−u‖ <
(1− t)ε. So for t ∈ (b, 1),

û(t) > u(t)− (1− t)ε > bα−1(1− t)ε2 − (1− t)bα−1ε2/2 = (1− t)bα−1ε2/2.

So for t ∈ (b, 1), û(t) > 0. Also, |û(t) − u(t)| ≤ ‖û − u‖ < ε. So for t ∈ [a, b],
û(t) > u(t) − ε > ε3 − ε3/2 > 0. So û(t) > 0 for all t ∈ [a, b]. So û ∈ P and thus
Bε(u) ⊂ P. So Ω ⊂ P◦. �

Lemma 3.3. The bounded linear operators M and N are u0-positive with respect
to P.

Proof. First, we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P. So u(t) ≥ 0. Then since
G(t, s) ≥ 0 on [0, 1]× [0, 1] and p(t) ≥ 0 on [0, 1],

Mu(x) =
∫ 1

0

G(t, s)p(s)u(s)ds ≥ 0,

for 0 ≤ t ≤ 1. So M : P → P.
Now let u ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such that

u(t) > 0 and p(t) > 0 for all t ∈ [α, β]. Then, since G(t, s) > 0 on (0, 1)× (0, 1),

Mu(t) =
∫ 1

0

G(t, s)p(s)u(s)ds

≥
∫ β

α

G(t, s)p(s)u(s)ds > 0,

for 0 < t < 1. Now

Mu(t) = tα−1
(∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.

Let

v(t) =
∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds.
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So v(0) =
∫ 1

0
(1−s)α−1

Γ(α) p(s)u(s)ds > 0 and

v′(1) = −(1− α)
∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− (α− 1)

∫ 1

0

(1− s)α−2

Γ(α)
p(s)u(s)ds < 0.

So M : P\{0} → Ω ⊂ P◦.
Now choose any u0 ∈ P\{0}, and let u ∈ P\{0}. So Mu ∈ Ω ⊂ P◦. Choose

k1 > 0 sufficiently small and k2 sufficiently large so that Mu − k1u0 ∈ P◦ and
u0 − 1

k2
Mu ∈ P◦. So k1u0 ≤ Mu with respect to P and Mu ≤ k2u0 with respect

to P. Thus k1u0 ≤ Mu ≤ k2u0 with respect to P and so M is u0-positive with
respect to P . Similarly, N is u0-positive. �

Remark 3.4. Notice that

Λu = Mu =
∫ 1

0

G(t, s)p(s)u(s)ds,

if and only if

u(t) =
1
Λ

∫ 1

0

G(t, s)p(s)u(s)ds,

if and only if

Dα
0+u(t) +

1
Λ
p(t)u(t) = 0, 0 < t < 1,

with u(0) = u(1) = 0.
So the eigenvalues of (1.1),(1.3) are reciprocals of eigenvalues of M , and con-

versely. Similarly, eigenvalues of (1.2),(1.3) are reciprocals of eigenvalues of N , and
conversely.

Theorem 3.5. Let B, P, M , and N be defined as earlier. Then M (and N) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other
eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. SinceM is a compact linear operator that is u0-positive with respect to P, by
Theorem 2.7, M has an essentially unique eigenvector, say u ∈ P, and eigenvalue Λ
with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u = M

(
1
Λu
)
∈ P◦. �

Theorem 3.6. Let B, P, M , and N be defined as earlier. Let p(t) ≤ q(t) on [0, 1].
Let Λ1 and Λ2 be the eigenvalues defined in Theorem 3.5 associated with M and
N , respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then
Λ1 ≤ Λ2, and Λ1 = Λ2 if and only if p(t) = q(t) on [0, 1].

Proof. Let p(t) ≤ q(t) on [0, 1]. So for any u ∈ P and t ∈ [0, 1],

(Nu−Mu)(t) =
∫ 1

0

G(t, s)(q(s)− p(s))u(s)ds ≥ 0.

So Nu −Mu ∈ P for all u ∈ P, or M ≤ N with respect to P. Then by Theorem
2.8, Λ1 ≤ Λ2.

If p(t) = q(t), then Λ1 = Λ2. Now suppose p(t) 6= q(t). So p(t) < q(t) on some
subinterval [α, β] ⊂ [0, 1]. Then (N −M)u1 ∈ Ω ⊂ P◦ and so there exists ε > 0
such that (N −M)u1 − εu1 ∈ P. So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying
Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 2.8, Λ1 + ε ≤ Λ2,
or Λ1 < Λ2. �
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By Remark 3.4, the following theorem is an immediate consequence of Theorems
3.5 and 3.6.

Theorem 3.7. Assume the hypotheses of Theorem 3.6. Then there exists smallest
positive eigenvalues λ1 and λ2 of (1.1),(1.3) and (1.2),(1.3), respectively, each of
which is simple, positive, and less than the absolute value of any other eigenvalue of
the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may
be chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if p(t) = q(t)
for all t ∈ [0, 1].
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