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ANOTHER PROOF OF THE REGULARITY OF HARMONIC
MAPS FROM A RIEMANNIAN MANIFOLD TO

THE UNIT SPHERE

JUNICHI ARAMAKI

Abstract. We shall consider harmonic maps from n-dimensional compact

connected Riemannian manifold with boundary to the unit sphere under the
Dirichlet boundary condition. We claim that if the Dirichlet data is smooth

and so-called “small”, all minimizers of the energy functional are also smooth
and “small”.

1. Introduction

Let (M, g) be a n-dimensional Riemannian manifold with boundary ∂M en-
dowed with a smooth Riemannian metric g. For any p ∈ M , let (x1, . . . , xn) be a
coordinate system near p. Then g can be represented by

g =
n∑

α,β=1

gαβdxα ⊗ dxβ

where (gαβ) is a positive definite symmetric n × n matrix. We write the inverse
matrix of (gαβ) by (gαβ) and the volume element of (M, g) by dvg =

√
gdx where

g = det(gαβ), and we use the notations that for any vector fields u,v, 〈u,v〉g =
g(u,v) and |u|2g = 〈u,u〉g. We view maps from M into a k-dimensional unit sphere
Sk ⊂ Rk+1, extrinsically. The Sobolev space W 1,2(M,Rk+1) is standardly defined
and the space W 1,2(M, Sk) is defined by

W 1,2(M,Sk) =
{
u = (u1, . . . , uk+1) ∈W 1,2(M,Rk+1); u(x) ∈ Sk a.e. x ∈M

}
.

For any u ∈W 1,2(M,Sk), the Dirichlet energy density is defined by

e(u) =
1
2
|∇u|2g (1.1)

where |∇u|2g =
∑k+1
i=1 |∇ui|2g. In any local coordinate system x = (x1, . . . , xn), we

see that

e(u) =
1
2

n∑
α,β=1

k+1∑
i=1

gαβ
∂ui

∂xα

∂ui

∂xβ
,
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and the Dirichlet energy is defined by

E(u,M) =
∫
M

e(u)dvg. (1.2)

We say u ∈W 1,2(M,Sk) is weakly harmonic map, if∫
M

n∑
α,β=1

gαβ
( ∂u
∂xα

· ∂φ

∂xβ
+
( ∂u
∂xα

· ∂u
∂xβ

)
u · φ

)
dvg = 0 (1.3)

for any φ ∈ C∞0 (M,Rk+1) where · denotes the Euclidean inner product in Rk+1.
Then u satisfies the harmonic map equation in the sense of distribution

∆gu +
n∑

α,β=1

gαβ
∂u
∂xα

· ∂u
∂xβ

u = 0 in M (1.4)

where ∆g is the Laplace-Beltrami operator on (M, g) given by

∆g =
1
√
g

n∑
α,β=1

∂

∂xα

(√
ggαβ

∂

∂xβ

)
.

Next we say u ∈W 1,2(M,Sk) is a minimizing harmonic map, if for any Ω ⊂M ,

E(u,Ω) :=
∫

Ω

e(u)dvg ≤ E(v,Ω) (1.5)

for all v ∈W 1,2(Ω,Sk) with v|∂M = u|∂M .
The regularity of minimizing harmonic maps has been studied by many authors

for a general target Riemannian manifold N instead of Sk. For the case where
dimM = 2, Morrey [13] showed that if u ∈ W 1,2(M,N) is a minimizing harmonic
map, then u ∈ C∞(M,N). For n ≥ 3, Schoen and Uhlenbeck [14] have shown that
if we define the singular set of any minimizing map u ∈W 1,2(M,N) by

sing(u) = {x ∈M ; u is discontinuous at x},

then sing(u) is a closed set, and it is discrete for n = 3, and

dimH(sing(u)) ≤ n− 3

for n ≥ 4 where dimH(sing(u)) is the Hausdorff dimension of sing(u). Moreover, it
is well known that u is analytic in M \ sing(u) (cf. Borchers and Garber [5]).

For p ∈ N, r > 0, let Br(p) = {q ∈ N ; distN (q, p) ≤ r} be the closed geodesic
ball with center p and radius r, and let C(p) be the cut locus of p. We call Br(p)
is a regular ball if the following two conditions hold.

(i)
√
κr < π/2 where κ = max{0, supBr(p)K

N}, KN is the sectional curvature
of N .

(ii) C(p) ∩Br(p) = ∅.
Hildebrandt et al. [9] have established the following existence theorem of smooth
harmonic maps with given boundary data contained in a regular ball. (see also Lin
and Wang [12, Theorem 3.1.7]).

Theorem 1.1 ([9]). Suppose that Br(p) ⊂ N is a regular ball and Ω ⊂ M is a
bounded domain and g : Ω→ Br(p) is continuous map and has finite energy. Then
there exists a harmonic map u ∈ C2+α(Ω, N) ∩ C0(Ω, N) with u|∂M = g.
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As the first step of their proof, they considered the following variational problem.
Find a minimizer of

inf
u∈V

∫
Ω

e(u)dvg

where the admissible space V is as follows. Choose r1 ∈ (r, π/2
√
κ) such that

Br1(p) ⊂ N is also regular ball, and define

V = {u ∈W 1,2(Ω, Br1(p)); u|∂M = g}.
This admissible space seems to be restrictive. Thus in the present paper, we report
that in order to get the same result for the target manifold N = Sk, we can take
the admissible space V = W 1,2(M,Sk,g) := {u ∈W 1,2(M, Sk); u|∂M = g}.

We note that in the case where N = Sk, since KN = 1 and C(p) = {−p}, if
0 < r < π/2, then the ball Br(p) is regular.

2. Preliminaries

Let M be a n-dimensional connected compact Riemannian manifold with smooth
boundary ∂M and Sk ⊂ Rk+1 the unit sphere in Rk+1 (k ≥ 2). For every p ∈ Sk
and r > 0, we denote the closed geodesic ball in Sk with center p and radius r
by Br(p). Throughout this paper we treat the Br(p) which is an closed ball with
0 < r < π/2, so Br(p) is a regular ball in this case. We denote the standard Sobolev
space by W 1,2(Ω,Rk+1), and define

W 1,2(Ω,Sk) = {u ∈W 1,2(Ω,Rk+1); u(x) ∈ Sk a.e. x ∈M}.
Let e : ∂M → Sk be a smooth given vector field, for instance, e ∈ C2+α(∂M, Sk),
and define

W 1,2(M, Sk, e) = {u ∈W 1,2(M,Sk); u|∂M = e}.
Here we assume the hypotheses

(H1) e ∈ C2+α(∂M, Sk) has a finite energy extension ẽ ∈W 1,2(M,Sk) such that
ẽ|∂M = e.

Remark 2.1. It is not trivial that W 1,2(M,Sk, e) 6= ∅. However if M = Ω ⊂ Rn
is a bounded C2 domain, Hardt and Lin [8, Theorem 6.2] (cf. [12, Lemma 2.2.10])
have proved the fact in the case where the target space is a more general simply
connected Riemannian manifold N (i.e., Π0(N) = Π1(N) = 0) that any map
e ∈ W 1/2,2(∂M,N) admits a finite energy extension ẽ ∈ W 1,2(Ω, N). Recall that
N = Sk has Π0(Sk) = Π1(Sk) = 0, unless k = 1.

u ∈ W 1,2(M,Sk) is called weakly harmonic map in the sense of Introduction
with boundary data e if for any v ∈W 1,2

0 (M,Rk+1),∫
M

(〈∇u,∇v〉g − |∇u|2gu · v)dx = 0, (2.1)

and u|∂M = e where

〈∇u,∇v〉g =
k+1∑
i=1

〈∇ui,∇vi〉g

for u = (u1, . . . , uk+1),v = (v1, . . . , vk+1) and u ·v is the standard Euclidean inner
product. Then u satisfies the following equations, in the sense of distributions,

∆gu + |∇u|2gu = 0 in M,

u = e on ∂M.
(2.2)
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We also say that u ∈ W 1,2(M,Sk) is a minimizing harmonic map with boundary
data e if u is a minimizer of

inf
u∈W 1,2(M,Sk,e)

∫
M

|∇u|2gdvg. (2.3)

Lemma 2.2. Any minimizing harmonic map u ∈ W 1,2(M,Sk) is a weakly har-
monic map.

The proof is well known. For example, see [12, Proposition 2.1.5].
We state the main theorem.

Theorem 2.3. Assume that M is a C2+α connected compact Riemannian manifold
with boundary ∂M for some 0 < α < 1 and assume that a boundary data e ∈
C2+α(∂M, Sk) satisfying (H1) is given, and satisfies that e(∂M) ⊂ Br(p) for some
point p ∈ Sk and 0 < r < π/2. Then if u is any minimizer of

inf
u∈V

∫
M

|∇u|2gdvg

where V = W 1,2(M,Sk, e), then u(M) ⊂ Br(p) and u is a unique harmonic map
in C2+α(M,Sk).

Remark 2.4. In [9] and [12, Theorem 3.17], they took the admissible space V as
V = {u ∈ H1(M, Sk, e); u(M) ⊂ Br1(p)} for some r < r1 < π/2, and they call such
solution a “small solution”. However, we can remove the rather stronger condition.
We emphasize that even if we take W 1,2(M,Sk, e) as the admissible space, we can
get the same result as [9], and we seem to make more natural. To do so, we shall use
the weak Harnack inequality (cf. Gilbarg and Trudinger [7, Theorem 8.18] or Chen
and Wu [6, Chapter 4, Lemma 1.3]) and the maximum principle for minimizing
harmonic maps (cf. Jost [11, Lemma 4.10.1]). Such strategy also appear in the
author’s papers Aramaki [1, 2, 3] and Aramaki, Chinen, Ito and Ono [4].

3. Proof of Theorem 2.3

For the proof we need the following lemma which is can be found for example in
[12, Proposition 2.1.5].

Lemma 3.1. Let V = W 1,2(M,Sk, e). Then

inf
u∈V

∫
M

|∇u|2gdvg

is achieved in V .

Let u ∈ W 1,2(M,Sk, e) be a minimizer of (2.3). Then u satisfies the Euler-
Lagrange equation in the sense of distribution

−∆gu = |∇u|2gu in M,

u = e on ∂M .
(3.1)

Proposition 3.2. Let e ∈ C2+α(∂M, Sk) for some 0 < α < 1 and assume that
e(∂M) ⊂ Br(p) for some p ∈ Sk and 0 < r < π/2. Then for any minimizer u of
(2.3) satisfies u(Ω) ⊂ Br(p).
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Proof. After the rotation of coordinate axis of Rk+1, we can choose the center p
of Br(p) so that p = (1, 0, . . . , 0). We write e(x) = (e1(x), . . . , ek+1(x)). The
hypothesis means that e1(x) ≥ cos r for x ∈ ∂M . Let u = (u1, . . . , uk+1) be any
minimizer of (2.3). Since u1 ∈ W 1,2(M), it is well known that |u1| ∈ W 1,2(M)
and |∇|u1|| = |∇u1| a.e. in M . Define w = (w1, . . . , w

k+1) = (|u1|, u2, . . . , uk+1) ∈
W 1,2(M,Rk+1). Since u1 = e1 > 0 on ∂M , we can see that w ∈ W 1,2(M,Sk, e),
and w is also a minimizer of (2.3). Therefore w also satisfies (3.1), and w ∈ C2+α

near the boundary (cf. Schoen and Uhlenbeck [15, Proposition 3.1]. In particular,
w1 satisfies w1 ≥ 0 and

−∆gw
1 = |∇w|2gw1 in M,

w1 = e1 on ∂M
(3.2)

For any q ∈ M , choose a local coordinate neighborhood Uq and a local coordinate
system (x1, . . . , xn). Then w1 is a bounded non-negative weak supersolution of

∆g =
1
√
g

n∑
α,β=1

∂

∂xα

(√
ggαβ

∂

∂xβ

)
;

that is to say, ∆gw
1 ≤ 0 in Uq. We can apply the weak Harnack inequality (cf. [7,

Theorem 8.18] or [6, Chapter 4, Lemma 1.3]). Thus for any 1 ≤ p < n/(n − 2),
B2R ⊂ Uq

ess infBR
w1 ≥ c

( 1
|B2R|

∫
B2R

(w1)pdx
)1/p

where c > 0 depends on n, p. Since w1 ∈ C2+α near the boundary and w1 =
e1 ≥ cos r > 0 on ∂M , there exists δ > 0 such that if we define Mδ = {x ∈
M ; dist(x, ∂M) ≤ δ}, then w1 ≥ c0 := cos r/2 in Mδ. Since dimH sing(w1) ≤ n− 3
(in the case where n = 3, sing(w1) is discrete), for any x0 ∈ M \ sing(w1), we
can choose x1 ∈ Mδ and a continuous curve l in M joining x0 and x1 such that
l ∩ sing(w1) = ∅. For every x ∈ l, there exists R > 0 such that B2R(x) is contained
in a local coordinate neighborhood and

ess infBR(x) w
1 ≥ c

( 1
|B2R(x)|

∫
B2R(x)

(w1)pdx
)1/p

. (3.3)

Since l is compact, there exist finitely many Rj > 0 and x(j) ∈ l (j = 1, 2, . . . , N)
such that ∪Nj=1BRj

(x(j)) ⊃ l and x(1) = x0, x(N) = x1. Since ess infBR(x(N)) w
1 > 0,

it follows from (3.3) that ess infBR(x(N−1)) w
1 > 0. Repeating this procedure, we

have ess infBR(x0) w
1 > 0. In particular, w1(x0) > 0. Thus we see that w1 > 0 in

M \ sing(w1). Hence we see that u1 > 0 in M \ sing(u1) or u1 < 0 in M \ sing(u1).
Since u1 = e1 > 0 on ∂M , we have u1 > 0 in M \ sing(u1). Since u1 is continuous
near ∂M , there exist δ > 0 and c0 > 0 such that u1 ≥ c0 on Mδ. Define M δ = {x ∈
M ; dist(x, ∂M) ≥ δ}. Choose R > 0 so that 2R < δ and fix 1 ≤ p < n/(n− 2). For
any y ∈Mδ, there exists c′ = c′(n, p) > 0 such that for any B2R(y) contained in a
local coordinate neighborhood,

ess infBR(y) u
1 ≥ c′

( 1
|B2R(y)|

∫
B2R(y)

(u1)pdvg
)1/p

.
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Since Mδ is compact, there exists finitely many points yi and positive numbers
Ri (i = 1, 2, . . . , L) such that ∪Li=1BRi(yi) ⊃M δ. If we define

ci = c′i

( 1
|B2Ri

(yi)|

∫
B2Ri

(yi)

(u1)pdx
)1/p

(i = 1, 2, . . . , L),

and c = min{c0, c1, . . . , cL}, we have u1 ≥ c a.e. on M . Therefore we can find r′

with r < r′ < π/2 such that n(M) ⊂ Br′(p). �

Next, we use the following maximum principle by Jost.

Lemma 3.3 ([11]). Let B0 and B1 be closed subsets of Sk and B0 ⊂ B1. Suppose
that there exists a C1 retraction map Π : B1 → B0 satisfying the condition

|∇Π(x)(v)| < |v| for all x ∈ B1 \B0, and all v ∈ TxSk.
For any boundary data e : ∂M → B0, if u ∈W 1,2(M,Sk, e) : M → B1 is an energy
minimizing map of (2.3) with the boundary data e, then u(x) ∈ B0 a.e. x ∈M .

We apply this lemma with B0 = Br(p), B1 = Br′(p), we see that u(M) ⊂ Br(p).
Then we can see that u ∈ C2+α(M,Rk+1) by the regularity theory in [14, 15] and
[9]. The uniqueness of the solution follows from Jäger and Kaul [10]. This completes
the proof.
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