Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 34, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ANOTHER PROOF OF THE REGULARITY OF HARMONIC MAPS FROM A RIEMANNIAN MANIFOLD TO THE UNIT SPHERE

JUNICHI ARAMAKI

ABSTRACT. We shall consider harmonic maps from n-dimensional compact connected Riemannian manifold with boundary to the unit sphere under the Dirichlet boundary condition. We claim that if the Dirichlet data is smooth and so-called "small", all minimizers of the energy functional are also smooth and "small".

1. INTRODUCTION

Let (M, g) be a *n*-dimensional Riemannian manifold with boundary ∂M endowed with a smooth Riemannian metric g. For any $p \in M$, let (x_1, \ldots, x_n) be a coordinate system near p. Then g can be represented by

$$g = \sum_{\alpha,\beta=1}^{n} g_{\alpha\beta} dx_{\alpha} \otimes dx_{\beta}$$

where $(g_{\alpha\beta})$ is a positive definite symmetric $n \times n$ matrix. We write the inverse matrix of $(g_{\alpha\beta})$ by $(g^{\alpha\beta})$ and the volume element of (M,g) by $dv_g = \sqrt{g}dx$ where $g = \det(g_{\alpha\beta})$, and we use the notations that for any vector fields $\mathbf{u}, \mathbf{v}, \langle \mathbf{u}, \mathbf{v} \rangle_g =$ $g(\mathbf{u}, \mathbf{v})$ and $|\mathbf{u}|_g^2 = \langle \mathbf{u}, \mathbf{u} \rangle_g$. We view maps from M into a k-dimensional unit sphere $\mathbb{S}^k \subset \mathbb{R}^{k+1}$, extrinsically. The Sobolev space $W^{1,2}(M, \mathbb{R}^{k+1})$ is standardly defined and the space $W^{1,2}(M, \mathbb{S}^k)$ is defined by

$$W^{1,2}(M,\mathbb{S}^k) = \big\{ \mathbf{u} = (u^1, \dots, u^{k+1}) \in W^{1,2}(M, \mathbb{R}^{k+1}); \ \mathbf{u}(x) \in \mathbb{S}^k \text{ a.e. } x \in M \big\}.$$

For any $\mathbf{u} \in W^{1,2}(M, \mathbb{S}^k)$, the Dirichlet energy density is defined by

$$e(\mathbf{u}) = \frac{1}{2} |\nabla \mathbf{u}|_g^2 \tag{1.1}$$

where $|\nabla \mathbf{u}|_g^2 = \sum_{i=1}^{k+1} |\nabla u^i|_g^2$. In any local coordinate system $x = (x_1, \ldots, x_n)$, we see that

$$e(\mathbf{u}) = \frac{1}{2} \sum_{\alpha,\beta=1}^{n} \sum_{i=1}^{k+1} g^{\alpha\beta} \frac{\partial u^{i}}{\partial x_{\alpha}} \frac{\partial u^{i}}{\partial x_{\beta}},$$

²⁰⁰⁰ Mathematics Subject Classification. 58E20, 53C43, 58E30.

Key words and phrases. Harmonic maps; minimizing harmonic maps; weak Harnack inequality. ©2014 Texas State University - San Marcos.

Submitted September 16, 2013. Published January 27, 2014.

and the Dirichlet energy is defined by

$$E(\mathbf{u}, M) = \int_{M} e(\mathbf{u}) dv_g.$$
(1.2)

We say $\mathbf{u} \in W^{1,2}(M, \mathbb{S}^k)$ is weakly harmonic map, if

$$\int_{M} \sum_{\alpha,\beta=1}^{n} g^{\alpha\beta} \Big(\frac{\partial \mathbf{u}}{\partial x_{\alpha}} \cdot \frac{\partial \phi}{\partial x_{\beta}} + \Big(\frac{\partial \mathbf{u}}{\partial x_{\alpha}} \cdot \frac{\partial \mathbf{u}}{\partial x_{\beta}} \Big) \mathbf{u} \cdot \phi \Big) dv_{g} = 0$$
(1.3)

for any $\phi \in C_0^{\infty}(M, \mathbb{R}^{k+1})$ where \cdot denotes the Euclidean inner product in \mathbb{R}^{k+1} . Then **u** satisfies the harmonic map equation in the sense of distribution

$$\Delta_g \mathbf{u} + \sum_{\alpha,\beta=1}^n g^{\alpha\beta} \frac{\partial \mathbf{u}}{\partial x_\alpha} \cdot \frac{\partial \mathbf{u}}{\partial x_\beta} \mathbf{u} = \mathbf{0} \quad \text{in } M \tag{1.4}$$

where Δ_g is the Laplace-Beltrami operator on (M, g) given by

$$\Delta_g = \frac{1}{\sqrt{g}} \sum_{\alpha,\beta=1}^n \frac{\partial}{\partial x_\alpha} \left(\sqrt{g} g^{\alpha\beta} \frac{\partial}{\partial x_\beta} \right).$$

Next we say $\mathbf{u} \in W^{1,2}(M, \mathbb{S}^k)$ is a minimizing harmonic map, if for any $\Omega \subset M$,

$$E(\mathbf{u},\Omega) := \int_{\Omega} e(\mathbf{u}) dv_g \le E(\mathbf{v},\Omega)$$
(1.5)

for all $\mathbf{v} \in W^{1,2}(\Omega, \mathbb{S}^k)$ with $\mathbf{v}|_{\partial M} = \mathbf{u}|_{\partial M}$.

The regularity of minimizing harmonic maps has been studied by many authors for a general target Riemannian manifold N instead of \mathbb{S}^k . For the case where dim M = 2, Morrey [13] showed that if $\mathbf{u} \in W^{1,2}(M, N)$ is a minimizing harmonic map, then $\mathbf{u} \in C^{\infty}(M, N)$. For $n \geq 3$, Schoen and Uhlenbeck [14] have shown that if we define the singular set of any minimizing map $\mathbf{u} \in W^{1,2}(M, N)$ by

 $sing(\mathbf{u}) = \{x \in M; \mathbf{u} \text{ is discontinuous at } x\},\$

then $sing(\mathbf{u})$ is a closed set, and it is discrete for n = 3, and

$$\dim_H(\operatorname{sing}(\mathbf{u})) \le n - 3$$

for $n \ge 4$ where $\dim_H(\operatorname{sing}(\mathbf{u}))$ is the Hausdorff dimension of $\operatorname{sing}(\mathbf{u})$. Moreover, it is well known that \mathbf{u} is analytic in $M \setminus \operatorname{sing}(\mathbf{u})$ (cf. Borchers and Garber [5]).

For $p \in N, r > 0$, let $B_r(p) = \{q \in N; \operatorname{dist}_N(q, p) \leq r\}$ be the closed geodesic ball with center p and radius r, and let C(p) be the cut locus of p. We call $B_r(p)$ is a regular ball if the following two conditions hold.

- (i) $\sqrt{\kappa}r < \pi/2$ where $\kappa = \max\{0, \sup_{B_r(p)} K^N\}, K^N$ is the sectional curvature of N.
- (ii) $C(p) \cap B_r(p) = \emptyset$.

Hildebrandt et al. [9] have established the following existence theorem of smooth harmonic maps with given boundary data contained in a regular ball. (see also Lin and Wang [12, Theorem 3.1.7]).

Theorem 1.1 ([9]). Suppose that $B_r(p) \subset N$ is a regular ball and $\Omega \subset M$ is a bounded domain and $\mathbf{g} : \Omega \to B_r(p)$ is continuous map and has finite energy. Then there exists a harmonic map $\mathbf{u} \in C^{2+\alpha}(\Omega, N) \cap C^0(\overline{\Omega}, N)$ with $\mathbf{u}|_{\partial M} = \mathbf{g}$.

EJDE-2014/34

As the first step of their proof, they considered the following variational problem. Find a minimizer of

$$\inf_{\mathbf{u}\in V}\int_{\Omega}e(\mathbf{u})dv_g$$

where the admissible space V is as follows. Choose $r_1 \in (r, \pi/2\sqrt{\kappa})$ such that $B_{r_1}(p) \subset N$ is also regular ball, and define

$$V = \{ \mathbf{u} \in W^{1,2}(\Omega, B_{r_1}(p)); \mathbf{u}|_{\partial M} = \mathbf{g} \}.$$

This admissible space seems to be restrictive. Thus in the present paper, we report that in order to get the same result for the target manifold $N = \mathbb{S}^k$, we can take the admissible space $V = W^{1,2}(M, \mathbb{S}^k, \mathbf{g}) := \{\mathbf{u} \in W^{1,2}(M, \mathbb{S}^k); \mathbf{u}|_{\partial M} = \mathbf{g}\}.$ We note that in the case where $N = \mathbb{S}^k$, since $K^N = 1$ and $C(p) = \{-p\}$, if

 $0 < r < \pi/2$, then the ball $B_r(p)$ is regular.

2. Preliminaries

Let M be a n-dimensional connected compact Riemannian manifold with smooth boundary ∂M and $\mathbb{S}^k \subset \mathbb{R}^{k+1}$ the unit sphere in \mathbb{R}^{k+1} $(k \geq 2)$. For every $p \in \mathbb{S}^k$ and r > 0, we denote the closed geodesic ball in \mathbb{S}^k with center p and radius r by $B_r(p)$. Throughout this paper we treat the $B_r(p)$ which is an closed ball with $0 < r < \pi/2$, so $B_r(p)$ is a regular ball in this case. We denote the standard Sobolev space by $W^{1,2}(\Omega, \mathbb{R}^{k+1})$, and define

$$W^{1,2}(\Omega, \mathbb{S}^k) = \{ \mathbf{u} \in W^{1,2}(\Omega, \mathbb{R}^{k+1}); \mathbf{u}(x) \in \mathbb{S}^k \text{ a.e. } x \in M \}.$$

Let $\mathbf{e}: \partial M \to \mathbb{S}^k$ be a smooth given vector field, for instance, $\mathbf{e} \in C^{2+\alpha}(\partial M, \mathbb{S}^k)$. and define

$$W^{1,2}(M,\mathbb{S}^k,\mathbf{e}) = \{\mathbf{u} \in W^{1,2}(M,\mathbb{S}^k); \mathbf{u}|_{\partial M} = \mathbf{e}\}.$$

Here we assume the hypotheses

(H1) $\mathbf{e} \in C^{2+\alpha}(\partial M, \mathbb{S}^k)$ has a finite energy extension $\tilde{e} \in W^{1,2}(M, \mathbb{S}^k)$ such that $\widetilde{e}|_{\partial M} = e.$

Remark 2.1. It is not trivial that $W^{1,2}(M, \mathbb{S}^k, \mathbf{e}) \neq \emptyset$. However if $M = \Omega \subset \mathbb{R}^n$ is a bounded C^2 domain, Hardt and Lin [8, Theorem 6.2] (cf. [12, Lemma 2.2.10]) have proved the fact in the case where the target space is a more general simply connected Riemannian manifold N (i.e., $\Pi_0(N) = \Pi_1(N) = 0$) that any map $\mathbf{e} \in W^{1/2,2}(\partial M, N)$ admits a finite energy extension $\widetilde{\mathbf{e}} \in W^{1,2}(\Omega, N)$. Recall that $N = \mathbb{S}^k$ has $\Pi_0(\mathbb{S}^k) = \Pi_1(\mathbb{S}^k) = 0$, unless k = 1.

 $\mathbf{u}\,\in\,W^{1,2}(M,\mathbb{S}^k)$ is called weakly harmonic map in the sense of Introduction with boundary data ${\bf e}$ if for any ${\bf v}\in W^{1,2}_0(M,\mathbb{R}^{k+1}),$

$$\int_{M} (\langle \nabla \mathbf{u}, \nabla \mathbf{v} \rangle_{g} - |\nabla \mathbf{u}|_{g}^{2} \mathbf{u} \cdot \mathbf{v}) dx = 0, \qquad (2.1)$$

and $\mathbf{u}|_{\partial M} = \mathbf{e}$ where

$$\langle \nabla \mathbf{u}, \nabla \mathbf{v} \rangle_g = \sum_{i=1}^{k+1} \langle \nabla u^i, \nabla v^i \rangle_g$$

for $\mathbf{u} = (u^1, \dots, u^{k+1}), \mathbf{v} = (v^1, \dots, v^{k+1})$ and $\mathbf{u} \cdot \mathbf{v}$ is the standard Euclidean inner product. Then **u** satisfies the following equations, in the sense of distributions,

$$\Delta_g \mathbf{u} + |\nabla \mathbf{u}|_g^2 \mathbf{u} = \mathbf{0} \quad \text{in } M,$$

$$\mathbf{u} = \mathbf{e} \quad \text{on } \partial M.$$
 (2.2)

We also say that $\mathbf{u} \in W^{1,2}(M, \mathbb{S}^k)$ is a minimizing harmonic map with boundary data \mathbf{e} if \mathbf{u} is a minimizer of

$$\inf_{\mathbf{u}\in W^{1,2}(M,\mathbb{S}^k,\mathbf{e})}\int_M |\nabla \mathbf{u}|_g^2 dv_g.$$
(2.3)

Lemma 2.2. Any minimizing harmonic map $\mathbf{u} \in W^{1,2}(M, \mathbb{S}^k)$ is a weakly harmonic map.

The proof is well known. For example, see [12, Proposition 2.1.5]. We state the main theorem.

Theorem 2.3. Assume that M is a $C^{2+\alpha}$ connected compact Riemannian manifold with boundary ∂M for some $0 < \alpha < 1$ and assume that a boundary data $\mathbf{e} \in C^{2+\alpha}(\partial M, \mathbb{S}^k)$ satisfying (H1) is given, and satisfies that $\mathbf{e}(\partial M) \subset B_r(p)$ for some point $p \in \mathbb{S}^k$ and $0 < r < \pi/2$. Then if \mathbf{u} is any minimizer of

$$\inf_{\mathbf{u}\in V}\int_M |\nabla \mathbf{u}|_g^2 dv_g$$

where $V = W^{1,2}(M, \mathbb{S}^k, \mathbf{e})$, then $\mathbf{u}(M) \subset B_r(p)$ and \mathbf{u} is a unique harmonic map in $C^{2+\alpha}(M, \mathbb{S}^k)$.

Remark 2.4. In [9] and [12, Theorem 3.17], they took the admissible space V as $V = \{\mathbf{u} \in H^1(M, \mathbb{S}^k, \mathbf{e}); \mathbf{u}(M) \subset B_{r_1}(p)\}$ for some $r < r_1 < \pi/2$, and they call such solution a "small solution". However, we can remove the rather stronger condition. We emphasize that even if we take $W^{1,2}(M, \mathbb{S}^k, \mathbf{e})$ as the admissible space, we can get the same result as [9], and we seem to make more natural. To do so, we shall use the weak Harnack inequality (cf. Gilbarg and Trudinger [7, Theorem 8.18] or Chen and Wu [6, Chapter 4, Lemma 1.3]) and the maximum principle for minimizing harmonic maps (cf. Jost [11, Lemma 4.10.1]). Such strategy also appear in the author's papers Aramaki [1, 2, 3] and Aramaki, Chinen, Ito and Ono [4].

3. Proof of Theorem 2.3

For the proof we need the following lemma which is can be found for example in [12, Proposition 2.1.5].

Lemma 3.1. Let $V = W^{1,2}(M, \mathbb{S}^k, \mathbf{e})$. Then

$$\inf_{\mathbf{u}\in V}\int_M |\nabla \mathbf{u}|_g^2 dv_g$$

is achieved in V.

Let $\mathbf{u} \in W^{1,2}(M, \mathbb{S}^k, \mathbf{e})$ be a minimizer of (2.3). Then \mathbf{u} satisfies the Euler-Lagrange equation in the sense of distribution

$$-\Delta_g \mathbf{u} = |\nabla \mathbf{u}|_g^2 \mathbf{u} \quad \text{in } M,$$

$$\mathbf{u} = \mathbf{e} \quad \text{on } \partial M.$$
(3.1)

Proposition 3.2. Let $\mathbf{e} \in C^{2+\alpha}(\partial M, \mathbb{S}^k)$ for some $0 < \alpha < 1$ and assume that $\mathbf{e}(\partial M) \subset B_r(p)$ for some $p \in \mathbb{S}^k$ and $0 < r < \pi/2$. Then for any minimizer \mathbf{u} of (2.3) satisfies $\mathbf{u}(\Omega) \subset B_r(p)$.

EJDE-2014/34

Proof. After the rotation of coordinate axis of \mathbb{R}^{k+1} , we can choose the center p of $B_r(p)$ so that $p = (1, 0, \ldots, 0)$. We write $\mathbf{e}(x) = (e^1(x), \ldots, e^{k+1}(x))$. The hypothesis means that $e^1(x) \geq \cos r$ for $x \in \partial M$. Let $\mathbf{u} = (u^1, \ldots, u^{k+1})$ be any minimizer of (2.3). Since $u^1 \in W^{1,2}(M)$, it is well known that $|u^1| \in W^{1,2}(M)$ and $|\nabla |u^1|| = |\nabla u^1|$ a.e. in M. Define $\mathbf{w} = (w_1, \ldots, w^{k+1}) = (|u^1|, u^2, \ldots, u^{k+1}) \in W^{1,2}(M, \mathbb{R}^{k+1})$. Since $u^1 = e^1 > 0$ on ∂M , we can see that $\mathbf{w} \in W^{1,2}(M, \mathbb{S}^k, \mathbf{e})$, and \mathbf{w} is also a minimizer of (2.3). Therefore \mathbf{w} also satisfies (3.1), and $\mathbf{w} \in C^{2+\alpha}$ near the boundary (cf. Schoen and Uhlenbeck [15, Proposition 3.1]. In particular, w^1 satisfies $w^1 \geq 0$ and

$$-\Delta_g w^1 = |\nabla \mathbf{w}|_g^2 w^1 \quad \text{in } M,$$

$$w^1 = e^1 \quad \text{on } \partial M \tag{3.2}$$

For any $q \in M$, choose a local coordinate neighborhood U_q and a local coordinate system (x_1, \ldots, x_n) . Then w^1 is a bounded non-negative weak supersolution of

$$\Delta_g = \frac{1}{\sqrt{g}} \sum_{\alpha,\beta=1}^n \frac{\partial}{\partial x_\alpha} \Big(\sqrt{g} g^{\alpha\beta} \frac{\partial}{\partial x_\beta} \Big);$$

that is to say, $\Delta_g w^1 \leq 0$ in U_q . We can apply the weak Harnack inequality (cf. [7, Theorem 8.18] or [6, Chapter 4, Lemma 1.3]). Thus for any $1 \leq p < n/(n-2)$, $B_{2R} \subset U_q$

$$\operatorname{ess\,inf}_{B_R} w^1 \ge c \Big(\frac{1}{|B_{2R}|} \int_{B_{2R}} (w^1)^p dx \Big)^{1/p}$$

where c > 0 depends on n, p. Since $w^1 \in C^{2+\alpha}$ near the boundary and $w^1 = e^1 \ge \cos r > 0$ on ∂M , there exists $\delta > 0$ such that if we define $M_{\delta} = \{x \in M; \operatorname{dist}(x, \partial M) \le \delta\}$, then $w^1 \ge c_0 := \cos r/2$ in M_{δ} . Since $\dim_H \operatorname{sing}(w^1) \le n-3$ (in the case where n = 3, $\operatorname{sing}(w^1)$ is discrete), for any $x_0 \in M \setminus \operatorname{sing}(w^1)$, we can choose $x_1 \in M_{\delta}$ and a continuous curve l in M joining x_0 and x_1 such that $l \cap \operatorname{sing}(w^1) = \emptyset$. For every $x \in l$, there exists R > 0 such that $B_{2R}(x)$ is contained in a local coordinate neighborhood and

$$\operatorname{ess\,inf}_{B_R(x)} w^1 \ge c \Big(\frac{1}{|B_{2R}(x)|} \int_{B_{2R}(x)} (w^1)^p dx \Big)^{1/p}.$$
(3.3)

Since l is compact, there exist finitely many $R_j > 0$ and $x_{(j)} \in l$ (j = 1, 2, ..., N)such that $\bigcup_{j=1}^N B_{R_j}(x_{(j)}) \supset l$ and $x_{(1)} = x_0, x_{(N)} = x_1$. Since ess $\inf_{B_R(x_{(N)})} w^1 > 0$, it follows from (3.3) that $\operatorname{ess} \inf_{B_R(x_{(N-1)})} w^1 > 0$. Repeating this procedure, we have $\operatorname{ess} \inf_{B_R(x_0)} w^1 > 0$. In particular, $w^1(x_0) > 0$. Thus we see that $w^1 > 0$ in $M \setminus \operatorname{sing}(w^1)$. Hence we see that $u^1 > 0$ in $M \setminus \operatorname{sing}(u^1)$ or $u^1 < 0$ in $M \setminus \operatorname{sing}(u^1)$. Since $u^1 = e_1 > 0$ on ∂M , we have $u^1 > 0$ in $M \setminus \operatorname{sing}(u^1)$. Since u^1 is continuous near ∂M , there exist $\delta > 0$ and $c_0 > 0$ such that $u^1 \ge c_0$ on M_δ . Define $M^\delta = \{x \in M; \operatorname{dist}(x, \partial M) \ge \delta\}$. Choose R > 0 so that $2R < \delta$ and fix $1 \le p < n/(n-2)$. For any $y \in M^\delta$, there exists c' = c'(n, p) > 0 such that for any $B_{2R}(y)$ contained in a local coordinate neighborhood,

$$\mathrm{ess\,inf}_{B_R(y)}\,u^1 \ge c' \Big(\frac{1}{|B_{2R}(y)|} \int_{B_{2R}(y)} (u^1)^p dv_g \Big)^{1/p}.$$

Since M^{δ} is compact, there exists finitely many points y_i and positive numbers R_i (i = 1, 2, ..., L) such that $\bigcup_{i=1}^{L} B_{R_i}(y_i) \supset M^{\delta}$. If we define

$$c_i = c'_i \left(\frac{1}{|B_{2R_i}(y_i)|} \int_{B_{2R_i}(y_i)} (u^1)^p dx\right)^{1/p} \quad (i = 1, 2, \dots, L),$$

and $c = \min\{c_0, c_1, \ldots, c_L\}$, we have $u^1 \ge c$ a.e. on M. Therefore we can find r' with $r < r' < \pi/2$ such that $n(M) \subset B_{r'}(p)$.

Next, we use the following maximum principle by Jost.

Lemma 3.3 ([11]). Let B_0 and B_1 be closed subsets of \mathbb{S}^k and $B_0 \subset B_1$. Suppose that there exists a C^1 retraction map $\Pi : B_1 \to B_0$ satisfying the condition

 $|\nabla \Pi(x)(\mathbf{v})| < |\mathbf{v}|$ for all $x \in B_1 \setminus B_0$, and all $\mathbf{v} \in T_x \mathbb{S}^k$.

For any boundary data $\mathbf{e}: \partial M \to B_0$, if $\mathbf{u} \in W^{1,2}(M, \mathbb{S}^k, \mathbf{e}): M \to B_1$ is an energy minimizing map of (2.3) with the boundary data \mathbf{e} , then $\mathbf{u}(x) \in B_0$ a.e. $x \in M$.

We apply this lemma with $B_0 = B_r(p)$, $B_1 = B_{r'}(p)$, we see that $\mathbf{u}(M) \subset B_r(p)$. Then we can see that $\mathbf{u} \in C^{2+\alpha}(M, \mathbb{R}^{k+1})$ by the regularity theory in [14, 15] and [9]. The uniqueness of the solution follows from Jäger and Kaul [10]. This completes the proof.

Acknowledgments. We would like to thank the anonymous referee who indicates some errors and gave us some advice for a previous version of this article.

References

- Aramaki, J.; The effect of external fields in the theory of liquid crystals, Tokyo J. Math., Vol. 35, No. 1, (2012), 181-211.
- [2] Aramaki, J.; The Freedericksz transition and the asymptotic behavior in nematic liquid crystals, J. Partial Diff. Equa., Vol. 25, No. 3, (2012), 276294.
- [3] Aramaki, J.; Magnetic field-induced stability of a specific configuration and the asymptotic behavior of minimizers in nematic liquid crystals, Turkish J. Math., Vol. 37, No. 6, (2013), 1001-1021.
- [4] Aramaki, J.; Chinen, K.; Ito, Y.;Ono, S.; The effect of magnetic fields under specific boundary data in the theory of liquid crystals, to appear.
- [5] Borchers, H. J.; Garber, W. J.; Analyticity of solutions of the (N) nonlinear σ-model, Commun. Math. Phys. Vol. 71, (1980), 299-309.
- [6] Chen, Y.-Z.; Wu, L.-C.; Second order elliptic equations and elliptic systems, Translations of Math. Mono. Vol. 174, AMS, 1991.
- [7] Gilbarg, D.; Trudinger, N. S.; Elliptic Partial Differential Equations of Second Order, Springer, New York, 1983.
- [8] Hardt, R.; Lin, F.-H.; Mapping minimizing the L^p norm of the gradient, Commun. Pure and Appl. Math., Vol. XL, (1987), 555-588.
- [9] Hildebrandt, S.; Kaul, H.; Widman, K.-O.; An Existence theorem for harmonic mappings of Riemannian manifolds, Acta Math., Vol. 138, (1977), 1-16.
- [10] Jäger, W.; Kaul, H.; Uniqueness and stability of harmonic maps and their Jacobi fields, Manus. Math., Vol. 28, (1979), 269–291.
- [11] Jost, J.; Harmonic mappings between Riemannian manifold, Proceedings of the Center for Mathematical Analysis, Australian National University, Vol. 4, (1983), 529-531.
- [12] Lin, F.-H.; Wang, C.; The analysis of harmonic maps and their heat flow, World Scientific, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennnai, 2008.
- [13] Morrey, C. B.; Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1986.
 [14] Schoen, R.; Uhlenbeck, K.; A regularity theory for harmonic maps, J. Diff. Geometry, Vol. 17 (1982), 307-335.
- [15] Schoen, R.; Uhlenbeck, K.; Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geometry, Vol. 18 (1983), 259-268.

EJDE-2014/34

Junichi Aramaki

Division of Science, Faculty of Science and Engineering, Tokyo Denki University, Hatoyama-machi, Saitama 350-0394, Japan

E-mail address: aramaki@mail.dendai.ac.jp