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EXISTENCE OF SOLUTIONS TO QUASILINEAR ELLIPTIC
PROBLEMS WITH NONLINEARITY AND

ABSORPTION-REACTION GRADIENT TERM

SOFIANE EL-HADI MIRI

Abstract. In this article we study the quasilinear elliptic problem

−∆pu = ±|∇u|ν + f(x, u), in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded regular domain, p > 1 and 0 < ν ≤ p. Moreover, f

is a nonnegative function verifying suitable hypotheses. The main goal of this

work is to analyze the interaction between the gradient term and the function
f to obtain existence results.

1. Introduction

In this article we will discuss existence results for a class of quasilinear elliptic
problems in the form

−∆pu = ±|∇u|ν + f(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain and ∆pu := div(|∇u|p−2∇u), p > 1, is the
classical p-Laplace operator and 0 < ν ≤ p.

The function f : Ω × [0,+∞) → [0,+∞) is assumed to be Hölder continuous,
non-decreasing, and such that

the function t 7→ f(x, t)
tp−1

is non-increasing for all x ∈ Ω, (1.2)

lim
t→0

f(x, t)
tp−1

= +∞ and lim
t→+∞

f(x, t)
tp−1

= 0 uniformly for x ∈ Ω. (1.3)

f(x, 0) 6= 0 (1.4)

Notice that problems with gradient term are widely studied in the literature. We
can cite the leading works of Boccardo, Gallouët, Murat and their collaborators,
see for instance [7],[9] and [8] and the references therein. For some recent works
related to our problem, we can cite [1, 2, 4, 21, 24, 5, 25].
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In the particular case p = 2, problem (1.1) is related to the Lane-Emden-Fowler
and Emden-Fowler equations, treated in many papers; we particulary cite the works
of Radulescu, and his collaborators [13, 14, 15] and more recently [12, 16] and the
references therein. For the case without the absence of the gradient term, we refer
to [18].

When the nonlinearity is considered as an absorption term we cite [11] where
the authors prove the existence of solution even when Ω is of infinite measure, and
in the same direction we cite [10].

The extension to the p−laplacian, of the previous results obtained in the case
of the laplacian, especially when using a sub-supersolution method, has a major
difficulty: no general comparison principle for the operator −∆pu± |∇u|ν exist at
our knowledge, and there are only few partial results in this direction. In addition,
the behavior of the operator changes when considering the cases p < 2 and p > 2.
We refer the reader to [22] for a general discussion about this fact.

2. Preliminaries

The next comparison principles will be used frequently in this paper, for complete
proofs of the first three ones we refer to [22] and we refer to [3] for the last one.

Considering the problem

−div(a(x,∇u)) +H(x,∇u) = f(x) in Ω
u = 0 on ∂Ω

(2.1)

and having in mind the particular case

−∆pu± |∇u|q = f(x) in Ω
u = 0 on ∂Ω,

with q ≤ p we have the following result.

Theorem 2.1 ([22]). Under the hypotheses: q > N(p−1)
N−1 , 1 < p ≤ 2 and

f = f1(x) + div(f2(x)) where f1 ∈ L1(Ω), f2 ∈ (Lp
′
(Ω))N (2.2)

[a(x, ξ)− a(x, η)](ξ − η) ≥ α(|ξ|2 − |η|2)
p−2
2 |ξ − η|2, α > 0 (2.3)

a(x, 0) = 0 (2.4)

|a(x, ξ)| ≤ β(k(x) + |ξ|p−1), β > 0, k(x) ∈ Lp
′
(Ω) (2.5)

|H(x, ξ)−H(x, η)| ≤ γ(b(x) + |ξ|q−1 + |η|q−1)|ξ − η|,
γ > 0, b(x) ∈ Lr(Ω),

(2.6)

where

1 ≤ q ≤ p− 1 +
p

N
, r ≥ N(q − (p− 1))

q − 1
(with r =∞ if q = 1).

If u and v are respectively sub- and super-solution of (2.1), such as

(1 + |u|)q−1u ∈W 1,p
0 (Ω), (1 + |v|)q−1v ∈W 1,p

0 (Ω), q =
(N − p)(q − (p− 1))

p(p− q)
(2.7)

then u ≤ v in Ω.
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Theorem 2.2 ([22]). Under the hypotheses: q < N(p−1)
N−1 , 2 − 1

N < p ≤ 2, (2.2),
2.3, 2.4, 2.5, and

|H(x, ξ)−H(x, η)| ≤ γ(b(x) + |ξ|q−1 + |η|q−1)|ξ − η|,
γ > 0, b(x) ∈ Lr(Ω),

r >
N(p− 1)

N(p− 1)− (N − 1)
, 1 ≤ q < N(p− 1)

(N − 1)
.

(2.8)

If u and v are respectively sub- and super-solution of (2.1), then u ≤ v in Ω.

Theorem 2.3 ([22]). Under the hypotheses: p > 2, q > p
2 + (p−1)

N−1 , (2.4)), (2.5),
and

[a(x, ξ)− a(x, η)](ξ − η) ≥ α(1 + |ξ|2 + |η|2)
p−2
2 |ξ − η|2, α > 0 (2.9)

|H(x, ξ)−H(x, η)| ≤ γ(b(x) + |ξ|q−1 + |η|q−1)|ξ − η|, γ > 0, (2.10)

b(x) ∈ LN (Ω) where 1 ≤ q ≤ p

2
+

p

N
. (2.11)

If u and v are respectively sub- and super-solution of (2.1), such as

(1 + |u|)q−1u ∈W 1,p
0 (Ω), (1 + |v|)q−1v ∈W 1,p

0 (Ω), q =
(N − p)(q − p

2 )
p(p2 + 1− q)

(2.12)

then u ≤ v in Ω.

Theorem 2.4 ([3]). Assume that 1 < p and let f be a non-negative continuous
function such that f(x,s)

sp−1 is decreasing for s > 0. Suppose that u, v ∈ W 1,p
0 (Ω) are

such that
−∆pu ≥ f(x, u), u > 0in Ω,

−∆pv ≤ f(x, v), v > 0in Ω.
(2.13)

Then u ≥ v in Ω.

Since we are dealing with a generalized notion of solution, we recall here the
definition of entropy solutions for elliptic problems.

Definition 2.5. Let u be a measurable function. We say that u ∈ T 1,p
0 (Ω) if

Tk(u) ∈W 1,p
0 (Ω) for all k > 0, where

Tk(s) =

{
k sgn(s) if |s| ≥ k,
s if |s| ≤ k.

(2.14)

Let H ∈ L1(Ω). Then u ∈ T 1,p
0 (Ω) is an entropy solution to the problem

−∆pu = H in Ω,

u|∂Ω = 0,
(2.15)

if for all k > 0 and all v ∈W 1,p
0 (Ω) ∩ L∞(Ω), we have∫

Ω

|∇u|p−2〈∇u,∇(Tk(u− v))〉 =
∫

Ω

HTk(u− v). (2.16)

We refer to [6] and [17] for more properties of entropy solutions. It is clear that
if u is an entropy solution to problem (1.1), then u is a distributional solution to
(1.1).
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3. The absorption case

In this section we consider the problem

−∆pu+ |∇u|ν = f(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(3.1)

Theorem 3.1. Assume that the assumptions on f hold. If 0 < ν ≤ p, then problem
(3.1) has at least one entropy solution u ∈W 1,p

0 (Ω) .

Proof. We split the proof into several steps.
Step 1: Construction of supersolution and subsolution. To obtain the ex-
istence result we will use sub-supersolution argument. Let us consider the problem

−∆pw = f(x,w) in Ω,
w > 0 in Ω,
w = 0 on ∂Ω.

(3.2)

Then under the hypothesis on f , problem (3.2) possesses a unique solution w which
is a supersolution of (3.1). For the subsolution to problem (3.1), we consider u = 0.

Finally by Theorem 2.4 we reach that u ≤ w. To obtain the existence result we
use a monotonicity argument. Since no general comparison principle is known for
this kind of problems, we will consider different values of p.

The following steps 2, 3 and 4 are devoted to proving the existence of solution
in the singular case, namely p < 2, but for different ranges of p and ν.
Step 2: Existence result for 2N

N+1 ≤ p < 2 and 1 ≤ ν ≤ p− 1 + p
N . In this case,

by [22, Theorems 3.1 and 3.2] we know that a comparison principle holds for the
operator −∆pu+ |∇u|ν in the space W 1,p

0 (Ω).
Then, we define the sequence {un}n∈N as follows: u0 = u and for n ≥ 1, un is

the solution to problem

−∆pun + |∇un|ν = f(x, un−1) in Ω,
un > 0 in Ω,
un = 0 on ∂Ω.

(3.3)

We claim that the sequence {un}n∈N is increasing in n and for all n ≥ 0, un ≤ w.
Notice that the last statement follows easily from Theorem 2.4. To prove the
monotonicity of {un}n∈N, we will use the comparison result obtained in [22]. It is
clear that u1 solves

−∆pu1 + |∇u1|ν = f(x, u0).

By the definition of u0, we obtain that

−∆pu1 + |∇u1|ν ≥ −∆pu0 + |∇u0|ν .

Thus, by the comparison principle in [22], we reach u1 ≥ u0. Let us show that
u2 ≥ u1. As above, u2 satisfies

−∆pu2 + |∇u2|ν = f(x, u1).

Since f is a nondecreasing function, it follows that

−∆pu2 + |∇u2|ν ≥ −∆pu1 + |∇u1|ν .
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Hence u2 ≥ u1. Therefore, the result follows by induction and then the claim
follows.

Thus, using un as a test function in (3.3) and by the non decreasing property of
f , we obtain that ‖un‖W 1,p

0 (Ω) ≤ C. Hence we obtain the existence of u ∈W 1,p
0 (Ω)

such that un ⇀ u weakly in W 1,p
0 (Ω) and un → u strongly in Lσ(Ω) for all σ < p∗.

Since u ≤ u ≤ w ∈ L∞(Ω), it follows that u ∈ L∞(Ω) and un → u strongly in
Lσ(Ω) for all σ ≥ 1.

Therefore, to have the existence result, we just have to prove that |∇un|ν →
|∇u|ν in L1(Ω). By the hypothesis on ν, we can see that ν < p, then using (u−un)
as a test function in (3.3), it follows that∫

Ω

|∇un|p−2∇un∇udx−
∫

Ω

|∇un|pdx+
∫

Ω

|∇un|ν(u− un)dx

= λ

∫
Ω

f(x, un−1)(u− un)dx.

By the Dominated Convergence Theorem and as f is assumed to be Hölder contin-
uous, we obtain ∫

Ω

f(x, un−1)(u− un)dx = o(1).

Now using Hölder inequality and the fact that ν < p, we obtain∫
Ω

|∇un|ν(u− un)dx ≤
(∫

Ω

|∇un|pdx
)ν/p(∫

Ω

(u− un)
p

p−ν dx
) p−ν

p

= o(1).

We obtain ∫
Ω

|∇un|p−2∇un∇udx−
∫

Ω

|∇un|pdx = o(1).

Then, using Young inequality there results∫
Ω

|∇un|pdx =
∫

Ω

|∇un|p−2∇un∇udx+ o(1)

≤ p− 1
p

∫
Ω

|∇un|p +
1
p

∫
Ω

|∇u|pdx+ o(1).

Thus, ∫
Ω

|∇un|pdx ≤
∫

Ω

|∇u|pdx+ o(1).

It is clear that∫
Ω

|∇u|pdx ≤ lim inf
∫

Ω

|∇un|pdx ≤ lim sup
∫

Ω

|∇un|pdx ≤
∫

Ω

|∇u|pdx.

Therefore, ‖un‖W 1,p
0 (Ω) → ‖u‖W 1,p

0 (Ω) and then un → u strongly in W 1,p
0 (Ω). Hence

the existence result follows in this case.

Step 3: Existence result for 2N
N+1 ≤ p < 2 and p− 1 + p

N ≤ ν ≤ p. In this case,
to get a monotone sequence, we have to change the approximation. Since 2N

N+1 ≤ p
then ν ≥ 1.
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For fixed n ∈ N∗, we define the sequence {vn,k}k∈N as follow: vn,0 = u and for
k ≥ 1, vn,k is the solution to problem

−∆pvk,n +
|∇vk,n|ν

1 + 1
n |∇vk,n|ν

= f(x, vk−1,n) in Ω,

vk,n > 0 in Ω,
vk,n = 0 on ∂Ω.

(3.4)

Let us begin by proving that the sequence {vk,n}k∈N is increasing in k and that
vk,n ≤ w, for all k ≥ 0. For simplicity, we set

Hn(ξ) =
|ξ|ν

1 + 1
n |ξ|ν

where ξ ∈ RN .

It is clear that v1,n solves

−∆pv1,n +Hn(∇v1,n) = f(x, v0,n).

By the definition of v0,n, we obtain that

−∆pv1,n +Hn(∇v1,n) ≥ −∆pv0,n +Hn(∇v0,n).

It is clear that Hn satisfies the hypotheses of the comparison principle in [22].
Hence we reach v1,n ≥ v0,n. In the same way, and using an induction argument, we
conclude that vk,n ≥ vk−1,n for all k ∈ N∗.

Now, as in the proof of the previous step, using vk,n as a test function in (3.4)
and by the hypotheses on f , we obtain that ‖vk,n‖W 1,p

0 (Ω) ≤ C. Thus we obtain

the existence of un ∈ W 1,p
0 (Ω) such that vk,n ⇀ un weakly in W 1,p

0 (Ω). As in the
previous step, we can show that vk,n → un strongly in W 1,p

0 (Ω).
Note that by the previous computation we obtain easily that

vk,n ≥ vk,n+1 for all k ≥ 1.

Hence we conclude that un is the minimal solution to problem

−∆pun +
|∇un|ν

1 + 1
n |∇un|ν

= f(x, un) in Ω,

un > 0 in Ω,
un = 0 on ∂Ω,

(3.5)

with un ≤ un+1 for all n ≥ 1. It is clear that u ≤ un ≤ w ∈ L∞(Ω). Then, as
above using un as a test function in (3.5), we reach that ‖un‖W 1,p

0 (Ω) ≤ C and thus,

we obtain the existence of u ∈W 1,p
0 (Ω) such that un ⇀ u weakly in W 1,p

0 (Ω).
If ν < p, then we follow the above computation to reach that un → u strongly

in W 1,p
0 (Ω) and the existence result holds.

If ν = p, then as in Step 2, we obtain that

f(x, un−1)→ f(x, u) strongly in L1(Ω).

We set kn(x) ≡ f(x, un−1), then

−∆pun + |∇un|p = kn(x)

with kn → k ≡ f(x, u) strongly in L1(Ω). Therefore, using the result of [23], we
conclude that un → u strongly in W 1,p

0 (Ω) and the result follows.
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Step 4: Existence result for 2N
N+1 ≤ p < 2 and 0 < ν ≤ 1. In this case, we

adopt a new approximation of the gradient term, namely we set

Qn(ξ) = (|ξ|+ 1
n

)ν where ξ ∈ RN .

For fixed n ∈ N∗, we define the sequence {vn,k}k∈N as follows: vn,0 = u and for
k ≥ 1, vn,k is the solution to problem

−∆pvk,n +Qn(∇vk,n) = f(x, vk−1,n) in Ω,
vk,n > 0 in Ω,
vk,n = 0 on ∂Ω.

(3.6)

As above we have vk,n ≤ w for all k ≥ 0. It is clear that Qn satisfies the condition
of [22, Theorems 3.1 and 3.2].

We claim that the sequence {vk,n}k∈N is increasing in k, for all fixed n. To prove
the claim, we observe that v1,n solves

−∆pv1,n +Qn(∇v1,n) = f(x, v0,n).

By the definition of v0,n, we obtain that

−∆pv1,n +Qn(∇v1,n) ≥ −∆pv0,n +Qn(∇v0,n).

Hence, using again the comparison principle in [22], we reach that v1,n ≥ v0,n. In
the same way, using an iteration argument, we conclude that vk,n ≥ vk−1,n for all
k ∈ N∗ and then the claim follows.

Now for fixed k, we claim that vk,n ≤ vk,n+1. Using the non decreasing property
and the regularity of f we see that the claim follows if we can prove that v1,n ≤
v1,n+1.

By the definition of v1,n and v1,n+1, we have

−∆pv1,n+Qn(∇v1,n) = −∆pv1,n+1 +Qn+1(∇v1,n+1) ≤ −∆pv1,n+1 +Qn(∇v1,n+1).

Thus, using the comparison principle of [22], we conclude that v1,n ≤ v1,n+1. The
general result follows by induction.

Now, as in the previous steps, using vk,n as a test function in (3.6) and by the
Hölder continuity of f , we obtain that ‖vk,n‖W 1,p

0 (Ω) ≤ C. Thus, we obtain the

existence of un ∈ W 1,p
0 (Ω) such that vk,n ⇀ un weakly in W 1,p

0 (Ω) as k → ∞.
The compactness arguments used in the first step allow us to prove that vk,n → un
strongly in W 1,p

0 (Ω). Hence, we find that un is the minimal solution to problem

−∆pun +Qn(∇un) = f(x, un) in Ω,
un > 0 in Ω,
un = 0 on ∂Ω,

(3.7)

with un ≤ un+1 for all n ≥ 1. It is clear that u ≤ un ≤ w ∈ L∞(Ω). Then, as above,
using un as a test function in (3.6) we obtain easily that ‖un‖W 1,p

0 (Ω) ≤ C. Thus,

we obtain the existence of u ∈W 1,p
0 (Ω) such that un ⇀ u weakly in W 1,p

0 (Ω). Since
ν < p, we conclude that un → u strongly in W 1,p

0 (Ω) as above, and the existence
result follows.
Step 5: Existence result for 2 < p and ν ≤ p. To deal with the degenerate case
p > 2, we will make a perturbation in the principal part of the operator, namely
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for ε > 0, we consider the next approximating problems

−Lεu+ |∇u|ν = f(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(3.8)

where
−Lεu = −div((ε+ |∇u|2)

p−2
2 ∇u).

We begin by proving that problem (3.8) has a minimal solution uε at least for ε
small. Fixed ε > 0, then we define wε to be the unique solution of problem

−Lεwε = f(x,wε) in Ω,
wε > 0 in Ω,
wε = 0 on ∂Ω,

(3.9)

(see [19] for the proof of the uniqueness result). It is clear that wε is a bounded
supersolution to (3.8) and ‖wε‖L∞ ≤ C for all ε ≥ 0. The function u = 0 is aldo a
subsolution of (3.8).

Now, for ε fixed we define the sequence {vn,k}k∈N as follows: vn,0 = u and for
k ≥ 1, vn,k is the solution to problem

−Lεvk,n +Dn(∇vk,n) = f(x, vk−1,n) in Ω,
vk,n > 0 in Ω,
vk,n = 0 on ∂Ω,

(3.10)

where

Dn(ξ) =

{ |ξ|ν
1+ 1

n |ξ|ν
if 1 < ν ≤ p

(|ξ|+ 1
n )ν if ν ≤ 1.

It is clear that vk,n ≤ wε for all k ≥ 0.
We claim that the sequence {vk,n}k∈N is increasing in k for every fixed n. To

prove the claim, we observe that v1,n solves

−Lεv1,n +Dn(∇v1,n) = f(x, v0,n).

By the definition of v0,n, we obtain that

−Lεv1,n +Dn(∇v1,n) ≥ −Lεv0,n +Dn(∇v0,n).

Hence, using the comparison principle in [22, Theorem 4.1], we reach that v1,n ≥
v0,n. In the same way, using an induction argument, we conclude that vk,n ≥ vk−1,n

for all k ∈ N∗ and then the claim follows.
Using vk,n as a test function in (3.10) we easily get that ‖vk,n‖W 1,p

0 (Ω) ≤ C. Thus,

we obtain the existence of un ∈ W 1,p
0 (Ω) such that vk,n ⇀ un weakly in W 1,p

0 (Ω).
By the compactness argument used in the Step 2, we obtain that vk,n → un strongly
in W 1,p

0 (Ω) and un is the minimal solution to the problem

−Lεun +Dn(∇un) = f(x, un) in Ω,
un > 0 in Ω,
un = 0 on ∂Ω.

(3.11)

Now, we pass to the limit in n.



EJDE-2014/32 QUASILINEAR ELLIPTIC PROBLEMS 9

Using un as a test function in (3.11) and as f is assumed to be Hölder continuous,
we find that ‖un‖W 1,p

0 (Ω) ≤ C. Thus, we obtain the existence of uε ∈W 1,p
0 (Ω) such

that un ⇀ uε weakly in W 1,p
0 (Ω).

If ν < p, then using the compactness arguments of Step 2 and by the result of
[23], we obtain that un → uε strongly in W 1,p

0 (Ω). Hence it follows that uε is the
minimal solution to problem

−Lεuε + |∇uε|ν = f(x, uε) in Ω,
uε > 0 in Ω,
uε = 0 on ∂Ω.

(3.12)

If ν = p, then by the argument of the last part of Step 3 and using the compact-
ness result of [23], we reach the strong convergence of {un}n∈N in W 1,p

0 (Ω). Thus,
we obtain a minimal solution to (3.12) also in this case.

To finish, we just have to pass to the limit in ε. Notice that, in general, the
sequence {uε}ε is not necessarily monotone in ε. Using uε as a test function in
(3.12) we reach that ‖uε‖W 1,p

0 (Ω) ≤ C and then uε ⇀ u weakly in W 1,p
0 (Ω). Since

u ≤ uε ≤ wε ≤ C, then we easily get that

f(x, uε)→ f(x, u) strongly in L1(Ω).

Since ν < p, then using a variation of the compactness result of [23], there results
that uε → u strongly in W 1,p

0 (Ω). Hence u solves

−∆pu+ |∇u|ν = f(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(3.13)

and the existence result follows. It is clear that u ≤ u ≤ w. �

4. The reaction case

In this section, we study the reaction case, namely we consider the problem
−∆pu = f(x, u) + |∇u|ν in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(4.1)

with ν < p− 1. The main existence result reads as follows.

Theorem 4.1. Suppose that the hypotheses made on f hold. Then, problem (4.1)
has at least one entropy solution.

Proof. As in the proof of Theorem 3.1, problem (4.1) has a subsolution u = 0. To
obtain a supersolution, we first consider problem

−∆pu = f(x, u) + 1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(4.2)

By the assumptions on f , we reach that problem (4.2) has a unique positive solution
v ∈ C1,σ(Ω) with σ < 1. Then for C > 1 we have

−∆p(Cv) = Cp−1f(x, v) + Cp−1.

By hypothesis (1.2), we obtain −∆p(Cv) ≥ f(x,Cv) + Cp−1.
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Since ν < p−1, one can always choose C large enough to have Cp−1 > Cν |∇v|ν+
1. Thus

−∆p(Cv) ≥ f(x,Cv) + |∇Cv|ν + 1
and then u = Cv is a supersolution to problem (4.1).

To prove the existence, we follow the arguments used in the previous section.
By the comparison principle in Theorem 2.4 we have that u ≤ u.

First case: 2N
N+1 ≤ p < 2 and ν < p − 1. Since p < 2, then ν < 1, thus as in

the proof of Theorem 3.1, we obtain the existence of un, the minimal solution to
problem

−∆pun = f(x, un) +Qn(∇un) in Ω,
un > 0 in Ω,
un = 0 on ∂Ω,

(4.3)

where
Qn(ξ) = (|ξ|+ 1

n
)ν , for ξ ∈ RN .

It is clear that u ≤ un ≤ u. Using un as a test function in (4.3) and by the fact
that ν < p− 1, it follows that ‖un‖W 1,p

0 (Ω) ≤ C.

Then we obtain the existence of u ∈ W 1,p
0 (Ω) such that un ⇀ u weakly in

W 1,p
0 (Ω). Notice that ν < p, hence by the previous compactness arguments we can

prove that un → u strongly in W 1,p
0 (Ω) and the existence result follows.

Second case: 2 < p and ν < p − 1. For fixed ε > 0 small, we claim that
problem

−Lεu = f(x, u) + |∇u|ν in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(4.4)

where
−Lεu = −div((ε+ |∇u|2)

p−2
2 ∇u),

has a minimal solution uε, at leat for ε small such that u ≤ uε ≤ u.
Since u, u ∈ C1,α(Ω), then for ε small we reach that u (respectively u) is a

subsolution (respectively supersolution) to (4.4).
Fix an ε small enough so that the previous statement still holds true, and define

Dn(ξ) =

{ |ξ|ν
1+ 1

n |ξ|ν
if 1 < ν < p− 1,

(|ξ|+ 1
n )ν if ν ≤ 1.

Let un be the minimal solution to problem

−Lεun = f(x, un) +Dn(∇un) in Ω,
vk,n > 0 in Ω,
vk,n = 0 on ∂Ω.

(4.5)

Notice that un = lim
k→∞

vn,k where the sequence {vn,k}k∈N is defined as follows:

vn,0 = u and for k ≥ 1, vk,n is the solution to problem

−Lεvk,n = f(x, vk−1,n) +Dn(∇vk,n) in Ω,
vk,n > 0 in Ω,
vk,n = 0 on ∂Ω.
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Using un as a test function in (4.5) and as f is a nondecreasing Hölder continuous
function, we reach ‖un‖W 1,p

0 (Ω) ≤ C. Thus, we obtain the existence of uε ∈W 1,p
0 (Ω)

such that un ⇀ uε weakly in W 1,p
0 (Ω). By the compactness argument in Step 2 of

Theorem 3.1 we obtain that un ⇀ uε strongly in W 1,p
0 (Ω) and uε is the minimal

solution to (4.4). It is clear that u ≤ uε ≤ u, and the claim follows.
The last step is to pass to the limit in ε. Using uε as a test function in (4.4), we

reach that ‖uε‖W 1,p
0 (Ω) ≤ C and then uε → u weakly in W 1,p

0 (Ω).
Since ν < p, a modification of the arguments used in the proof of Theorem 3.1,

allows us to obtain that uε → u strongly in W 1,p
0 (Ω). Thus u solves

−∆pu = f(x, u) + |∇u|ν in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(4.6)

�

Remark 4.2. Observe that the condition 1.4 imposed on f to ensure that 0 is a
strict subsolution, is not necessary, indeed one can drope it, and consider as subso-
lution the function introduced in [12], in [19] and in [20], defined by u = Mh(cϕ1)
where M and c are positive constants to be chosen, ϕ1 is the first eigenfunction of
the p-laplacian and h is the solution to the differential equation

h′′(t) = q(h(t))g(h(t)),

h > 0, h′ > 0,

h(0) = h′(0) = 0.

where q : (0,+∞) → (0,+∞) is a non-increasing and Hölder continuous function,
and g(s) behaves like 1

sβ
, for some β > 0.
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[7] L. Boccardo, T. Gallouët, L. Orsina; Existence and nonexistence of solutions for some non-
linear elliptic equations, J. Anal. Math. 73 (1997), 203-223.
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[20] S. E. H. Miri; Problèmes elliptiques et paraboliques avec terme singulier. Ph. D. diss., 2012.
[21] A. Perrotta, A. Primo; Regularizing effect of a gradient term in problem involving the p-

Laplacian Operator, Advanced nonlinear studies, 11 (2011), 221-231.

[22] A. Porretta; On the comparison principle for p-Laplace type operators with first order terms,
Resultsand developments, Quaderni di Matematica 23, Department of Mathematics, Seconda

Universit‘a di Napoli, Caserta, 2008.
[23] A. Porretta; Nonlinear equations with natural growth terms and measure data, 2002-Fez

conference on Partial Differential Equations, Electronic Journal of Differential Equations,

Conference 09 2002, 183-202.
[24] D. Ruiz; A priori estimates and existence of positive solutions for strongly nonlinear prob-

lems, J. Differential Equations 199 (1) (2004), 96-114.

[25] H. Zou; A priori estimates and existence for quasi-linear elliptic equations, Calc. Var. 33
(2008), 417-437.

Sofiane El-Hadi Miri
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