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EXISTENCE OF SOLUTIONS TO QUASILINEAR ELLIPTIC
PROBLEMS WITH NONLINEARITY AND
ABSORPTION-REACTION GRADIENT TERM

SOFIANE EL-HADI MIRI

ABSTRACT. In this article we study the quasilinear elliptic problem
—Apu = £|Vul” + f(z,u), inQ,
u>0 in Q,
u=0 on 09,
where Q C R¥ is a bounded regular domain, p > 1 and 0 < v < p. Moreover, f
is a nonnegative function verifying suitable hypotheses. The main goal of this

work is to analyze the interaction between the gradient term and the function
f to obtain existence results.

1. INTRODUCTION
In this article we will discuss existence results for a class of quasilinear elliptic
problems in the form
—Apu = £|Vul” + f(z,u) in Q,

u>0 in §, (1.1)

u=0 on 09,
where 2 C RY is a bounded domain and Apu := div(|Vul[P~2Vu), p > 1, is the
classical p-Laplace operator and 0 < v < p.

The function f : Q x [0, +00) — [0, +00) is assumed to be Holder continuous,
non-decreasing, and such that

t _
the function ¢ — ft(px_’l) is non-increasing for all z € €, (1.2)
ti% 1 = +o00 and t_l}+moo 1 = 0 uniformly for z € Q. (1.3)

f(z,0) #0 (1.4)
Notice that problems with gradient term are widely studied in the literature. We
can cite the leading works of Boccardo, Gallouét, Murat and their collaborators,
see for instance [7],[9] and [8] and the references therein. For some recent works
related to our problem, we can cite [IL 2] [4] 2T] 24 5] 25].
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In the particular case p = 2, problem is related to the Lane-Emden-Fowler
and Emden-Fowler equations, treated in many papers; we particulary cite the works
of Radulescu, and his collaborators [13], 14} [15] and more recently [12, [I6] and the
references therein. For the case without the absence of the gradient term, we refer
to [18].

When the nonlinearity is considered as an absorption term we cite [II] where
the authors prove the existence of solution even when {2 is of infinite measure, and
in the same direction we cite [10].

The extension to the p—laplacian, of the previous results obtained in the case
of the laplacian, especially when using a sub-supersolution method, has a major
difficulty: no general comparison principle for the operator —A,u £ |Vu|” exist at
our knowledge, and there are only few partial results in this direction. In addition,
the behavior of the operator changes when considering the cases p < 2 and p > 2.
We refer the reader to [22] for a general discussion about this fact.

2. PRELIMINARIES

The next comparison principles will be used frequently in this paper, for complete
proofs of the first three ones we refer to [22] and we refer to [3] for the last one.
Considering the problem

—div(a(z, Vu)) + H(z,Vu) = f(z) inQ

u=0 on N (2.1)
and having in mind the particular case
—Aput|Vul! = f(z) inQ
u=0 on 09,
with ¢ < p we have the following result.
Theorem 2.1 ([22]). Under the hypotheses: ¢ > Y P=1 1 < p <2 and
f=h@) +div(fa(e) where fr € LNQ), e (L@ (22)
[a(z.€) —a(z. )€ —n) > a6 ~ )T g —nf. a>0  (23)
a(z,0) =0 (2.4)
ja(z, )| < Blk(x) + €17, B> 0, k(x) € L (Q) (2.5)
|H (2,€) — H(z,n)| < ~(b(x) +[€]*7" + [n|" )€ = nl, (2.6)

v>0, blx)e L"(Q),
where

Nig—(p-1
1<qsp-14+L, o Me D)

N > 1 (with r =00 if ¢ =1).

If u and v are respectively sub- and super-solution of (2.1), such as

(N—=p)g—(p—1))
p(p —q)
(2.7)

I+ [u)) T u e WyP(Q), (L+ )T ve WyP(Q), g=

then u < v in Q.
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Theorem 2.2 ([22]). Under the hypotheses: q < N(p 1) ,2-+<p<2 (2,
3 E3 BB and
|H(2,&) = H(w,n)] < y(b(x) + €771 + [l ")§ =l
v >0, b(z) € L"(Q),
N(p—1) N(p—-1)
r> , l<g<—" 2.
Nep-D-(N oD ST

If uw and v are respectively sub- and super-solution of @, then u < v in .

Theorem 2.3 ([22]). Under the hypotheses: p > 2, ¢ > & + (p .), .,
and

(2.8)

[a($7f) —CL(I’,?])](E—??) 2 Oé(1+ ‘5|2+|’7|2)p%|§—77‘2a a>0 (29)
|H (x,&) — H(z,n)| < y(b(x) + &7 + 0! € —nl, ~>0, (2.10)
b(x) € LN(Q) where 1 < q < 123 + % (2.11)
If uw and v are respectively sub- and super-solution of , such as
(N-p)a—%)

1+ [u))Ttu e WyP(Q), (1+ )T tveWyP(Q), g= (2.12)

p(5+1-4q)
then u < v in Q.

Theorem 2.4 ([3]). Assume that 1 < p and let f be a non-negative continuous

function such that f( _1 is decreasing for s > 0. Suppose that u,v € Wol’p(Q) are

such that

—Ayu > f(x,u), u>0inf,
_ (2.13)
—Apv < f(z,v), v>0in .

Then v > v in .

Since we are dealing with a generalized notion of solution, we recall here the
definition of entropy solutions for elliptic problems.

Definition 2.5. Let u be a measurable function. We say that u € %l’p(Q) if
Ti(u) € WyP () for all k > 0, where

ksgn(s) if |s| >k,
T = 2.14
k(s) {s if |s| < k. (2.14)
Let H € L'(Q). Then u € 7,"P(Q) is an entropy solution to the problem
—Apu=H inQ, 515
ulog =0, (2.15)
if for all k > 0 and all v € W, ?(Q) N L=(Q), we have
/ |VulP~2(Vu, V(T (u — v) / HTy(u—v) (2.16)

We refer to [6] and [I7] for more properties of entropy solutions. It is clear that
if w is an entropy solution to problem (|1.1)), then w is a distributional solution to

().
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3. THE ABSORPTION CASE

In this section we consider the problem
—Apu+ |Vul” = f(z,u) inQ,
u>0 in §, (3.1)
u=0 on 0.

Theorem 3.1. Assume that the assumptions on f hold. If 0 < v < p, then problem
B-1) has at least one entropy solution u € WyP(Q) .

Proof. We split the proof into several steps.

Step 1: Construction of supersolution and subsolution. To obtain the ex-
istence result we will use sub-supersolution argument. Let us consider the problem
—Apw = f(z,w) in Q,

w >0 in €, (3.2)
w=0 on 0.

Then under the hypothesis on f, problem possesses a unique solution w which
is a supersolution of . For the subsolution to problem , we consider u = 0.

Finally by Theorem we reach that v < w. To obtain the existence result we
use a monotonicity argument. Since no general comparison principle is known for
this kind of problems, we will consider different values of p.

The following steps 2, 3 and 4 are devoted to proving the existence of solution
in the singular case, namely p < 2, but for different ranges of p and v.
Step 2: Existence result for 1\27751 <p<2and1<v<p-—1+%. Inthis case,
by [22] Theorems 3.1 and 3.2] we know that a comparison principle holds for the
operator —A,u + [Vu|” in the space W, (Q).

Then, we define the sequence {uy}nen as follows: ug = u and for n > 1, u, is
the solution to problem

—Apup + [Vu,|” = f(z,up—1) inQ,
up, >0 in Q, (3.3)
u, =0 on 0f.
We claim that the sequence {uy}nen is increasing in n and for all n > 0, u,, < w.
Notice that the last statement follows easily from Theorem To prove the

monotonicity of {u,}nen, we will use the comparison result obtained in [22]. It is
clear that u; solves

—Apuy + |[Vur|” = f(z,up).
By the definition of ug, we obtain that
prul + |VU1|V Z pruo + |VUQ|V.

Thus, by the comparison principle in [22], we reach u; > ug. Let us show that
ug > ui. As above, usy satisfies

—Apuz + [Vug|” = f(z,u1).
Since f is a nondecreasing function, it follows that

7Ap’u,2 + |VU2|V Z prul —+ |Vu1|”.
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Hence uwy > wuy. Therefore, the result follows by induction and then the claim
follows.

Thus, using u, as a test function in and by the non decreasing property of
f, we obtain that ||un||W01,p(Q) < C. Hence we obtain the existence of u € W, ()

such that u,, — u weakly in W, *(€2) and u,, — u strongly in L7(Q) for all o < p*.
Since u < u < w € L>®(Q), it follows that u € L>*(Q) and u,, — w strongly in
L7 () for all 0 > 1.
Therefore, to have the existence result, we just have to prove that |Vu,|" —
|Vul” in L*(2). By the hypothesis on v, we can see that v < p, then using (u—u,,)
as a test function in , it follows that

/|Vun|p_2VunVuda:—/ \Vun|pda:+/ |Vun|” (v — uy,)dz
Q Q Q

_ /\/Qf(x,un_1)(u ~ up)da.

By the Dominated Convergence Theorem and as f is assumed to be Holder contin-
uous, we obtain

/ f(z,up—1)(u —up)de = o(1).
Q

Now using Hoélder inequality and the fact that v < p, we obtain

Vaun|” (4 — up)dz < ( \Vun|pd:1:) ( (u— un)p%dx)% = o(1).
Q Q " Q p

We obtain
/ |Vun\p*2VunVudx—/ |Vu, |Pdz = o(1).
Q Q

Then, using Young inequality there results
/ |Vug|Pdx = / Vi, |P~2Vu, Vuds + o(1)
Q Q

-1 1
< pi/ |Vun|p+f/ |VulPdz + o(1).
P Jao P Ja
Thus,
/|Vun|pdx§/ [Vul|Pdz 4 o(1).
Q Q

It is clear that
/ |Vul|Pdr < liminf/ [Vu, |[Pdx < limsup/ |V, |Pde < / |Vul|Pdz.
Q Q Q Q

Therefore, ||un||W01,p(Q) — ||u||W01,p(Q) and then u,, — u strongly in W, *(£2). Hence
the existence result follows in this case.

Step 3: Existence result for 1\2,—51 <p<2andp—1+%& <v <p. In this case,

to get a monotone sequence, we have to change the approximation. Since 1\2,—11 <p
then v > 1.
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For fixed n € N*, we define the sequence {v, i }ren as follow: v, ¢ = u and for
k > 1, vy k is the solution to problem
|Vvk)n|y
14+ %|V’Uk,n|y
Vgn >0 in Q,
Vg, =0 on 0.

_Apvk,n + = f(ajakal,n) in Q,

(3.4)

Let us begin by proving that the sequence {vj ,}ren is increasing in k and that
Vg,n < w, for all £ > 0. For simplicity, we set

€1

where £ € RY.
T+ L ¢

Hy(§) =

It is clear that vy, solves
—Apv1, + Hpy (Vo1 n) = f(x,v0.0).
By the definition of v ,,, we obtain that
—Apv1 ., + Hp(Vur ) > —Apvo.n + Hy (Vg p)-

It is clear that H,, satisfies the hypotheses of the comparison principle in [22].
Hence we reach vy, > vg,,. In the same way, and using an induction argument, we

conclude that vy, > vg_1 , for all k£ € N*.
Now, as in the proof of the previous step, using vy, as a test function in (3.4)
and by the hypotheses on f, we obtain that ||vk’nHW01,p(Q) < C. Thus we obtain

the existence of w,, € Wol’p(Q) such that vy, — u, weakly in Wol’p(Q). As in the
previous step, we can show that vy , — u, strongly in Wol’p(Q).
Note that by the previous computation we obtain easily that

Vk,n = Ugnt1 for all &> 1.

Hence we conclude that u,, is the minimal solution to problem
|Vug,|”
14 LVu,|”
Up >0 in €,
u, =0 on 09,

*Apun + = f(x’un) in Qa

(3.5)

with u, < upyq for all n > 1. Tt is clear that u < u, < w € L*(Q). Then, as
above using u,, as a test function in (3.5)), we reach that ||Un||W01=p(Q) < C and thus,

we obtain the existence of u € Wy?(Q) such that u, — u weakly in Wy 7 (Q).

If v < p, then we follow the above computation to reach that u, — u strongly
in VVO1 P(Q2) and the existence result holds.

If v = p, then as in Step 2, we obtain that

f(x,up_1) — f(z,u) strongly in L'().
We set kn(z) = f(x,up—1), then
—Apuy + [Vug,|P = k()

with k, — k = f(z,u) strongly in L'(Q). Therefore, using the result of [23], we
conclude that u,, — u strongly in W,"*(€2) and the result follows.



EJDE-2014/32 QUASILINEAR ELLIPTIC PROBLEMS 7

Step 4: Existence result for ]\2,—11 <p<2and 0 < v < 1. In this case, we

adopt a new approximation of the gradient term, namely we set

Qn(&) = (¢l + %)” where £ € RV,

For fixed n € N*, we define the sequence {v, }ren as follows: v, o = u and for
k > 1, vy k is the solution to problem

*Apvk,n + Qn(vvk,n) = f(zv vk—l,n) in Q,
Vg >0 in Q, (3.6)
Vg, =0 on 0.
As above we have v, < w for all k£ > 0. It is clear that @), satisfies the condition
of [22] Theorems 3.1 and 3.2].

We claim that the sequence {vy » }ren is increasing in k, for all fixed n. To prove
the claim, we observe that vy , solves

_Apvl,n + Qn(vvl,n) = f(xa’UO,n)~
By the definition of vg ,,, we obtain that

_Apvl,n + Qn(vvl,n) Z _ApUO,n + Qn(vvo,n)-

Hence, using again the comparison principle in [22], we reach that vq, > vg,. In
the same way, using an iteration argument, we conclude that vy ,, > vi—1,, for all
k € N* and then the claim follows.

Now for fixed k, we claim that vy 5, < vi p41. Using the non decreasing property
and the regularity of f we see that the claim follows if we can prove that vy, <

V1,n+1-
By the definition of vy, and vy n41, we have

_Apvl,n+Qn(Vvl,n) = _Apvl,n+1 +Qn+1(vvl,n+l) S _Apvl,nJrl +Qn(vvl,n+l)~

Thus, using the comparison principle of [22], we conclude that vy, < vy pt1. The
general result follows by induction.

Now, as in the previous steps, using v, as a test function in and by the
Holder continuity of f, we obtain that ||/Uk;,n||W01,p(Q) < C. Thus, we obtain the
existence of u, € Wy*(€Q) such that vy, — u, weakly in W, () as k — oo.
The compactness arguments used in the first step allow us to prove that vy, — u,
strongly in I/VO1 P(Q). Hence, we find that u,, is the minimal solution to problem

—Apuy + Qn(Vu,) = f(z,u,) in Q,
un, >0 in Q, (3.7
u, =0 on 99,
with u, < u,yq foralln > 1. It is clear that u < w,, < w € L*(Q). Then, as above,
using wu,, as a test function in (3.6 we obtain easily that HUnHWOI,p(Q) < C. Thus,

we obtain the existence of u € W, **(2) such that u, — u weakly in Wy"?(€2). Since
v < p, we conclude that u,, — u strongly in W&’p(Q) as above, and the existence
result follows.

Step 5: Existence result for 2 < p and v < p. To deal with the degenerate case
p > 2, we will make a perturbation in the principal part of the operator, namely
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for € > 0, we consider the next approximating problems
—Leu+ |Vul” = f(z,u) in Q,
u>0 in§, (3.8)
u=0 on 0f,

where
—Leu = —div((e + |Vul?) = Vu).
We begin by proving that problem (3.8 has a minimal solution u. at least for e
small. Fixed € > 0, then we define w, to be the unique solution of problem
—L.w. = f(z,w:) in Q,
we >0 in (3.9)
we =0 on 01,
(see [19] for the proof of the uniqueness result). It is clear that w. is a bounded
supersolution to (3.8) and |Jwe||r=~ < C for all € > 0. The function v = 0 is aldo a
subsolution of ([3.8).
Now, for ¢ fixed we define the sequence {v, i }ren as follows: v, 0 = u and for
k > 1, vy is the solution to problem
_stk,n + Dn(vvk,n) = f((E, 'kal,n) in Qa
Vg >0 in Q, (3.10)
Vg, =0 on 09Q,

where

v

(€l + L)y ifv <1
It is clear that vi ., < w, for all k& > 0.

We claim that the sequence {vi . }ren is increasing in k for every fixed n. To
prove the claim, we observe that vy, solves

_Levl,n + Dn(vvl,n) = f(xa vO,n)~
By the definition of vy ,, we obtain that
—L.vi 5+ Dp(Vv1,n) > —Levon + Dn(Voo ).

Hence, using the comparison principle in [22] Theorem 4.1], we reach that vy , >
Vo,»- In the same way, using an induction argument, we conclude that vy », > Vr—1,n
for all kK € N* and then the claim follows.

Using vy, as a test function in (3.10]) we easily get that ||’Uk;’n||wc},p(ﬂ) < C. Thus,

we obtain the existence of u,, € Wol’p(Q) such that vy, — u, weakly in Wol’p(Q).
By the compactness argument used in the Step 2, we obtain that vy, — u,, strongly
in Wy?() and u,, is the minimal solution to the problem

—L.uy + Dy (Vuy) = f(z,u,) in Q,
Up >0 in Q, (3.11)
u, =0 on 9.

Now, we pass to the limit in n.
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Using u,, as a test function in ((3.11)) and as f is assumed to be Holder continuous,
we find that ||un||W01,p(Q) < C. Thus, we obtain the existence of u. € W,"*(£2) such
that u, — u. weakly in Wol’p(Q).

If v < p, then using the compactness arguments of Step 2 and by the result of
[23], we obtain that u,, — u. strongly in W, (Q). Hence it follows that u. is the
minimal solution to problem

—Leue + |[Vuel” = f(z,us) in Q,
u: >0 in Q, (3.12)
us =0 on 0.

If v = p, then by the argument of the last part of Step 3 and using the compact-
ness result of [23], we reach the strong convergence of {u, }nen in VVO1 P(Q). Thus,
we obtain a minimal solution to also in this case.

To finish, we just have to pass to the limit in €. Notice that, in general, the
sequence {u.}e is not necessarily monotone in e. Using u. as a test function in
we reach that Hu5||WO1,p(Q) < C and then u. — u weakly in W, *(). Since

u < u. <we < C, then we easily get that

f(z,u.) — f(z,u) strongly in L' (Q).
Since v < p, then using a variation of the compactness result of [23], there results
that u. — u strongly in W&’p(Q). Hence u solves

—Apu+|Vul” = f(z,u) inQ,

uw>0 in , (3.13)
u=0 on 01,
and the existence result follows. It is clear that u < u < w. O

4. THE REACTION CASE

In this section, we study the reaction case, namely we consider the problem
—Apu = f(z,u) +|Vul” inQ,
u >0 in Q, (4.1)
u=0 on 01,
with v < p — 1. The main existence result reads as follows.

Theorem 4.1. Suppose that the hypotheses made on f hold. Then, problem (4.1)
has at least one entropy solution.

Proof. As in the proof of Theorem [3.1] problem (4.I)) has a subsolution u = 0. To
obtain a supersolution, we first consider problem

—Apu = f(z,u)+1 inQ,
u>0 in§, (4.2)
u=0 on 0.

By the assumptions on f, we reach that problem (4.2]) has a unique positive solution
v € CH(Q) with o0 < 1. Then for C' > 1 we have

—A,(Cv) = CP~ L f(x,v) + CP7L.
By hypothesis (1.2), we obtain —A,(Cv) > f(z,Cv) + CP~1.
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Since v < p—1, one can always choose C' large enough to have CP~! > C¥|Vov|" +
1. Thus
—A,(Cv) > f(z,Cv) + |[VCu]” +1

and then @ = Cv is a supersolution to problem (4.1).
To prove the existence, we follow the arguments used in the previous section.
By the Comparison principle in Theorem [2.4] we have that u < .

First case: N+ <p<2andv<p-—1. Since p < 2, then v < 1, thus as in
the proof of Theorem [3.I] we obtain the existence of u,, the minimal solution to

problem
—Apuy, = f(z,un) + Qn(Vuy,) in Q,

Up >0 in Q, (4.3)
U, =0 on 99,
where
Qn(®) = (i + )", forgeRY.
It is clear that u < u, < w. Using u,, as a test function in and by the fact
that v < p — 1, it follows that ||un||W01,p(Q) <C.

Then we obtain the existence of u € W,?(Q) such that u, — u weakly in
WO1 P(Q). Notice that v < p, hence by the previous compactness arguments we can
prove that u,, — u strongly in VVO1 P(Q) and the existence result follows.

Second case: 2 < p and v < p — 1. For fixed ¢ > 0 small, we claim that

problem
—L.u = f(x,u) + |Vul|” in Q,
u>0 inQ, (4.4)
u=0 on 0%,
where
—Lou = —div((e + |Vu]?) 7 Vu)
has a minimal solution u,, at leat for & small such that v < u. <.
Since u,u € CH*(Q), then for ¢ small we reach that u (respectively u) is a
subsolution (respectively supersolution) to (4.4)).
Fix an ¢ small enough so that the previous statement still holds true, and define
1+'§'|"€|V ifl<v<p-1,
(€] + %)” if v < 1.
Let u,, be the minimal solution to problem
—Leuy = f(z,upn) + Dp(Vuy,) in Q,
Vgn >0 in Q, (4.5)
Vg, =0 on 0.

Dn(§) =

Notice that u, = hm Un,x Where the sequence {v, i }ren is defined as follows:
Un,0 = u and for k > 1 Uk,n is the solution to problem
—Levk,n = f(mavk—l,n) + Dn(vvk,n) in Q,
Vg >0 in Q,
Vg, =0 on Q.
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Using u,, as a test function in (4.5 and as f is a nondecreasing Holder continuous
function, we reach ||un||W01,p(Q) < C. Thus, we obtain the existence of u. € Wg’p(Q)

such that u, — u. weakly in W& P(Q). By the compactness argument in Step 2 of
Theorem we obtain that u, — u. strongly in W,?(Q) and u. is the minimal
solution to (4.4). It is clear that u < u. <7, and the claim follows.

The last step is to pass to the limit in . Using u. as a test function in , we
reach that ||u€||W01,p(Q) < C and then u, — u weakly in W, *(1).

Since v < p, a modification of the arguments used in the proof of Theorem [3.1]
allows us to obtain that u. — u strongly in W, ?(Q). Thus u solves

—Apu = f(z,u)+ |[Vul” in Q,
u>0 inQ, (4.6)
u=0 on 0.
(]

Remark 4.2. Observe that the condition imposed on f to ensure that 0 is a
strict subsolution, is not necessary, indeed one can drope it, and consider as subso-
lution the function introduced in [I2], in [19] and in [20], defined by uw = Mh(cp1)
where M and c are positive constants to be chosen, ¢ is the first eigenfunction of
the p-laplacian and h is the solution to the differential equation

R (t) = q(h(t))g(h(t)),
h>0, h' >0,
h(0) = h'(0) = 0.

where ¢ : (0,+00) — (0, +00) is a non-increasing and Hélder continuous function,
and g(s) behaves like S%, for some G > 0.

Acknowledgments. I am deeply grateful to Professors B. Abdellaoui and V. Rad-
ulescu, and to the anonymous referees for providing constructive comments that
help in improving the contents of this article.
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