Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 32, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF SOLUTIONS TO QUASILINEAR ELLIPTIC
 PROBLEMS WITH NONLINEARITY AND ABSORPTION-REACTION GRADIENT TERM

SOFIANE EL-HADI MIRI

Abstract. In this article we study the quasilinear elliptic problem

$$
\begin{gathered}
-\Delta_{p} u= \pm|\nabla u|^{\nu}+f(x, u), \quad \text { in } \Omega, \\
u \geq 0 \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega,
\end{gathered}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded regular domain, $p>1$ and $0<\nu \leq p$. Moreover, f is a nonnegative function verifying suitable hypotheses. The main goal of this work is to analyze the interaction between the gradient term and the function f to obtain existence results.

1. Introduction

In this article we will discuss existence results for a class of quasilinear elliptic problems in the form

$$
\begin{gather*}
-\Delta_{p} u= \pm|\nabla u|^{\nu}+f(x, u) \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain and $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), p>1$, is the classical p-Laplace operator and $0<\nu \leq p$.

The function $f: \bar{\Omega} \times[0,+\infty) \rightarrow[0,+\infty)$ is assumed to be Hölder continuous, non-decreasing, and such that

$$
\begin{align*}
& \text { the function } t \mapsto \frac{f(x, t)}{t^{p-1}} \text { is non-increasing for all } x \in \bar{\Omega}, \tag{1.2}\\
& \lim _{t \rightarrow 0} \frac{f(x, t)}{t^{p-1}}=+\infty \text { and } \lim _{t \rightarrow+\infty} \frac{f(x, t)}{t^{p-1}}=0 \quad \text { uniformly for } x \in \bar{\Omega} . \tag{1.3}\\
& f(x, 0) \neq 0 \tag{1.4}
\end{align*}
$$

Notice that problems with gradient term are widely studied in the literature. We can cite the leading works of Boccardo, Gallouët, Murat and their collaborators, see for instance [7, [9] and [8] and the references therein. For some recent works related to our problem, we can cite [1, 2, 4, 21, 24, 5, 25].

[^0]In the particular case $p=2$, problem 1.1 is related to the Lane-Emden-Fowler and Emden-Fowler equations, treated in many papers; we particulary cite the works of Radulescu, and his collaborators [13, 14, 15] and more recently [12, 16] and the references therein. For the case without the absence of the gradient term, we refer to 18 .

When the nonlinearity is considered as an absorption term we cite 11 where the authors prove the existence of solution even when Ω is of infinite measure, and in the same direction we cite 10 .

The extension to the p-laplacian, of the previous results obtained in the case of the laplacian, especially when using a sub-supersolution method, has a major difficulty: no general comparison principle for the operator $-\Delta_{p} u \pm|\nabla u|^{\nu}$ exist at our knowledge, and there are only few partial results in this direction. In addition, the behavior of the operator changes when considering the cases $p<2$ and $p>2$. We refer the reader to [22] for a general discussion about this fact.

2. Preliminaries

The next comparison principles will be used frequently in this paper, for complete proofs of the first three ones we refer to [22] and we refer to [3] for the last one.

Considering the problem

$$
\begin{gather*}
-\operatorname{div}(a(x, \nabla u))+H(x, \nabla u)=f(x) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{2.1}
\end{gather*}
$$

and having in mind the particular case

$$
\begin{gathered}
-\Delta_{p} u \pm|\nabla u|^{q}=f(x) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

with $q \leq p$ we have the following result.
Theorem 2.1 ([22]). Under the hypotheses: $q>\frac{N(p-1)}{N-1}, 1<p \leq 2$ and

$$
\begin{gather*}
f=f_{1}(x)+\operatorname{div}\left(f_{2}(x)\right) \quad \text { where } f_{1} \in L^{1}(\Omega), f_{2} \in\left(L^{p^{\prime}}(\Omega)\right)^{N} \tag{2.2}\\
{[a(x, \xi)-a(x, \eta)](\xi-\eta) \geq \alpha\left(|\xi|^{2}-|\eta|^{2}\right)^{\frac{p-2}{2}}|\xi-\eta|^{2}, \quad \alpha>0} \tag{2.3}\\
a(x, 0)=0 \tag{2.4}\\
|a(x, \xi)| \leq \beta\left(k(x)+|\xi|^{p-1}\right), \quad \beta>0, k(x) \in L^{p^{\prime}}(\Omega) \tag{2.5}\\
|H(x, \xi)-H(x, \eta)| \leq \gamma\left(b(x)+|\xi|^{q-1}+|\eta|^{q-1}\right)|\xi-\eta| \\
\gamma>0, \quad b(x) \in L^{r}(\Omega) \tag{2.6}
\end{gather*}
$$

where

$$
1 \leq q \leq p-1+\frac{p}{N}, \quad r \geq \frac{N(q-(p-1))}{q-1} \quad(\text { with } r=\infty \text { if } q=1)
$$

If u and v are respectively sub- and super-solution of 2.1, such as

$$
\begin{equation*}
(1+|u|)^{\bar{q}-1} u \in W_{0}^{1, p}(\Omega), \quad(1+|v|)^{\bar{q}-1} v \in W_{0}^{1, p}(\Omega), \quad \bar{q}=\frac{(N-p)(q-(p-1))}{p(p-q)} \tag{2.7}
\end{equation*}
$$

then $u \leq v$ in Ω.

Theorem 2.2 (22]). Under the hypotheses: $q<\frac{N(p-1)}{N-1}, 2-\frac{1}{N}<p \leq 2$, 2.2, 2.3, 2.4, 2.5, and

$$
\begin{gather*}
|H(x, \xi)-H(x, \eta)| \leq \gamma\left(b(x)+|\xi|^{q-1}+|\eta|^{q-1}\right)|\xi-\eta|, \\
\gamma>0, b(x) \in L^{r}(\Omega) \tag{2.8}\\
r>\frac{N(p-1)}{N(p-1)-(N-1)}, \quad 1 \leq q<\frac{N(p-1)}{(N-1)}
\end{gather*}
$$

If u and v are respectively sub- and super-solution of (2.1), then $u \leq v$ in Ω.
Theorem 2.3 ([22]). Under the hypotheses: $\left.p>2, q>\frac{p}{2}+\frac{(p-1)}{N-1}, 2.4\right)$, 2.5), and

$$
\begin{align*}
& {[a(x, \xi)-a(x, \eta)](\xi-\eta) \geq \alpha\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}}|\xi-\eta|^{2}, \quad \alpha>0 } \tag{2.9}\\
&|H(x, \xi)-H(x, \eta)| \leq \gamma\left(b(x)+|\xi|^{q-1}+|\eta|^{q-1}\right)|\xi-\eta|, \quad \gamma>0 \tag{2.10}\\
& b(x) \in L^{N}(\Omega) \quad \text { where } 1 \leq q \leq \frac{p}{2}+\frac{p}{N} \tag{2.11}
\end{align*}
$$

If u and v are respectively sub- and super-solution of (2.1), such as

$$
\begin{equation*}
(1+|u|)^{\bar{q}-1} u \in W_{0}^{1, p}(\Omega), \quad(1+|v|)^{\bar{q}-1} v \in W_{0}^{1, p}(\Omega), \quad \bar{q}=\frac{(N-p)\left(q-\frac{p}{2}\right)}{p\left(\frac{p}{2}+1-q\right)} \tag{2.12}
\end{equation*}
$$

then $u \leq v$ in Ω.
Theorem 2.4 (3). Assume that $1<p$ and let f be a non-negative continuous function such that $\frac{f(x, s)}{s^{p-1}}$ is decreasing for $s>0$. Suppose that $u, v \in W_{0}^{1, p}(\Omega)$ are such that

$$
\begin{align*}
& -\Delta_{p} u \geq f(x, u), \quad u>0 \text { in } \Omega \\
& -\Delta_{p} v \leq f(x, v), \quad v>0 \text { in } \Omega \tag{2.13}
\end{align*}
$$

Then $u \geq v$ in Ω.
Since we are dealing with a generalized notion of solution, we recall here the definition of entropy solutions for elliptic problems.
Definition 2.5. Let u be a measurable function. We say that $u \in \mathcal{T}_{0}^{1, p}(\Omega)$ if $T_{k}(u) \in W_{0}^{1, p}(\Omega)$ for all $k>0$, where

$$
T_{k}(s)= \begin{cases}k \operatorname{sgn}(s) & \text { if }|s| \geq k \tag{2.14}\\ s & \text { if }|s| \leq k\end{cases}
$$

Let $H \in L^{1}(\Omega)$. Then $u \in \mathcal{T}_{0}^{1, p}(\Omega)$ is an entropy solution to the problem

$$
\begin{gather*}
-\Delta_{p} u=H \quad \text { in } \Omega \tag{2.15}\\
\left.u\right|_{\partial \Omega}=0
\end{gather*}
$$

if for all $k>0$ and all $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$, we have

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u, \nabla\left(T_{k}(u-v)\right)\right\rangle=\int_{\Omega} H T_{k}(u-v) . \tag{2.16}
\end{equation*}
$$

We refer to [6] and [17] for more properties of entropy solutions. It is clear that if u is an entropy solution to problem (1.1), then u is a distributional solution to (1.1).

3. The absorption Case

In this section we consider the problem

$$
\begin{gather*}
-\Delta_{p} u+|\nabla u|^{\nu}=f(x, u) \quad \text { in } \Omega, \\
u>0 \tag{3.1}\\
\text { in } \Omega \\
u=0 \\
\text { on } \partial \Omega .
\end{gather*}
$$

Theorem 3.1. Assume that the assumptions on f hold. If $0<\nu \leq p$, then problem (3.1) has at least one entropy solution $u \in W_{0}^{1, p}(\Omega)$.

Proof. We split the proof into several steps.
Step 1: Construction of supersolution and subsolution. To obtain the existence result we will use sub-supersolution argument. Let us consider the problem

$$
\begin{gather*}
-\Delta_{p} w=f(x, w) \quad \text { in } \Omega, \\
w>0 \quad \text { in } \Omega \tag{3.2}\\
w=0 \\
\text { on } \partial \Omega
\end{gather*}
$$

Then under the hypothesis on f, problem (3.2) possesses a unique solution w which is a supersolution of (3.1). For the subsolution to problem (3.1), we consider $\underline{u}=0$.

Finally by Theorem 2.4 we reach that $\underline{u} \leq w$. To obtain the existence result we use a monotonicity argument. Since no general comparison principle is known for this kind of problems, we will consider different values of p.

The following steps 2,3 and 4 are devoted to proving the existence of solution in the singular case, namely $p<2$, but for different ranges of p and ν.
Step 2: Existence result for $\frac{2 N}{N+1} \leq p<2$ and $1 \leq \nu \leq p-1+\frac{p}{N}$. In this case, by [22, Theorems 3.1 and 3.2] we know that a comparison principle holds for the operator $-\Delta_{p} u+|\nabla u|^{\nu}$ in the space $W_{0}^{1, p}(\Omega)$.

Then, we define the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ as follows: $u_{0}=\underline{u}$ and for $n \geq 1, u_{n}$ is the solution to problem

$$
\begin{gather*}
-\Delta_{p} u_{n}+\left|\nabla u_{n}\right|^{\nu}=f\left(x, u_{n-1}\right) \quad \text { in } \Omega \\
u_{n}>0 \quad \text { in } \Omega \tag{3.3}\\
u_{n}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

We claim that the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is increasing in n and for all $n \geq 0, u_{n} \leq w$. Notice that the last statement follows easily from Theorem 2.4. To prove the monotonicity of $\left\{u_{n}\right\}_{n \in \mathbb{N}}$, we will use the comparison result obtained in [22]. It is clear that u_{1} solves

$$
-\Delta_{p} u_{1}+\left|\nabla u_{1}\right|^{\nu}=f\left(x, u_{0}\right)
$$

By the definition of u_{0}, we obtain that

$$
-\Delta_{p} u_{1}+\left|\nabla u_{1}\right|^{\nu} \geq-\Delta_{p} u_{0}+\left|\nabla u_{0}\right|^{\nu}
$$

Thus, by the comparison principle in [22], we reach $u_{1} \geq u_{0}$. Let us show that $u_{2} \geq u_{1}$. As above, u_{2} satisfies

$$
-\Delta_{p} u_{2}+\left|\nabla u_{2}\right|^{\nu}=f\left(x, u_{1}\right)
$$

Since f is a nondecreasing function, it follows that

$$
-\Delta_{p} u_{2}+\left|\nabla u_{2}\right|^{\nu} \geq-\Delta_{p} u_{1}+\left|\nabla u_{1}\right|^{\nu}
$$

Hence $u_{2} \geq u_{1}$. Therefore, the result follows by induction and then the claim follows.

Thus, using u_{n} as a test function in (3.3) and by the non decreasing property of f, we obtain that $\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$. Hence we obtain the existence of $u \in W_{0}^{1, p}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega)$ and $u_{n} \rightarrow u$ strongly in $L^{\sigma}(\Omega)$ for all $\sigma<p^{*}$.

Since $\underline{u} \leq u \leq w \in L^{\infty}(\Omega)$, it follows that $u \in L^{\infty}(\Omega)$ and $u_{n} \rightarrow u$ strongly in $L^{\sigma}(\Omega)$ for all $\sigma \geq 1$.

Therefore, to have the existence result, we just have to prove that $\left|\nabla u_{n}\right|^{\nu} \rightarrow$ $|\nabla u|^{\nu}$ in $L^{1}(\Omega)$. By the hypothesis on ν, we can see that $\nu<p$, then using $\left(u-u_{n}\right)$ as a test function in (3.3), it follows that

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla u d x-\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x+\int_{\Omega}\left|\nabla u_{n}\right|^{\nu}\left(u-u_{n}\right) d x \\
& =\lambda \int_{\Omega} f\left(x, u_{n-1}\right)\left(u-u_{n}\right) d x
\end{aligned}
$$

By the Dominated Convergence Theorem and as f is assumed to be Hölder continuous, we obtain

$$
\int_{\Omega} f\left(x, u_{n-1}\right)\left(u-u_{n}\right) d x=o(1)
$$

Now using Hölder inequality and the fact that $\nu<p$, we obtain

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{\nu}\left(u-u_{n}\right) d x \leq\left(\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x\right)^{\nu / p}\left(\int_{\Omega}\left(u-u_{n}\right)^{\frac{p}{p-\nu}} d x\right)^{\frac{p-\nu}{p}}=o(1) .
$$

We obtain

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla u d x-\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x=o(1) .
$$

Then, using Young inequality there results

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x & =\int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla u d x+o(1) \\
& \leq \frac{p-1}{p} \int_{\Omega}\left|\nabla u_{n}\right|^{p}+\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x+o(1)
\end{aligned}
$$

Thus,

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq \int_{\Omega}|\nabla u|^{p} d x+o(1) .
$$

It is clear that

$$
\int_{\Omega}|\nabla u|^{p} d x \leq \liminf \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq \limsup \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq \int_{\Omega}|\nabla u|^{p} d x .
$$

Therefore, $\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \rightarrow\|u\|_{W_{0}^{1, p}(\Omega)}$ and then $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega)$. Hence the existence result follows in this case.
Step 3: Existence result for $\frac{2 N}{N+1} \leq p<2$ and $p-1+\frac{p}{N} \leq \nu \leq p$. In this case, to get a monotone sequence, we have to change the approximation. Since $\frac{2 N}{N+1} \leq p$ then $\nu \geq 1$.

For fixed $n \in \mathbb{N}^{*}$, we define the sequence $\left\{v_{n, k}\right\}_{k \in \mathbb{N}}$ as follow: $v_{n, 0}=\underline{u}$ and for $k \geq 1, v_{n, k}$ is the solution to problem

$$
\begin{gather*}
-\Delta_{p} v_{k, n}+\frac{\left|\nabla v_{k, n}\right|^{\nu}}{1+\frac{1}{n}\left|\nabla v_{k, n}\right|^{\nu}}=f\left(x, v_{k-1, n}\right) \quad \text { in } \Omega \\
v_{k, n}>0 \tag{3.4}\\
v_{k, n}=0 \quad \text { in } \Omega \\
\text { on } \partial \Omega
\end{gather*}
$$

Let us begin by proving that the sequence $\left\{v_{k, n}\right\}_{k \in \mathbb{N}}$ is increasing in k and that $v_{k, n} \leq w$, for all $k \geq 0$. For simplicity, we set

$$
H_{n}(\xi)=\frac{|\xi|^{\nu}}{1+\frac{1}{n}|\xi|^{\nu}} \quad \text { where } \xi \in \mathbb{R}^{N}
$$

It is clear that $v_{1, n}$ solves

$$
-\Delta_{p} v_{1, n}+H_{n}\left(\nabla v_{1, n}\right)=f\left(x, v_{0, n}\right)
$$

By the definition of $v_{0, n}$, we obtain that

$$
-\Delta_{p} v_{1, n}+H_{n}\left(\nabla v_{1, n}\right) \geq-\Delta_{p} v_{0, n}+H_{n}\left(\nabla v_{0, n}\right)
$$

It is clear that H_{n} satisfies the hypotheses of the comparison principle in 22. Hence we reach $v_{1, n} \geq v_{0, n}$. In the same way, and using an induction argument, we conclude that $v_{k, n} \geq v_{k-1, n}$ for all $k \in \mathbb{N}^{*}$.

Now, as in the proof of the previous step, using $v_{k, n}$ as a test function in (3.4) and by the hypotheses on f, we obtain that $\left\|v_{k, n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$. Thus we obtain the existence of $u_{n} \in W_{0}^{1, p}(\Omega)$ such that $v_{k, n} \rightharpoonup u_{n}$ weakly in $W_{0}^{1, p}(\Omega)$. As in the previous step, we can show that $v_{k, n} \rightarrow u_{n}$ strongly in $W_{0}^{1, p}(\Omega)$.

Note that by the previous computation we obtain easily that

$$
v_{k, n} \geq v_{k, n+1} \quad \text { for all } k \geq 1
$$

Hence we conclude that u_{n} is the minimal solution to problem

$$
\begin{gather*}
-\Delta_{p} u_{n}+\frac{\left|\nabla u_{n}\right|^{\nu}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{\nu}}=f\left(x, u_{n}\right) \quad \text { in } \Omega \\
u_{n}>0 \quad \text { in } \Omega \tag{3.5}\\
u_{n}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

with $u_{n} \leq u_{n+1}$ for all $n \geq 1$. It is clear that $\underline{u} \leq u_{n} \leq w \in L^{\infty}(\Omega)$. Then, as above using u_{n} as a test function in (3.5), we reach that $\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$ and thus, we obtain the existence of $u \in W_{0}^{1, p}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega)$.

If $\nu<p$, then we follow the above computation to reach that $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega)$ and the existence result holds.

If $\nu=p$, then as in Step 2, we obtain that

$$
f\left(x, u_{n-1}\right) \rightarrow f(x, u) \quad \text { strongly in } L^{1}(\Omega)
$$

We set $k_{n}(x) \equiv f\left(x, u_{n-1}\right)$, then

$$
-\Delta_{p} u_{n}+\left|\nabla u_{n}\right|^{p}=k_{n}(x)
$$

with $k_{n} \rightarrow k \equiv f(x, u)$ strongly in $L^{1}(\Omega)$. Therefore, using the result of [23], we conclude that $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega)$ and the result follows.

Step 4: Existence result for $\frac{2 N}{N+1} \leq p<2$ and $0<\nu \leq 1$. In this case, we adopt a new approximation of the gradient term, namely we set

$$
Q_{n}(\xi)=\left(|\xi|+\frac{1}{n}\right)^{\nu} \quad \text { where } \xi \in \mathbb{R}^{N}
$$

For fixed $n \in \mathbb{N}^{*}$, we define the sequence $\left\{v_{n, k}\right\}_{k \in \mathbb{N}}$ as follows: $v_{n, 0}=\underline{u}$ and for $k \geq 1, v_{n, k}$ is the solution to problem

$$
\begin{gather*}
-\Delta_{p} v_{k, n}+Q_{n}\left(\nabla v_{k, n}\right)=f\left(x, v_{k-1, n}\right) \quad \text { in } \Omega \\
v_{k, n}>0 \quad \text { in } \Omega \tag{3.6}\\
v_{k, n}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

As above we have $v_{k, n} \leq w$ for all $k \geq 0$. It is clear that Q_{n} satisfies the condition of [22, Theorems 3.1 and 3.2].

We claim that the sequence $\left\{v_{k, n}\right\}_{k \in \mathbb{N}}$ is increasing in k, for all fixed n. To prove the claim, we observe that $v_{1, n}$ solves

$$
-\Delta_{p} v_{1, n}+Q_{n}\left(\nabla v_{1, n}\right)=f\left(x, v_{0, n}\right)
$$

By the definition of $v_{0, n}$, we obtain that

$$
-\Delta_{p} v_{1, n}+Q_{n}\left(\nabla v_{1, n}\right) \geq-\Delta_{p} v_{0, n}+Q_{n}\left(\nabla v_{0, n}\right)
$$

Hence, using again the comparison principle in [22], we reach that $v_{1, n} \geq v_{0, n}$. In the same way, using an iteration argument, we conclude that $v_{k, n} \geq v_{k-1, n}$ for all $k \in \mathbb{N}^{*}$ and then the claim follows.

Now for fixed k, we claim that $v_{k, n} \leq v_{k, n+1}$. Using the non decreasing property and the regularity of f we see that the claim follows if we can prove that $v_{1, n} \leq$ $v_{1, n+1}$.

By the definition of $v_{1, n}$ and $v_{1, n+1}$, we have
$-\Delta_{p} v_{1, n}+Q_{n}\left(\nabla v_{1, n}\right)=-\Delta_{p} v_{1, n+1}+Q_{n+1}\left(\nabla v_{1, n+1}\right) \leq-\Delta_{p} v_{1, n+1}+Q_{n}\left(\nabla v_{1, n+1}\right)$.
Thus, using the comparison principle of [22], we conclude that $v_{1, n} \leq v_{1, n+1}$. The general result follows by induction.

Now, as in the previous steps, using $v_{k, n}$ as a test function in 3.6 and by the Hölder continuity of f, we obtain that $\left\|v_{k, n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$. Thus, we obtain the existence of $u_{n} \in W_{0}^{1, p}(\Omega)$ such that $v_{k, n} \rightharpoonup u_{n}$ weakly in $W_{0}^{1, p}(\Omega)$ as $k \rightarrow \infty$. The compactness arguments used in the first step allow us to prove that $v_{k, n} \rightarrow u_{n}$ strongly in $W_{0}^{1, p}(\Omega)$. Hence, we find that u_{n} is the minimal solution to problem

$$
\begin{gather*}
-\Delta_{p} u_{n}+Q_{n}\left(\nabla u_{n}\right)=f\left(x, u_{n}\right) \quad \text { in } \Omega \\
u_{n}>0 \tag{3.7}\\
u_{n}=0 \quad \text { in } \Omega \\
\text { on } \partial \Omega
\end{gather*}
$$

with $u_{n} \leq u_{n+1}$ for all $n \geq 1$. It is clear that $\underline{u} \leq u_{n} \leq w \in L^{\infty}(\Omega)$. Then, as above, using u_{n} as a test function in (3.6) we obtain easily that $\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$. Thus, we obtain the existence of $u \in W_{0}^{1, p}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega)$. Since $\nu<p$, we conclude that $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega)$ as above, and the existence result follows.
Step 5: Existence result for $2<p$ and $\nu \leq p$. To deal with the degenerate case $p>2$, we will make a perturbation in the principal part of the operator, namely
for $\varepsilon>0$, we consider the next approximating problems

$$
\begin{gather*}
-L_{\varepsilon} u+|\nabla u|^{\nu}=f(x, u) \quad \text { in } \Omega, \\
u>0 \quad \text { in } \Omega \tag{3.8}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where

$$
-L_{\varepsilon} u=-\operatorname{div}\left(\left(\varepsilon+|\nabla u|^{2}\right)^{\frac{p-2}{2}} \nabla u\right) .
$$

We begin by proving that problem (3.8) has a minimal solution u_{ε} at least for ε small. Fixed $\varepsilon>0$, then we define w_{ε} to be the unique solution of problem

$$
\begin{gather*}
-L_{\varepsilon} w_{\varepsilon}=f\left(x, w_{\varepsilon}\right) \quad \text { in } \Omega, \\
w_{\varepsilon}>0 \tag{3.9}\\
w_{\varepsilon}=0 \quad \text { in } \Omega \\
\text { on } \partial \Omega
\end{gather*}
$$

(see [19] for the proof of the uniqueness result). It is clear that w_{ε} is a bounded supersolution to $\sqrt{3.8}$ and $\left\|w_{\varepsilon}\right\|_{L^{\infty}} \leq C$ for all $\varepsilon \geq 0$. The function $\underline{u}=0$ is aldo a subsolution of (3.8).

Now, for ε fixed we define the sequence $\left\{v_{n, k}\right\}_{k \in \mathbb{N}}$ as follows: $v_{n, 0}=\underline{u}$ and for $k \geq 1, v_{n, k}$ is the solution to problem

$$
\begin{gather*}
-L_{\varepsilon} v_{k, n}+D_{n}\left(\nabla v_{k, n}\right)=f\left(x, v_{k-1, n}\right) \quad \text { in } \Omega \\
v_{k, n}>0 \quad \text { in } \Omega \tag{3.10}\\
v_{k, n}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where

$$
D_{n}(\xi)= \begin{cases}\frac{\mid \xi \nu^{\nu}}{1+\frac{1}{n}|\xi|^{\nu}} & \text { if } 1<\nu \leq p \\ \left(|\xi|+\frac{1}{n}\right)^{\nu} & \text { if } \nu \leq 1\end{cases}
$$

It is clear that $v_{k, n} \leq w_{\varepsilon}$ for all $k \geq 0$.
We claim that the sequence $\left\{v_{k, n}\right\}_{k \in \mathbb{N}}$ is increasing in k for every fixed n. To prove the claim, we observe that $v_{1, n}$ solves

$$
-L_{\varepsilon} v_{1, n}+D_{n}\left(\nabla v_{1, n}\right)=f\left(x, v_{0, n}\right)
$$

By the definition of $v_{0, n}$, we obtain that

$$
-L_{\varepsilon} v_{1, n}+D_{n}\left(\nabla v_{1, n}\right) \geq-L_{\varepsilon} v_{0, n}+D_{n}\left(\nabla v_{0, n}\right)
$$

Hence, using the comparison principle in [22, Theorem 4.1], we reach that $v_{1, n} \geq$ $v_{0, n}$. In the same way, using an induction argument, we conclude that $v_{k, n} \geq v_{k-1, n}$ for all $k \in \mathbb{N}^{*}$ and then the claim follows.

Using $v_{k, n}$ as a test function in 3.10 we easily get that $\left\|v_{k, n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$. Thus, we obtain the existence of $u_{n} \in W_{0}^{1, p}(\Omega)$ such that $v_{k, n} \rightharpoonup u_{n}$ weakly in $W_{0}^{1, p}(\Omega)$. By the compactness argument used in the Step 2, we obtain that $v_{k, n} \rightarrow u_{n}$ strongly in $W_{0}^{1, p}(\Omega)$ and u_{n} is the minimal solution to the problem

$$
\begin{gather*}
-L_{\varepsilon} u_{n}+D_{n}\left(\nabla u_{n}\right)=f\left(x, u_{n}\right) \quad \text { in } \Omega, \\
u_{n}>0 \quad \text { in } \Omega, \tag{3.11}\\
u_{n}=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

Now, we pass to the limit in n.

Using u_{n} as a test function in (3.11) and as f is assumed to be Hölder continuous, we find that $\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$. Thus, we obtain the existence of $u_{\varepsilon} \in W_{0}^{1, p}(\Omega)$ such that $u_{n} \rightharpoonup u_{\varepsilon}$ weakly in $W_{0}^{1, p}(\Omega)$.

If $\nu<p$, then using the compactness arguments of Step 2 and by the result of [23], we obtain that $u_{n} \rightarrow u_{\varepsilon}$ strongly in $W_{0}^{1, p}(\Omega)$. Hence it follows that u_{ε} is the minimal solution to problem

$$
\begin{gather*}
-L_{\varepsilon} u_{\varepsilon}+\left|\nabla u_{\varepsilon}\right|^{\nu}=f\left(x, u_{\varepsilon}\right) \quad \text { in } \Omega, \\
u_{\varepsilon}>0 \quad \text { in } \Omega, \tag{3.12}\\
u_{\varepsilon}=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

If $\nu=p$, then by the argument of the last part of Step 3 and using the compactness result of [23], we reach the strong convergence of $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ in $W_{0}^{1, p}(\Omega)$. Thus, we obtain a minimal solution to (3.12) also in this case.

To finish, we just have to pass to the limit in ε. Notice that, in general, the sequence $\left\{u_{\varepsilon}\right\}_{\varepsilon}$ is not necessarily monotone in ε. Using u_{ε} as a test function in (3.12) we reach that $\left\|u_{\varepsilon}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$ and then $u_{\varepsilon} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega)$. Since $\underline{u} \leq u_{\varepsilon} \leq w_{\varepsilon} \leq C$, then we easily get that

$$
f\left(x, u_{\varepsilon}\right) \rightarrow f(x, u) \text { strongly in } L^{1}(\Omega)
$$

Since $\nu<p$, then using a variation of the compactness result of [23], there results that $u_{\varepsilon} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega)$. Hence u solves

$$
\begin{gather*}
-\Delta_{p} u+|\nabla u|^{\nu}=f(x, u) \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{3.13}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

and the existence result follows. It is clear that $\underline{u} \leq u \leq w$.

4. The reaction case

In this section, we study the reaction case, namely we consider the problem

$$
\begin{gather*}
-\Delta_{p} u=f(x, u)+|\nabla u|^{\nu} \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{4.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

with $\nu<p-1$. The main existence result reads as follows.
Theorem 4.1. Suppose that the hypotheses made on f hold. Then, problem 4.1. has at least one entropy solution.
Proof. As in the proof of Theorem 3.1. problem 4.1 has a subsolution $\underline{u}=0$. To obtain a supersolution, we first consider problem

$$
\begin{gather*}
-\Delta_{p} u=f(x, u)+1 \quad \text { in } \Omega \\
u>0 \tag{4.2}\\
u=0 \quad \text { in } \Omega \\
u
\end{gather*}
$$

By the assumptions on f, we reach that problem $\sqrt{4.2}$ has a unique positive solution $v \in \mathcal{C}^{1, \sigma}(\bar{\Omega})$ with $\sigma<1$. Then for $C>1$ we have

$$
-\Delta_{p}(C v)=C^{p-1} f(x, v)+C^{p-1}
$$

By hypothesis 1.2 , we obtain $-\Delta_{p}(C v) \geq f(x, C v)+C^{p-1}$.

Since $\nu<p-1$, one can always choose C large enough to have $C^{p-1}>C^{\nu}|\nabla v|^{\nu}+$ 1. Thus

$$
-\Delta_{p}(C v) \geq f(x, C v)+|\nabla C v|^{\nu}+1
$$

and then $\bar{u}=C v$ is a supersolution to problem 4.1.
To prove the existence, we follow the arguments used in the previous section. By the comparison principle in Theorem 2.4 we have that $\underline{u} \leq \bar{u}$.

First case: $\frac{2 N}{N+1} \leq p<2$ and $\nu<p-1$. Since $p<2$, then $\nu<1$, thus as in the proof of Theorem 3.1, we obtain the existence of u_{n}, the minimal solution to problem

$$
\begin{gather*}
-\Delta_{p} u_{n}=f\left(x, u_{n}\right)+Q_{n}\left(\nabla u_{n}\right) \quad \text { in } \Omega \\
u_{n}>0 \quad \text { in } \Omega \tag{4.3}\\
u_{n}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where

$$
Q_{n}(\xi)=\left(|\xi|+\frac{1}{n}\right)^{\nu}, \quad \text { for } \xi \in \mathbb{R}^{N}
$$

It is clear that $\underline{u} \leq u_{n} \leq \bar{u}$. Using u_{n} as a test function in 4.3 and by the fact that $\nu<p-1$, it follows that $\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$.

Then we obtain the existence of $u \in W_{0}^{1, p}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega)$. Notice that $\nu<p$, hence by the previous compactness arguments we can prove that $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega)$ and the existence result follows.

Second case: $2<p$ and $\nu<p-1$. For fixed $\varepsilon>0$ small, we claim that problem

$$
\begin{gather*}
-L_{\varepsilon} u=f(x, u)+|\nabla u|^{\nu} \quad \text { in } \Omega, \\
u>0 \quad \text { in } \Omega \tag{4.4}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where

$$
-L_{\varepsilon} u=-\operatorname{div}\left(\left(\varepsilon+|\nabla u|^{2}\right)^{\frac{p-2}{2}} \nabla u\right),
$$

has a minimal solution u_{ε}, at leat for ε small such that $\underline{u} \leq u_{\varepsilon} \leq \bar{u}$.
Since $\underline{u}, \bar{u} \in \mathcal{C}^{1, \alpha}(\bar{\Omega})$, then for ε small we reach that \underline{u} (respectively \bar{u}) is a subsolution (respectively supersolution) to (4.4).

Fix an ε small enough so that the previous statement still holds true, and define

$$
D_{n}(\xi)= \begin{cases}\frac{\mid \xi \nu^{\nu}}{1+\frac{1}{n}|\xi|^{\nu}} & \text { if } 1<\nu<p-1 \\ \left(|\xi|+\frac{1}{n}\right)^{\nu} & \text { if } \nu \leq 1\end{cases}
$$

Let u_{n} be the minimal solution to problem

$$
\begin{gather*}
-L_{\varepsilon} u_{n}=f\left(x, u_{n}\right)+D_{n}\left(\nabla u_{n}\right) \quad \text { in } \Omega, \\
v_{k, n}>0 \quad \text { in } \Omega, \tag{4.5}\\
v_{k, n}=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

Notice that $u_{n}=\lim _{k \rightarrow \infty} v_{n, k}$ where the sequence $\left\{v_{n, k}\right\}_{k \in \mathbb{N}}$ is defined as follows: $v_{n, 0}=\underline{u}$ and for $k \geq 1, v_{k, n}$ is the solution to problem

$$
\begin{gathered}
-L_{\varepsilon} v_{k, n}=f\left(x, v_{k-1, n}\right)+D_{n}\left(\nabla v_{k, n}\right) \quad \text { in } \Omega \\
v_{k, n}>0 \quad \text { in } \Omega \\
v_{k, n}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Using u_{n} as a test function in 4.5 and as f is a nondecreasing Hölder continuous function, we reach $\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$. Thus, we obtain the existence of $u_{\varepsilon} \in W_{0}^{1, p}(\Omega)$ such that $u_{n} \rightharpoonup u_{\varepsilon}$ weakly in $W_{0}^{1, p}(\Omega)$. By the compactness argument in Step 2 of Theorem 3.1 we obtain that $u_{n} \rightharpoonup u_{\varepsilon}$ strongly in $W_{0}^{1, p}(\Omega)$ and u_{ε} is the minimal solution to (4.4). It is clear that $\underline{u} \leq u_{\varepsilon} \leq \bar{u}$, and the claim follows.

The last step is to pass to the limit in ε. Using u_{ε} as a test function in (4.4), we reach that $\left\|u_{\varepsilon}\right\|_{W_{0}^{1, p}(\Omega)} \leq C$ and then $u_{\varepsilon} \rightarrow u$ weakly in $W_{0}^{1, p}(\Omega)$.

Since $\nu<p$, a modification of the arguments used in the proof of Theorem 3.1, allows us to obtain that $u_{\varepsilon} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega)$. Thus u solves

$$
\begin{gather*}
-\Delta_{p} u=f(x, u)+|\nabla u|^{\nu} \quad \text { in } \Omega, \\
u>0 \quad \text { in } \Omega \tag{4.6}\\
u=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

Remark 4.2. Observe that the condition 1.4 imposed on f to ensure that 0 is a strict subsolution, is not necessary, indeed one can drope it, and consider as subsolution the function introduced in [12], in [19] and in [20], defined by $\underline{u}=M h\left(c \varphi_{1}\right)$ where M and c are positive constants to be chosen, φ_{1} is the first eigenfunction of the p-laplacian and h is the solution to the differential equation

$$
\begin{gathered}
h^{\prime \prime}(t)=q(h(t)) g(h(t)), \\
h>0, \quad h^{\prime}>0, \\
h(0)=h^{\prime}(0)=0 .
\end{gathered}
$$

where $q:(0,+\infty) \rightarrow(0,+\infty)$ is a non-increasing and Hölder continuous function, and $g(s)$ behaves like $\frac{1}{s^{\beta}}$, for some $\beta>0$.
Acknowledgments. I am deeply grateful to Professors B. Abdellaoui and V. Radulescu, and to the anonymous referees for providing constructive comments that help in improving the contents of this article.

References

[1] B. Abdellaoui; Multiplicity result for quasilinear elliptic problems with general growth in the gradient, Advanced Nonlinear Studies 8 (2008), 289-302.
[2] B. Abdellaoui, A. Dall'Aglio, I. Peral; Some remarks on elliptic problems with critical growth in the gradient, J. Differential Equations 222 (2006), 21-62.
[3] B. Abdellaoui, I. Peral; Existence and non existence results for quasilinear elliptic equations involving the p-laplacian with a critical potential. Annali di Matematica, 182 (2003), 247-270.
[4] B. Abdellaoui, I. Peral, A. Primo; Breaking of resonance and regularizing effect of a first order term in some elliptic equations, Ann. I. H. Poincaré-AN 25 (2008), 969-985.
[5] C. Azizieh; Some results on positive solutions of equations including the p-Laplacian operator, Nonlinear Analysis, 55, 191-207, 2003.
[6] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vazquez; An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 22 (1995), 241-273.
[7] L. Boccardo, T. Gallouët, L. Orsina; Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math. 73 (1997), 203-223.
[8] L. Boccardo, T. Gallouët, F. Murat; A unified representation of two existence results for problems with natural growth, Research Notes in Mathematics 296 (1993), 127-137.
[9] L. Boccardo, F. Murat, J. P. Puel; Existence des solutions non bornées pour certaines équations quasilinéaires, Portugal Math 41 (1982), 507-534.
[10] L. Boccardo, M. M. Porzio; Quasilinear elliptic equations with subquadratic growth, Journal of Differential Equations 229 (1), (2006) pp. 367-388
[11] A. Dall'Aglio, V. De Cicco, D. Giachetti, J.-P. Puel; Nonlinear elliptic equations with natural growth in general domains, Annali di Matematica Pura e Applicata, Vol. 181,(2002), pp. 407426.
[12] L. Dupaigne, M. Ghergu, V. Radulescu; Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. 87 (2007), 563-581.
[13] M. Ghergu, V. Radulescu; Bifurcation ad asymptotics for the Lane-Emden-Fowler equation, C. R. Acad. Sci. Paris, Sér. I 337 (2003), 259-264.
[14] M. Ghergu, V. Radulescu; Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term, J. Math. Anal. Appl. 333 (2007), 265-273.
[15] M. Ghergu, V. Radulescu; Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, in: Oxford Lecture Series in Mathematics and Its Applications, vol. 37, The Clarendon Press, Oxford University Press, (2008).
[16] R. Kajikiya; Sobolev norm estimates of solutions for the sublinear Emden-Fowler equation, Opuscula Math. 33 (2013), no. 4, 713-723.
[17] C. Leone, A. Porretta; Entropy solutions for nonlinear elliptic equations in L^{1}, Nonlinear Anal. T.M.A 32, (1998), 325-334.
[18] P. Lindqvist; On the equation $\Delta_{p} u+\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc. 109, no. 1 (1990), 157-164.
[19] S. E. H. Miri; Quasilinear elliptic problems with general growth and nonlinear term having singular behavior, Advanced Nonlinear Studies. 12 (2012), 19-48.
[20] S. E. H. Miri; Problèmes elliptiques et paraboliques avec terme singulier. Ph. D. diss., 2012.
[21] A. Perrotta, A. Primo; Regularizing effect of a gradient term in problem involving the pLaplacian Operator, Advanced nonlinear studies, 11 (2011), 221-231.
[22] A. Porretta; On the comparison principle for p-Laplace type operators with first order terms, Resultsand developments, Quaderni di Matematica 23, Department of Mathematics, Seconda Universit'a di Napoli, Caserta, 2008.
[23] A. Porretta; Nonlinear equations with natural growth terms and measure data, 2002-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 09 2002, 183-202.
[24] D. Ruiz; A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations 199 (1) (2004), 96-114.
[25] H. Zou; A priori estimates and existence for quasi-linear elliptic equations, Calc. Var. 33 (2008), 417-437.

Sofiane El-Hadi Miri
Université de Tlemcen, Faculté de Technologie, BP 230, Tlemcen 13000, Algérie.
Laboratoire D'Analyse Non-Linéaire et Mathématiques Appliquées, Université de Tlemcen, BP 119. Tlemcen, Algérie

E-mail address: mirisofiane@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35D05, 35D10, 35J25, 35J70, 46E30, 46E35.
 Key words and phrases. Quasi-linear elliptic problems; entropy solution; general growth. (C) 2014 Texas State University - San Marcos.

 Submitted January 14, 2013. Published Janaury 27, 2014.

