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EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL
EXPONENTIAL N-LAPLACIAN SYSTEMS

XIAOZHI WANG

Abstract. In this article we consider cross critical exponential N -Laplacian

systems. Using an energy estimate on a bounded set and the Ekeland vari-
ational principle, we prove the existence of a nontrivial weak solution, for a

parameter large enough.

1. Introduction

Let Ω be a bounded smooth domain in RN and N ≥ 2. Firstly we consider the
problem

−∆Nu = au|u|N−2 + bu|u|
N−4

2 |v|N/2 + du(N |u|N−2

+
α0N

N − 1
|u|

N2−2N+2
N−1 )|v|N exp{α0|u|

N
N−1 + β0|v|

N
N−1 } in Ω,

−∆Nv = bv|v|
N−4

2 |u|N/2 + cv|v|N−2 + dv(N |v|N−2

+
β0N

N − 1
|v|

N2−2N+2
N−1 )|u|N exp{α0|u|

N
N−1 + β0|v|

N
N−1 } in Ω,

u = 0, v = 0 on ∂Ω,

(1.1)

where a, b, c, d, α0, β0 are real constants and α0, β0 > 0. For similar problem, to our
knowledge, de Figueiredo, do O and Ruf [3] firstly discussed the coupled system of
exponential type in R2

−∆u = g(v) in Ω,

−∆v = f(u) in Ω,
u = 0, v = 0 on ∂Ω,

(1.2)

where f(u), g(v) behave like exp{α|u|2} and exp{α|v|2} respectively for some α >
0 at infinity. They obtained the existence of the positive solution by a linking
theorem in Hilbert space. Recently, Lam and Lu [5] extended this existence result of
problem (1.2) on the condition that the nonlinear terms satisfy a weak Ambrosetti-
Rabinowitz condition. Furthermore, the author [9] proved a similar result for a class
of cross critical exponential system even if these critical nonlinear terms without
Ambrosetti-Rabinowitz condition. For further and recent researches on exponential
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system, we refer to [4, 7, 8] and the references therein. Our main propose of this
article is to study a class nonuniform critical exponential terms similar to (1.1),
which weaken the critical assumptions used in [9], and further elaborate the idea of
[9] that proper energy estimate guarantees the nontrivial weak solutions for some
critical growth systems.

In the last section, we will extend this existence result to a wider class of nonlinear
terms with cross critical growth. More exactly, we study the problem

−∆Nu = a|u|N−2u+ bu|u|N/2−2|v|N/2 + df(x, u, v) in Ω,

−∆Nv = bv|v|N/2−2|u|N/2 + c|v|N−2v + dg(x, u, v) in Ω,
u = 0, v = 0 on ∂Ω,

(1.3)

where a, b, c, d are constants and f(x, u, v), g(x, u, v) with critical growth at α0, β0 >
0 respectively. Here we say f(x, u, v) and g(x, u, v) have critical growth at α0, β0

respectively, if there exist positive constants α0, β0 such that: For any v 6= 0,

lim
u→∞

|f(x, u, v)|
exp{α|u|

N
N−1 }

= 0, ∀α > α0 and lim
u→∞

|f(x, u, v)|
exp{α|u|

N
N−1 }

= +∞, ∀α < α0;

(1.4)
and for any u 6= 0,

lim
v→∞

|g(x, u, v)|
exp{β|v|

N
N−1 }

= 0, ∀β > β0 and lim
v→∞

|g(x, u, v)|
exp{β|v|

N
N−1 }

= +∞, ∀β < β0.

(1.5)
Since the system is not variational in general, we assume that there exists the
primitive F (x, u, v) such that

Fu(x, u, v) = f(x, u, v), Fv(x, u, v) = g(x, u, v).

We weaken some of the critical exponential assumptions used in [9], as follows:
(F1) f(x, t, s), g(x, t, s) : Ω × R × R → R are Carathéodory functions satisfying

f(x, t, 0) = f(x, 0, s) = g(x, t, 0) = g(x, 0, s) = 0;
(F2) F (x, s, t) > 0, for t, s ∈ R+ and a.e. x ∈ Ω.

We note that the above assumptions have been simplified. From the exponential
growth condition, the explicit exponential nonlinear term

F (x, u, v) = h(x, u, v) exp{k(x, u, v)uN/(N−1)} exp{l(x, u, v)vN/(N−1)}

satisfies the Ambrosetti-Rabinowitz condition, where limu→∞ k(x, u, v) = α0,
limv→∞ l(x, u, v) = β0 and h(x, u, v) ≥ 0. It is obvious that

f(x, u, v) = hu(x, u, v) exp{k(x, u, v)uN/(N−1)} exp{l(x, u, v)vN/(N−1)}

+ h(x, u, v)
( N

N − 1
k(x, u, v)u

1
N−1 + ku(x, u, v)u

N
N−1

)
× exp{k(x, u, v)uN/(N−1)} exp{l(x, u, v)vN/(N−1)},

and

g(x, u, v) = hv(x, u, v) exp{k(x, u, v)uN/(N−1)} exp{l(x, u, v)vN/(N−1)}

+ h(x, u, v)
( N

N − 1
k(x, u, v)v

1
N−1 + kv(x, u, v)v

N
N−1

)
× exp{k(x, u, v)uN/(N−1)} exp{l(x, u, v)vN/(N−1)},



EJDE-2014/28 EXISTENCE OF SOLUTIONS 3

Since hu(x, u, v), hv(x, u, v), ku(x, u, v), kv(x, u, v) and h(x, u, v) ≥ 0, there exist
constants C,M > 0 such that for all |u|, |v| ≥ C,

0 < F (x, u, v) ≤M(f(x, u, v) + g(x, u, v)) for a.e. x ∈ Ω;

i. e. the Ambrosetti-Rabinowitz condition is satisfied. On the other hand, with-
out the assumption lim supt→0

F (x,t,s)
|t|N+|s|N = 0, we could not have mountain pass

geometry. A typical example is given as follows:

F (x, u, v) =
√
|u||v| exp{α0e

|u|−3
|u|N/(N−1)} exp{β0e

|v|−3
|v|N/(N−1)}.

Here are the main results of this article for problem (1.1).

Theorem 1.1. Under the assumptions a, c < λ1, there exists a positive constant
Λ∗ such that (1.1) has at least one solution for all d > Λ∗, where λ1 as in (2.2)
and Λ∗ depends on a, b, c, α0, β0, the dimension N and the domain Ω.

The following theorem extends partially the existence result of nontrivial weak
solution presented in [9].

Theorem 1.2. If a, c < λ1 and the assumption (F1)-(F2) are satisfied, there exists
a positive constant Θ∗ such that (1.3) has at least one solution for all d > Θ∗,
where λ1 as in (2.2) and Θ∗ depends on a, b, c, α0, β0, the dimension N and the
domain Ω.

This article is organized as follows. Section 2 contains the preliminaries. Section
3 shows two important estimate results. Section 4 shows the proof of Theorem 1.1.
Section 5 provides a simple proof of Theorem 1.2.

2. Preliminaries

Throughout this paper, we define

‖u‖N =
(∫

Ω

|∇u|N
)1/N

, |u|N =
(∫

Ω

|u|N
)1/N

,

and

I(u, v) =
1
N

∫
Ω

|∇u|N +
1
N

∫
Ω

|∇v|N − a

N

∫
Ω

|u|N − c

N

∫
Ω

|v|N

− 2b
N

∫
Ω

|u|N/2|v|N/2 − d
∫

Ω

|u|N |v|N exp{α0|u|
N
N−1 } exp{β0|v|

N
N−1 }.

(2.1)
It is well known that

λ1 = min
u∈W 1,N

0 (Ω)\{0}

‖u‖NN
|u|NN

> 0, (2.2)

The space X designates the product space W 1,N
0 (Ω) ×W 1,N

0 (Ω) equipped by the
norm ‖(u, v)‖X = ‖u‖N + ‖v‖N . It is well known that the maximal growth of
u ∈ W 1,N

0 (Ω) is of exponential type, see references [6] and [9]. More precisely, we
have the following uniform bound estimate (see also [2]):
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Trudinger-Moser inequality. Let u ∈ W 1,N
0 (Ω), then exp{|u|

N
N−1 } ∈ Lθ(Ω) for

all 1 ≤ θ < ∞. That is to say that for any given θ > 0, any u ∈ W 1,N
0 (Ω) holds

exp{θ|u|
N
N−1 } ∈ L1(Ω). Moreover, there exists a constant C = C(N,α) > 0 such

that

sup
‖u‖N≤1

∫
Ω

exp(α|u|
N
N−1 ) ≤ C|Ω|, if 0 ≤ α ≤ αN , (2.3)

where |Ω| is the N dimension Lebesgue measure of Ω, αN = Nω
1

N−1
N and ωN is

the N − 1 dimension Hausdorff measure of the unit sphere in RN . Furthermore, if
α > αN , then C = +∞. Here and throughout this paper, we often denote various
constants by same C. The reader can recognize them easily. Thanks to Trudinger-
Moser inequality, we know the functional I(u, v) is well defined. Using a standard
argument, we also deduce that the functional I(u, v) is of class C1 and

〈I ′(u, v), (ϕ, φ)〉

=
∫

Ω

|∇u|N−2∇u∇ϕ+
∫

Ω

|∇v|N−2∇v∇φ− a
∫

Ω

|u|N−2uϕ− c
∫

Ω

|v|N−2vφ

− b
∫

Ω

uϕ|u|N/2−2|v|N/2 − b
∫

Ω

vφ|v|N/2−2|u|N/2

− d
∫

Ω

uϕ(N |u|N−2 +
α0N

N − 1
|u|

N2−2N+2
N−1 )|v|N exp{α0|u|

N
N−1 + β0|v|

N
N−1 }

− d
∫

Ω

vφ(N |v|N−2 +
β0N

N − 1
|v|

N2−2N+2
N−1 )|u|N exp{α0|u|

N
N−1 + β0|v|

N
N−1 },

(2.4)
for any ϕ, φ ∈ W 1,N

0 (Ω). Obviously, the critical points of I(u, v) are precisely the
weak solutions for problem (1.1). By the critical assumptions (1.4), (1.5) and (F1),
the functional

J(u, v) =
1
N

∫
Ω

|∇u|N +
1
N

∫
Ω

|∇v|N − 1
N

∫
Ω

a|u|N − 1
N

∫
Ω

c|v|N

− 2
N

∫
Ω

b|u|N/2|v|N/2 − d
∫

Ω

F (x, u, v),

is well defined and of class C1 such that the critical points of J(u, v) are precisely
the weak solutions for problem (1.3); i.e.,

〈J ′(u, v), (ϕ, φ)〉 =
∫

Ω

|∇u|N−2∇u∇ϕ+
∫

Ω

|∇v|N−2∇v∇φ− a
∫

Ω

|u|N−2uϕ

− c
∫

Ω

|v|N−2vφ− b
∫

Ω

uϕ|u|N/2−2|v|N/2

− b
∫

Ω

vφ|v|N/2−2|u|N/2 − d
∫

Ω

f(x, u, v)ϕ− d
∫

Ω

g(x, u, v)φ.

(2.5)

3. Energy estimates

Lemma 3.1. If ‖u‖
N
N−1
N < αN

α0
and ‖v‖

N
N−1
N < αN

β0
, there exists q > 1 such that∫

Ω

(N |u|N−1 +
α0N

N − 1
|u|

N2−N+1
N−1 )q|v|qN exp{qα0|u|

N
N−1 + qβ0|v|

N
N−1 } ≤ C
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and ∫
Ω

(N |v|N−1 +
β0N

N − 1
|v|

N2−N+1
N−1 )q|u|qN exp{qα0|u|

N
N−1 + qβ0|v|

N
N−1 } ≤ C.

Proof. By contradiction. Then for any ε1, ε2 > 0 and any q > 1, we estimate that∫
Ω

(N |u|N−1 +
α0N

N − 1
|u|

N2−N+1
N−1 )q|v|qN exp{qα0|u|

N
N−1 + qβ0|v|

N
N−1 }

≤ C
∫

Ω

exp{q(α0 + ε1)|u|
N
N−1 } exp{q(β0 + ε2)|v|

N
N−1 }

= C

∫
Ω

exp{q(α0 + ε1)‖u‖
N
N−1
N (

|u|
‖u‖N

)
N
N−1 } exp{q(β0 + ε2)‖v‖

N
N−1
N (

|v|
‖v‖N

)
N
N−1 },

tends to infinite. Then by Trudinger-Moser inequality (2.3), we get that q(α0 +

ε1)‖u‖
N
N−1
N > αN or q(β0 + ε2)‖v‖

N
N−1
N > αN . Since q > 1 and ε1, ε2 > 0 are

arbitrary, we have

‖u‖
N
N−1
N ≥ αN

α0
or ‖v‖

N
N−1
N ≥ αN

β0
,

which contradicts our assumptions. Applying similar argument to
∫

Ω
(N |v|N−1 +

β0N
N−1 |v|

N2−N+1
N−1 )q|u|qN exp{qα0|u|

N
N−1 + qβ0|v|

N
N−1 }, we deduce the conclusion. �

We denote the Moser functions as follows

Mn(x) := ω
−1/N
N


(log n)

N−1
N , |x| ≤ 1/n;

log(1/|x|)
(logn)1/N

, 1/n ≤ |x| ≤ 1;

0, |x| ≥ 1;

where 2 ≤ n ∈ N+ and ωN as in (2.3), i.e. NN−1ωN = αN−1
N . Let r be the inner

radius of Ω and x0 ∈ Ω such that Br(x0) ⊂ Ω. Then the functions

Mn(x) := Mn(
x− x0

r
)

satisfy ‖Mn‖N = 1, |Mn|NN = O(1/ log n) and suppMn ⊂ Br(x0). We define a close
convex ball as

Bα0,β0 := {(u, v) ∈ X|‖(u, v)‖
N
N−1
X ≤ min(

αN
α0

,
αN
β0

)}.

Now, we give an estimate from below for the functional I(u, v) on the ball in Bα0,β0 .

Lemma 3.2. There exist a constant Λ∗ such that for all d > Λ∗,

inf
(u,v)∈Bα0,β0

I(u, v) = c0 < 0, (3.1)

where Λ∗ depends on a, b, c, α0, β0, the dimension N and the domain Ω.

Proof. Without loss generality, we assume that α0 ≥ β0. Here we take un =
1
2 (αNα0

)
N−1
N Mn and

vn =
1
2

(
αN
α0

)
N−1
N Mn ≤

1
2

(
αN
β0

)
N−1
N Mn.



6 X. WANG EJDE-2014/28

Then ‖un‖N = ‖vn‖N = 1
2 (αNα0

)
N−1
N (i.e. (un, vn) ∈ Bα0,β0). Form the definition of

Mn(x), we have

a

N

∫
Ω

|un|N +
c

N

∫
Ω

|vn|N +
2b
N

∫
Ω

|un|N/2|vn|N/2

=
a+ 2b+ c

2NNωN
(
αN
α0

)N−1

∫
B(x0,

r
n )

(log n)N−1

+
a+ 2b+ c

2NNωN
(
αN
α0

)N−1

∫
B(x0,r)\B(x0,

r
n )

(log r
|x−x0| )

N

log n

=
(a+ 2b+ c)rN

2NN2nN
(
αN
α0

)N−1(log n)N−1 +
a+ 2b+ c

2NN log n
(
αN
α0

)N−1

∫ r

r
n

(log
r

l
)N lN−1dl

= O(1/ log n),
(3.2)

and∫
Ω

|un|N |vn|N exp{α0|un|
N
N−1 } exp{β0|vn|

N
N−1 }

=
α

2(N−1)
N

4Nω2
Nα

2(N−1)
0

∫
B(x0,

r
n )

(log n)2(N−1) exp{ N

2
N
N−1

log n+
Nβ0

2
N
N−1α0

log n}

+
α

2(N−1)
N

4Nω2
Nα

2(N−1)
0

∫
B(x0,r)\B(x0,

r
n )

(log r
|x−x0| )

2N

(log n)2

× exp{( N

2
N
N−1

+
Nβ0

2
N
N−1α0

)
(log r

|x−x0| )
N
N−1

(log n)
1

N−1
}

≥ ωNr
N

4NnN
N2N−3

α
2(N−1)
0

(log n)2(N−1)n

N

2
N
N−1

+
Nβ0

2
N
N−1 α0 +

α
2(N−1)
N

4NωNα
2(N−1)
0 (log n)2

×
∫ r

r
n

(log
r

l
)2N exp{( N

2
N
N−1

+
Nβ0

2
N
N−1α0

)
(log r

l )
N
N−1

(log n)
1

N−1
}lN−1dl.

(3.3)

Obviously, for fixed n, we deduce that expression (3.2) is bounded and expression
(3.3) is larger than a positive constant. Noticing the definitions of un, vn, we obtain
that there exists a positive constant Λ∗ such that for all d > Λ∗ holds I(un, vn) < 0,
which implies that

inf
(u,v)∈Bα0,β0

I(u, v) = c0 < 0.

�

4. Proof of Theorem 1.1

Since Bα0,β0 is a Banach space with the norm given by the norm of X, the

functional I(u, v) is of class C1 and bounded below on Bα0,β0 . In fact, if ‖u‖
N
N−1
N

equals to min(αNα0
, αNβ0

), then ‖v‖N = 0. Hence that∫
Ω

|u|N |v|N exp{α0|u|
N
N−1 } exp{β0|v|

N
N−1 } = 0. (4.1)
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And same result holds for ‖v‖
N
N−1
N = min(αNα0

, αNβ0
). By a similar argument of

Lemma 3.1, we conclude that∫
Ω

|u|N |v|N exp{α0|u|
N
N−1 } exp{β0|v|

N
N−1 } ≤ C (4.2)

for ‖u‖
N
N−1
N , ‖v‖

N
N−1
N < min(αNα0

, αNβ0
). That is to say that the functional I(u, v) is

bounded below on Bα0,β0 .
Thanks to Ekeland’s variational principle [1, Corollary A.2], there exists some

minimizing sequence {(un, vn)} ⊂ Bα0,β0 such that

I(un, vn)→ inf
(u,v)∈Bα0,β0

I(u, v) = c0 < 0, (4.3)

and
I ′(un, vn)→ 0 in X∗, as as n→∞. (4.4)

From (2.4) and (4.4), taking (ϕ, φ) = (un, 0) and (ϕ, φ) = (0, vn) respectively, we
have∫

Ω

|∇un|N − a
∫

Ω

|un|N − b
∫

Ω

|un|N/2|vn|N/2

− d
∫

Ω

(N |un|N +
α0N

N − 1
|un|

N2
N−1 )|vn|N exp{α0|un|

N
N−1 + β0|vn|

N
N−1 } → 0,

(4.5)

and∫
Ω

|∇vn|N − c
∫

Ω

|vn|N − b
∫

Ω

|un|N/2|vn|N/2

− d
∫

Ω

(N |vn|N +
β0N

N − 1
|vn|

N2
N−1 )|un|N exp{α0|un|

N
N−1 + β0|vn|

N
N−1 } → 0.

(4.6)

Since un, vn are uniform bounded in W 1,N
0 (Ω), by Lemma 6.1 in the Appendix, we

conclude that
un ⇀ u0, vn ⇀ v0 in W 1,N

0 (Ω),

and (u0, v0) is a weak solution for problem (1.1).
Now, we prove that this weak solution is nontrivial.

Proposition 4.1. The above weak solution (u0, v0) is a nontrivial solution for
problem (1.1).

Proof. By the assumptions a, c < λ1 and d > 0, we have that u0 = 0 if and only
if v0 = 0. The condition d > 0 guarantees this problem is nontrivial. In fact, if
u0 = 0, then v0 is a solution of the equation

−∆pv = c|v|N−2v < λ1|v|N−2v in Ω,
v = 0 on ∂Ω.

Obviously, we have v0 = 0.
Now we suppose that u0 = v0 = 0. Then by un, vn ⇀ 0 weak convergence in

W 1,N
0 (Ω), we have

lim
n→∞

a

N

∫
Ω

|un|N , lim
n→∞

c

N

∫
Ω

|vn|N , lim
n→∞

2b
N

∫
Ω

|un|N/2|vn|N/2 = 0.
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These together with (4.5) and (4.6), from Lemma 3.1, by Hölder inequality, we
obtain

‖un‖N , ‖vn‖N → 0.

i.e. (u0, v0)→ (0, 0) strongly in X. Obviously,∫
Ω

|un|N |vn|N exp{α0|un|
N
N−1 } exp{β0|vn|

N
N−1 } → 0,

as n→∞. Hence that
lim
n→∞

I(un, vn) = 0,

which contracts with (4.3). �

Thus the proof of theorem 1.1 is complete.

5. Proof of Theorem 1.2

In this section we show the existence of nontrivial weal solution for more general
quasilinear system (i.e. problem (1.3)). As the proofs are similar we will sketch
from place to place. Noticing the assumptions (1.4) and (1.5), by similar arguments
of Lemma 3.1, we would see that∫

Ω

|f(x, u, v)|q,
∫

Ω

|g(x, u, v)|q ≤ C (5.1)

for some q > 1 and ‖u‖
N
N−1
N < αN

α0
and ‖v‖

N
N−1
N < αN

β0
. By assumption (F2), choosing

a proper constant c 6= 0 such that (un, vn) = (cMn(x), cMn(x)) ∈ Bα0,β0 , we have∫
Ω

F (x, un, vn) ≥ C (5.2)

for some fixed n > 1, which means that

inf
(u,v)∈Bα0,β0

J(u, v) = c̃0 < 0

for d large enough. Form the assumption (F1), similar to equality (4.1) and inequal-
ity (4.2), we have that J(u, v) is bounded below on Bα0,β0 . This combined with
Bα0,β0 is a Banach space with the norm given by the norm of X and the functional
J(u, v) is of class C1, by Ekeland’s variational principle [1, Corollary A.2], there
exists some minimizing sequence {(un, vn)} ⊂ Bα0,β0 such that

J(un, vn)→ inf
(u,v)∈Bα0,β0

J(u, v) = c̃0 < 0, (5.3)

and
J ′(un, vn)→ 0 in X∗, as n→∞. (5.4)

From (2.5) and (5.4), taking (ϕ, φ) = (un, 0) and (ϕ, φ) = (0, vn) respectively, we
have∫

Ω

|∇un|N − a
∫

Ω

|un|N − b
∫

Ω

|un|N/2|vn|N/2 − d
∫

Ω

f(x, un, vn)un → 0, (5.5)

and∫
Ω

|∇vn|N − c
∫

Ω

|vn|N − b
∫

Ω

|un|N/2|vn|N/2 − d
∫

Ω

g(x, un, vn)vn → 0. (5.6)
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Since un, vn are uniform bounded in W 1,N
0 (Ω), by Lemma 6.1 in the appendix, we

conclude that
un ⇀ u0, vn ⇀ v0 in W 1,N

0 (Ω),
and (u0, v0) is a weak solution for problem (1.3).

Now, we will prove this weak solution is nontrivial.

Proposition 5.1. The above weak solution (u0, v0) is nontrivial.

Proof. By the assumptions (F1), a, c < λ1 and d > 0, using same argument for
Proposition 4.1, we can get that u = 0 if and only if v = 0.

Now we suppose that u0 = v0 = 0. Then by un, vn ⇀ 0 weak convergence in
W 1,N

0 (Ω), we have

lim
n→∞

a

N

∫
Ω

|un|N , lim
n→∞

c

N

∫
Ω

|vn|N , lim
n→∞

2b
N

∫
Ω

|un|N/2|vn|N/2 = 0.

These together with (5.1), (5.5) and (5.6), by Hölder inequality, we obtain

‖un‖N , ‖vn‖N → 0.

i.e. (u0, v0)→ (0, 0) strong convergence in X, which means
∫

Ω
F (x, un, vn)→ 0, as

n→∞. Hence
lim
n→∞

J(un, vn) = 0,

which contracts with (5.3). �

Thus the proof of Theorem 1.2 is complete.

6. Appendix

Here we give a brief proof for the existence result of the weak solution for problem
(1.3), see also [11], however the non-triviality of this weak solution need to be
clarified.

Lemma 6.1. Suppose the sequences {un}, {vn} are bounded in W 1,N
0 (Ω), and the

limn→∞ J ′(un, vn) → 0 in X∗, then there exist u0, v0 such that un ⇀ u0, vn ⇀ v0

in W 1,N
0 (Ω) and 〈J ′(u0, v0), (ϕ, φ)〉 = 0 for all ϕ, φ ∈W 1,N

0 (Ω).

Proof. Since {un}, {vn} are bounded in W 1,N
0 (Ω), there exist u0, v0 such that

un → u0 and vn → v0,

which implies un → u0 and vn → v0 in L1(Ω). By assumptions (1.4) and (1.5),
using Trudinger-Moser inequality, we have∫

Ω

|f(x, un, vn)un| ≤ C,
∫

Ω

|f(x, un, vn)vn| ≤ C,∫
Ω

|g(x, un, vn)vn| ≤ C,
∫

Ω

|g(x, un, vn)un| ≤ C.

Combining the above results, we find that

f(x, un, vn)→ f(x, u0, v0), g(x, un, vn)→ g(x, u0, v0) in L1(Ω). (6.1)

Now, taking test function (τ(un − u0), 0), the assumption limn→∞ J ′(un, vn) → 0
becomes

〈I ′2(un, vn), (τ(un − u0), 0)〉
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=
∫

Ω

|∇un|N−2∇un∇τ(un − u0) +
∫

Ω

aunτ(un − u0)|un|N−2

+
∫

Ω

bunτ(un − u0)|un|N/2−2|vn|N/2 +
∫

Ω

f(x, un, vn)τ(un − u0)→ 0,

where

τ(t) =

{
t, if |t| ≤ 1;
t/|t|, if |t| > 1.

Hence by (6.1) and |τ(un − u0)|∞ → 0, we deduce∫
Ω

(|∇un|p−2∇un − |∇u0|p−2∇u0)∇τ(un − u0)→ 0,

which implies ∇un → ∇u0 a.e. in Ω; see [10, Theorem 1.1]. Since N ≥ 2, we know

|∇un|N−2∇un ⇀ |∇u0|N−2∇u0 in (LN/(N−1)(Ω))N .

Using similar argument, we get the same result for sequence {vn}. By these results
combined with (6.1) and J ′(un, vn)→ 0, we obtain that

〈J ′(u0, v0), (ϕ, φ)〉 = 0

for any ϕ, φ ∈ D(Ω). By using an argument of density, this identity holds for all
ϕ, φ ∈W 1,N

0 (Ω). Then the proof is complete. �
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