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EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL
EXPONENTIAL N-LAPLACIAN SYSTEMS

XIAOZHI WANG

ABSTRACT. In this article we consider cross critical exponential N-Laplacian
systems. Using an energy estimate on a bounded set and the Ekeland vari-
ational principle, we prove the existence of a nontrivial weak solution, for a
parameter large enough.

1. INTRODUCTION

Let © be a bounded smooth domain in RY and N > 2. Firstly we consider the

problem

~Anu = aulu|N "2 + bu|ul =N 0| N/2 + du(N|ulN 2

aolN | N2-2n42 N N
T 1|u| =1 )|w|Y exp{ag|u| ¥ + Bolv| ¥} in Q,

N—-4
2

—Anv = bolo] 7 [u|N? + cvlv]N 2 + do(N|o|N 2 (1.1)

ﬂON N2_2N42

g lel )l explaolul ¥ 4 Golo] ¥} in €,

u=0, v=0 on 01,

where a, b, ¢, d, ag, Bg are real constants and ag, g > 0. For similar problem, to our
knowledge, de Figueiredo, do O and Ruf [3] firstly discussed the coupled system of
exponential type in R?
—Au=g(v) inQ,
—Av = f(u) in Q, (1.2)
u=0, v=0 on 09,

where f(u), g(v) behave like exp{a|u|*} and exp{a|v|?} respectively for some a >
0 at infinity. They obtained the existence of the positive solution by a linking
theorem in Hilbert space. Recently, Lam and Lu [5] extended this existence result of
problem on the condition that the nonlinear terms satisfy a weak Ambrosetti-
Rabinowitz condition. Furthermore, the author [9] proved a similar result for a class
of cross critical exponential system even if these critical nonlinear terms without
Ambrosetti-Rabinowitz condition. For further and recent researches on exponential
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system, we refer to [4, [7, 8] and the references therein. Our main propose of this
article is to study a class nonuniform critical exponential terms similar to ,
which weaken the critical assumptions used in [9], and further elaborate the idea of
[9) that proper energy estimate guarantees the nontrivial weak solutions for some
critical growth systems.

In the last section, we will extend this existence result to a wider class of nonlinear
terms with cross critical growth. More exactly, we study the problem

—Anu = alu)N 20+ bulu| V22 [0|N? + df (2, u,v)  in Q,
—Anv = bl N2 2u|N2 4 cjo|N 20 + dg(z, u,v)  in €, (1.3)
u=0, v=0 on 09,

where a, b, ¢, d are constants and f(x, u, v), g(x, u, v) with critical growth at ag, Gy >
0 respectively. Here we say f(z,u,v) and g(z,u,v) have critical growth at g, o
respectively, if there exist positive constants ag, Gy such that: For any v # 0,

|f (4, 0)| |f (2, u, 0)|

lim ~— =0, Va > ap and lim — = to00, Ya < ayp;
“ exp{alu[ T} v exp{alu|¥T}
(1.4)
and for any u # 0,
fm 9@ v g and  im OO vs g,
v exp{Blv| ¥} v exp{Blv| ¥}
(1.5)

Since the system is not variational in general, we assume that there exists the
primitive F'(z,u,v) such that
Fu(z,u,v) = f(z,u,v), F,(z,u,v)=g(x,u,v).
We weaken some of the critical exponential assumptions used in [9], as follows:
(F1) f(x,t,5),9(x,t,8) : @ x R x R — R are Carathéodory functions satisfying

(F2) F(z,s,t) >0, for t,s € R and a.e. z € Q.

We note that the above assumptions have been simplified. From the exponential
growth condition, the explicit exponential nonlinear term
F(x,u,v) = h(z,u,v) exp{k(z,u,v)u™ N DY exp{i(z, u, v)oN/ NV}

satisfies the Ambrosetti-Rabinowitz condition, where lim, . k(z,u,v) = ay,
limy— oo l(x, u,v) = By and h(z,u,v) > 0. It is obvious that
f(@,u,0) = hy (2, u,0) exp{k(z, u, 0)u™ N =D} exp{l(x, u, v)p N D}
N

N
+ h(z,u,v) (ﬁk(az, u, v)uﬁ + ky(x,u,v)u Nfl)

x exp{k(x, u, v)u™N VDY exp{l(x, u, v)oN/ VD),
and

g(x,u,v) = hy(x,u,v) exp{k(z,u, v)uN/(N_l)} exp{l(z, u, U)’UN/(N_l)}

N 1 N
+ h(z,u,v) (mk(m‘, u, V) VNI + ky (2, u,v)v Nfl)

x exp{k(z, u, 0)u™ NV} exp{i(z, u, v)oN VDY,
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Since Iy (2, u,v), hy (2, u, ), ky (2, u,0), ky(z,u,v) and h(z,u,v) > 0, there exist
constants C, M > 0 such that for all |u|, |v| > C,

0< F(z,u,v) < M(f(z,u,v) + g(z,u,v)) forae xe

i. e. the Ambrosetti-Rabinowitz condition is satisfied. On the other hand, with-

. . F(z,t :
out the assumption limsup,_,q ﬁ = 0, we could not have mountain pass

geometry. A typical example is given as follows:

F(a,u,v) = V/Jullol expfaoe™ ™ [ul VN0 exp{Boelt ™ o VDY,
Here are the main results of this article for problem (|1.1)).

Theorem 1.1. Under the assumptions a,c < A1, there exists a positive constant
A* such that (1.1)) has at least one solution for all d > A*, where A1 as in (2.2)
and A* depends on a,b, c, ag, By, the dimension N and the domain 2.

The following theorem extends partially the existence result of nontrivial weak
solution presented in [9].

Theorem 1.2. Ifa,c < A1 and the assumption (F1)-(F2) are satisfied, there exists
a positive constant ©* such that (1.3|) has at least one solution for all d > ©%,
where A\1 as in and ©* depends on a,b,c,ag, By, the dimension N and the
domain €.

This article is organized as follows. Section 2 contains the preliminaries. Section
3 shows two important estimate results. Section 4 shows the proof of Theorem [T.1}
Section 5 provides a simple proof of Theorem |1.2

2. PRELIMINARIES

Throughout this paper, we define

1/N 1/N
lully = / ™M)y = / M)
([ rvul) (1)
and
I(u,v) = i/ VulV + i/ oY — [ N - £/ o[
’ N N Q N Q N Q N Q

2b N
N / [ul 2l — d / Jul VoI exp{aful T } exp{fofo] ¥}
Q Q
(2.1)

It is well known that

[ull ¥

0, (2.2)

A1 = min ~

uewy N (@\{o} [uly

The space X designates the product space Wol’N(Q) X Wol’N(Q) equipped by the
norm |[(u,v)||x = |lully + ||[v]|x. It is well known that the maximal growth of

ue Wy N(€Q) is of exponential type, see references [6] and [9]. More precisely, we
have the following uniform bound estimate (see also [2]):
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Trudinger-Moser inequality. Let u € Wy (), then exp{|u\%} € LY (Q) for
all 1 < 0 < oo. That is to say that for any given 6 > 0, any u € Wol’N(Q) holds
exp{9|u|%} € L'(Q). Moreover, there exists a constant C' = C(N,«a) > 0 such
that

sup / exp(a|u|%) < (19, if0<a<ay, (2.3)

lulv<1JQ
1

where || is the N dimension Lebesgue measure of Q, ay = Nwy ' and wy is
the N — 1 dimension Hausdorff measure of the unit sphere in RY. Furthermore, if
a > ay, then C' = 400. Here and throughout this paper, we often denote various
constants by same C. The reader can recognize them easily. Thanks to Trudinger-
Moser inequality, we know the functional I(u,v) is well defined. Using a standard
argument, we also deduce that the functional I(u,v) is of class C'* and

(I'(u,v), (¢, 9))
= [ [VuN2VuVy + |V'U|N_2VUV¢—CL/ |u|N_2ug0—c/ [N 20
Q Q Q Q

_b/u(p|u‘N/272|U|N/2_b/U¢‘U|N/272|U|N/2
Q Q

_ aoN | N2-2n42 N N
- d/ wp(Nul¥ =% + = ul 7= oY exp{aolul 7T + Bolo[ ¥}
o _

BoN |  N2-2n42 N N
SN 1255552 ) expaoful 5 + o] ),

(2.4)
for any ¢, ¢ € WOI’N(Q). Obviously, the critical points of I(u,v) are precisely the

weak solutions for problem (|1.1)). By the critical assumptions (1.4]), (1.5) and (F1),
the functional

1 1 1 1
J(u,v) = N/Q|Vu|N+N/Q\VU|N—N/Qa\u|N—N/Qc|U|N

2
—N/b|u|N/2|v\N/2—d/ P, u,0),
Q Q

is well defined and of class C! such that the critical points of J(u,v) are precisely
the weak solutions for problem (1.3)); i.e.,

(' (w,0), (¢, 8)) = / VuN Ve + / VoV VoV — a / |V Pug
Q Q Q
e / N "2u6 — b / wiplu| V22| /2
Q Q

b /Q ool V22 V2 /Q f(,u,0)p —d /Q g(as,u,vz;:)

_ d/qus(N\v|N—2 +

3. ENERGY ESTIMATES

N N
Lemma 3.1. If lul " < & and [Jv||y~" < ¥, there exists ¢ > 1 such that

agN 2_
/ (Nl V=t 2l =5 ) ol exp{gaolul T + qfolo| T} < €
i -
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and

N N2_Nt1

/ (NN 4 o] S5 )0l expfgaolul ™ + afilol 1) < €.
i -

1

Proof. By contradiction. Then for any €1,62 > 0 and any ¢ > 1, we estimate that

_ aoN N2 _N+1 N N
OV S0l ST o explgalul 7 + gdolol ¥T)
o _

<c /Q exp{g(ao + 1)[u| T } exp{g(fo + 2)|v| 7T}

|ul

[[ull v

|

[0l w

)1 Y expla(Bo + eIl 3 (

:C/QGXP{Q(%ﬂLal)HUIIﬁ( )™},

tends to infinite. Then by Trudinger-Moser inequality (2.3)), we get that g(ag +

N N
e)llully 't > an or q(Bo + e2)|lv]|y " > an. Since ¢ > 1 and £1,e5 > 0 are
arbitrary, we have

N N
e e

Bo

which contradicts our assumptions. Applying similar argument to [, (N [o| N1+

2_
]%O_Nl ] NN—N1+1)’1|u|‘1N exp{qozo|u|% + qﬂo|v|%}, we deduce the conclusion. O

We denote the Moser functions as follows

N-—1

(logn) ¥, [a] <1/m;
My (x) = wy /N o EOLEL i< o <1
0, lz] > 1;

where 2 < n € NT and wy as in (2.3), ie. NV 1wy = aN71. Let r be the inner
radius of Q and zy € Q such that B,.(z¢) C Q. Then the functions

—)

satisfy ||M,||n = 1, |M,|% = O(1/logn) and supp M,, C B,.(zo). We define a close
convex ball as

— L — X

M, () :== M,(

- o . QN ay
Baoﬁo = {(u’v) € X|||(uvv)||)1(v S mln(iv 7)}
ag fo

Now, we give an estimate from below for the functional I(u,v) on the ball in By, g, -
Lemma 3.2. There exist a constant A* such that for all d > A*,

inf  I(u,v) =¢p <0, (3.1)
(uav)eBaO,BO

where A* depends on a,b, c, g, Bg, the dimension N and the domain 2.
Proof. Without loss generality, we assume that o9 > [y. Here we take u, =
1(22)"% M, and

vy = E(O‘J)NJ\TIMR < E(OLN)%M,I.
2" ag 2" By
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Then ||un||N = |lvnllny = %(a (i.e. (un,vn) € Bagy.g,)- Form the definition of

M, (z), we have

N/ |un|N N/| n‘N N/ ‘u |N/2|,U ‘N/Q

a+2b+c ay N—l/ N1
= ——(— logn
N Nwn (Olo) B($07%)( gn)
)N

o Beon e bl
2NNwy ~ ag B(wo,m)\B(wo,7) logn

sk
~—
Z|

2b N
:(a+ +or (a—N)N’l(logn)N*1+a+2b+c Q—N)N’l/(log YN N1y

2N N2pN oo 2N Nlogn " ag
— 0(1/10gn),
(3.2)
and
N N _N_ N
Qlunl [un|™ exp{ao|un| =T } exp{Bo|v,| ¥}
2(N—1)
__ N 2(N
4Nw a2(N )/B( (log n) exp{ logn+ . logn}
+ 2(N 2 / (10g |z a:0|)2N
4N W3, aQ(N Y JB(zorN\B(ao,z)  (logn)?
r N 3.3
N Npy | (logte) ™ (3:3)
X exp{( T = i
2N-1 2ﬁa0 (logn)ﬁ
_ N NBo 2(N—-1
> LNTN 7N2N i (logn)Q(N_l)n?N]i1 +2N1X1a0 + Zé )
4NN ag(N_l) 4NwN040(N 1)(logn)Q
" r Ngy | (log ] )N b N—
x [ (log =) exp{( L WYLl
/; l 9F=T  2F-Tq (logn)N 1

Obviously, for fixed n, we deduce that expression is bounded and expression
(3.3) is larger than a positive constant. Noticing the definitions of u,,, v,, we obtain
that there exists a positive constant A* such that for all d > A* holds I(uy,v,) < 0,
which implies that

inf I(u,v) =co <0.
(u,v)EBao,go

4. PROOF OF THEOREM [I.1]

Since Ba, g, is a Banach space with the norm given by the norm of X, the
functional I(u,v) is of class C! and bounded below on Bg, g,. In fact, if |lul|y "

equals to min($X, ), then |v[|y = 0. Hence that

/ \u|N|v|Nexp{a0|u|%}exp{ﬁo|v\%} =0. (4.1)
Q
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N
And same result holds for [jvfy™" = min(¢¥, ¥). By a similar argument of
Lemma [3.1] we conclude that

/ [ul oY exp{ao|u| ¥} exp{fofo] T} < O (42)
Q
N N
for [Jull 5" vl ™" < min($X, G¥). That is to say that the functional I(u,v) is
bounded below on B, g,-
Thanks to Ekeland’s variational principle [I, Corollary A.2], there exists some
minimizing sequence {(un,v,)} C Bayg,g, such that

I(up,vp) — inf I(u,v) = co <0, (4.3)
(u,v)EBaO,BO
and
I'(up,vp) — 0 in X* as as n — oo. (4.4)

From (2.4) and (4.4), taking (v, ¢) = (un,0) and (p, ¢) = (0,v,) respectively, we
have

/ VunlN —a / | — b / | V2 |72
Q Q Q

. (4.5)
*d/<N|un|N+ 0 | F7 ) 0N exp{ag|un| ¥T + Bolvn| ¥} — 0,
0 N-1
and
/ VouV — ¢ / fonl ¥ — b / ot /2 [/2

N 2
‘d/wwnlN 4 0 B0 ¥ expaolun| 5T + fofon ¥} 0.
i =

Since uy,, v, are uniform bounded in VVO1 ’N(Q), by Lemma in the Appendix, we
conclude that

. 1,N
Up — Uy, Up — v in Wy (),

and (ug, vp) is a weak solution for problem (|1.1)).
Now, we prove that this weak solution is nontrivial.

Proposition 4.1. The above weak solution (ug,vo) is a nontrivial solution for

problem (|L.1]).

Proof. By the assumptions a,c < A\; and d > 0, we have that ug = 0 if and only
if g = 0. The condition d > 0 guarantees this problem is nontrivial. In fact, if
ug = 0, then vg is a solution of the equation
~Apv =[N0 < MoV 20 in Q,
v=0 on Q.
Obviously, we have vy = 0.

Now we suppose that ug = vg = 0. Then by u,,v, — 0 weak convergence in
1,N
Wy (), we have

2b
Ji ™ i S ¥, i 52 ¥ =0
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These together with (4.5) and (4.6)), from Lemma by Holder inequality, we
obtain

i.e. (ug,v9) — (0,0) strongly in X. Obviously,

N N
/ |u"|N|’Un|N exp{ao|un|¥=T } exp{Bo|va| -1} — 0,
Q

as n — 0o. Hence that
lim I(uy,v,) =0,

n—oo

which contracts with (4.3]). O

Thus the proof of theorem [T.1]is complete.

5. PROOF OF THEOREM

In this section we show the existence of nontrivial weal solution for more general
quasilinear system (i.e. problem ) As the proofs are similar we will sketch
from place to place. Noticing the assumptions and , by similar arguments
of Lemma we would see that

1ot [ lowuor <o (5.1)

for some ¢ > 1 and ||lul|§ " < SX and v N < ¥ By assumption (F2), choosing

a proper constant ¢ # 0 such that (uy,,v,) = (cM,(z),cM,(z)) € Ba,, g, we have

/ F(z,up,vy) > C (5.2)
Q
for some fixed n > 1, which means that

inf J(u,v)=¢<0
(u,v)EBaO,BO

for d large enough. Form the assumption (F1), similar to equality and inequal-
ity (£.2), we have that J(u,v) is bounded below on Bg, g,. This combined with
B, 5, is a Banach space with the norm given by the norm of X and the functional
J(u,v) is of class C*, by Ekeland’s variational principle [I, Corollary A.2], there
exists some minimizing sequence {(u,,v,)} C Ba, 3, sSuch that

J (U, vp) — inf J(u,v) = ¢ <0, (5.3)

(u,v)€Bay,80

and
J (up,vn) — 0 in X* asn — oo. (5.4)

From (2.5) and (5.4), taking (¢, ®) = (u,,0) and (@, ¢) = (0,v,) respectively, we
have

/ \vun|N—a/ |un|N—b/ \un|N/2|vn\N/2—d/ £t vn)tn — 0, (5.5)
Q Q Q Q

and
/ |an\N —c/ |vn|N—b/ |un|N/2|Un\N/2—d/ g(z, Up, vp)v, — 0. (5.6)
Q Q Q Q
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Since u,,, v, are uniform bounded in VVO1 ’N(Q), by Lemma in the appendix, we
conclude that
Up — Up, Up — Vg In WOLN(Q%
and (ug, vg) is a weak solution for problem (|1.3)).
Now, we will prove this weak solution is nontrivial.

Proposition 5.1. The above weak solution (ug,vy) is nontrivial.

Proof. By the assumptions (F1), a,c < A; and d > 0, using same argument for
Proposition 4.1, we can get that u = 0 if and only if v = 0.

Now we suppose that ug = vg = 0. Then by u,,v, — 0 weak convergence in
Wy N (Q), we have

2b
Ji ™ i ¥, i 52 ¥ = 0
These together with (5.1)), (5.5) and (5.6)), by Holder inequality, we obtain

[tn|n fonlly — 0.

ie. (ug,v0) — (0,0) strong convergence in X, which means [, F/(x, un,v,) — 0, as
n — 0o. Hence

lim J(up,v,) =0,

n—oo

which contracts with (5.3)). O
Thus the proof of Theorem [I.2]is complete.

6. APPENDIX

Here we give a brief proof for the existence result of the weak solution for problem
(1.3), see also [11], however the non-triviality of this weak solution need to be
clarified.

Lemma 6.1. Suppose the sequences {u,},{v,} are bounded in W™ (), and the
limy, 00 J' (U, v,) — 0 in X*, then there exist ug,vy such that u, — ug, v, — Vg
in Wy () and (J'(uo, vo), (¢, 8)) = 0 for all ¢, € W™ (Q).
Proof. Since {u,},{v,} are bounded in Wy (), there exist ug, vy such that

U, — ug and v, — v,
which implies u, — ug and v, — vy in L'(Q). By assumptions (1.4) and (L.5)),

using Trudinger-Moser inequality, we have

/ (@t va)ttn] < C, / (@t )] < C,
Q Q

/ \g(x,un,vn)vn| <C, / |g($aunavn)un| <C.
Q Q
Combining the above results, we find that

f(x,umvn) - f(.%‘,u07’l)0), g(-%“na“ﬂ) - g(.%‘,uO,’Uo) in Ll(Q)' (6'1)

Now, taking test function (7(u, — ug),0), the assumption lim, oo J'(tp,vs,) — 0
becomes

(I3 (un, vn), (7(un — u0), 0))
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= / |V [N "2V, V7 (un — ug) + / atn (U — o) [tn )N 72
Q Q

+/ bunT(un - U0)|U7L‘N/272|UH|N/2 +/ f(xvunyvn)T(un - UO) — 0,
Q Q

where

t if [¢] < 1;

=4t th < 1;
t/1t], if ¢ > 1.

Hence by (6.1) and |7(u, — ug)|eo — 0, we deduce

/(|Vun|p_2Vun — |Vuo|P~2Vug) V7 (uy — ug) — 0,
Q

which implies Vu,, — Vug a.e. in Q; see [I0, Theorem 1.1]. Since N > 2, we know
|V, |V =2V, — |Vue|N 2Vug  in (LY =D (Q)N.

Using similar argument, we get the same result for sequence {v, }. By these results
combined with (6.1) and J'(uy,v,) — 0, we obtain that

<']/<u07 UO)? (()07 ¢)> =0
for any ¢, ¢ € D(2). By using an argument of density, this identity holds for all
NONS WOI’N(Q). Then the proof is complete. O
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