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LIMIT OF MINIMAX VALUES UNDER Γ-CONVERGENCE

MARCO DEGIOVANNI, MARCO MARZOCCHI

Abstract. We consider a sequence of minimax values related to a class of

even functionals. We show the continuous dependence of these values under

the Γ-convergence of the functionals.

1. Introduction

Let X be a Banach space and f, g : X → R two functions of class C1. Assume
also that f and g are even and positively homogeneous of the same degree.

Several results of critical point theory (see [4, 15, 22, 25]) are based on the
construction of a sequence of minimax values (cm) given by

cm = inf
K∈K(m)

s

max
u∈K

f(u) ,

where K(m)
s is the family of compact and symmetric subsets K of

{u ∈ X : g(u) = 1}

such that i(K) ≥ m and i is a topological index which takes into account the
symmetry of f and g. Typical examples are the Krasnosel’skĭı genus (see e.g. [15,
22, 25]) and the Z2-cohomological index (see [11, 12]). More general examples are
contained in [4].

A natural question concerns the behavior of the minimax values cm when f and
g are substituted by two sequences (fh) and (gh) converging in a suitable sense.
This problem has been recently treated (see [5, 16, 21] and references therein) in the
setting of homogenization problems and limit behavior of the p-Laplace operator.

As pointed out in [5], one has

cm = inf
K∈K

F (m)(K) ,

where K is the family of nonempty compact subsets K of X and F (m) : K → R is
defined as

F (m)(K) =

{
maxu∈K f(u) if K ∈ K(m)

s ,

+∞ otherwise .
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In this way the behavior of minimax values of f is reduced to that of infimum values
for the related functionals F (m) and the convergence of infima has been extensively
studied in the setting of Γ-convergence of functionals (see e.g. [3, 7]).

Let us mention that the behavior of critical values under Γ-convergence has been
already studied also in [1, 9, 13, 14].

A goal of this article is to answer a question raised in [5, Remark 5.2], concerning
the relation between the Γ-convergence of the functionals (fh) and that of the
related functionals (F (m)

h ) (see the next Corollaries 4.4 and 6.3). By the way, [5,
Remark 5.2] seemed to suggest a negative answer, while we will show that it is
affirmative.

In particular, our results allow to treat the convergence of the minimax eigen-
values λ associated to nonlinear problems of the form

−∆pu = λVp|u|p−2u in Ω ,

u = 0 on ∂Ω ,

where Ω is a (possibly unbounded) open subset on RN , 1 ≤ p < N and the weight
Vp is possibly indefinite. As usual, in the case p = 1 a suitable relaxed interpretation
of the problem has to be introduced. For 1 < p < N fixed, eigenvalue problems of
this kind have been treated in [17, 24]. For p = 1 with Ω bounded and V1(x) = 1,
we refer the reader to [6, 10, 18, 19, 20].

In Theorem 6.4 we will show the right continuity with respect to p of the minimax
eigenvalues. When Ω is bounded and Vp(x) = 1, the problem has been already
treated in [5, 16, 21].

A related question concerns, for f and g fixed, the dependence of the minimax
values on the topology of the space. Actually, in the setting of classical critical point
theory the topology is chosen so that f and g are of class C1, while minimization
methods and Γ-convergence techniques prefer weaker topologies in which the sets

{u ∈ X : f(u) ≤ b , g(u) = 1}

are compact, but then f cannot be continuous.
In Corollary 3.3 we prove, under quite general assumptions, that the minimax

values are not affected by a change of topology. Then in Theorem 5.2 we show an
application in the setting of functionals of the Calculus of variations.

2. Review on variational convergence

Throughout this section, X will denote a metrizable topological space.

Definition 2.1. Let (fh) be a sequence of functions from X to R. According to
[7, Definition 4.1], we define two functions(

Γ− lim inf
h→∞

fh

)
: X → R ,

(
Γ− lim sup

h→∞
fh

)
: X → R ,

as (
Γ− lim inf

h→∞
fh

)
(u) = sup

U∈N (u)

[
lim inf
h→∞

(
inf{fh(v) : v ∈ U}

)]
,(

Γ− lim sup
h→∞

fh

)
(u) = sup

U∈N (u)

[
lim sup

h→∞

(
inf{fh(v) : v ∈ U}

)]
,

where N (u) denotes the family of neighborhoods of u.
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If at some u ∈ X we have(
Γ− lim inf

h→∞
fh

)
(u) =

(
Γ− lim sup

h→∞
fh

)
(u) ,

we simply write (
Γ− lim

h→∞
fh

)
(u) .

Let us also recall [7, Propositions 8.1 and 7.1].

Proposition 2.2. The following facts hold:
(a) for every u ∈ X and every sequence (uh) converging to u in X, it holds(

Γ− lim inf
h→∞

fh

)
(u) ≤ lim inf

h→∞
fh(uh) ;

(b) for every u ∈ X there exists a sequence (uh) converging to u in X such that(
Γ− lim inf

h→∞
fh

)
(u) = lim inf

h→∞
fh(uh) ;

(c) for every u ∈ X and every sequence (uh) converging to u in X, it holds(
Γ− lim sup

h→∞
fh

)
(u) ≤ lim sup

h→∞
fh(uh) ;

(d) for every u ∈ X there exists a sequence (uh) converging to u in X such that(
Γ− lim sup

h→∞
fh

)
(u) = lim sup

h→∞
fh(uh) ;

(e) we have

inf
X

(
Γ− lim sup

h→∞
fh

)
≥ lim sup

h→∞

(
inf
X
fh

)
.

Now let us recall from [8, Definition 5.2] a variant of the notion of equicoercivity.

Definition 2.3. A sequence (fh) of functions from X to R is said to be asymp-
totically equicoercive if, for every strictly increasing sequence (hn) in N and every
sequence (un) in X satisfying

sup
n∈N

fhn
(un) < +∞ ,

there exists a subsequence (unj ) converging in X.

The next result is a simple variant of [7, Proposition 7.2]. We prove it for reader’s
convenience.

Proposition 2.4. If (fh) is asymptotically equicoercive, we have

inf
X

(
Γ− lim inf

h→∞
fh

)
≤ lim inf

h→∞

(
inf
X
fh

)
.

Proof. Without loss of generality, we may assume that

lim inf
h→∞

(
inf
X
fh

)
< +∞ .

Let
b > lim inf

h→∞

(
inf
X
fh

)
and let (fhn

) be a subsequence such that

sup
n∈N

(
inf
X
fhn

)
< b .
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Let un ∈ X be such that

fhn
(un) < b .

Then a subsequence (unj
) is convergent to some u in X. We infer that

inf
X

(
Γ− lim inf

h→∞
fh

)
≤
(

Γ− lim inf
h→∞

fh

)
(u) ≤ lim inf

j→∞
fhnj

(unj
) ≤ b

and the assertion follows by the arbitrariness of b. �

In the following, we denote by K be the family of nonempty compact subsets
of X. If d is a compatible distance on X, the associated Hausdorff distance dH is
defined on K as

dH(K1,K2) = max
{

max
u∈K1

d(u,K2) , max
v∈K2

d(v,K1)
}
.

The H-topology is the topology on K induced by dH. Recall that the H-topology
just depends on the topology of X, not on the distance d. Therefore K has an
intrinsic structure of metrizable topological space.

Proposition 2.5. Let (fh) be a sequence of functions from X to R and define
Fh : K → R as

Fh(K) = sup
K
fh .

Then (fh) is asymptotically equicoercive if and only if (Fh) is asymptotically equico-
ercive with respect to the H-topology.

Proof. Assume that (fh) is asymptotically equicoercive and let (hn) be a strictly
increasing sequence in N and (Kn) a sequence in K such that

sup
n∈N
Fhn(Kn) < +∞ .

We claim that ∪n∈NKn is compact.
Actually, given a compatible distance d on X, let (uj) be a sequence in this

set and let vj ∈ Knj
be such that d(vj , uj) → 0. Up to a subsequence, either

(nj) is constant or (nj) is strictly increasing. In the former case it is obvious
that (vj) admits a convergent subsequence, while in the latter case this is due to
the asymptotic equicoercivity of (fh). In any case, (uj) also admits a convergent
subsequence.

By Blaschke’s theorem (see e.g. [2, Theorem 4.4.15]) we infer that the image of
the sequence (Kn) is included in a compact subset of K and the assertion follows.

Conversely, assume that (Fh) is asymptotically equicoercive and let (hn) and
(un) be such that

sup
n∈N

fhn(un) < +∞ .

If we set Kn = {un}, then (Kn) is a sequence in K with

sup
n∈N
Fhn(Kn) < +∞ .

If (Knj
) is convergent in K, then (unj

) is convergent in X. �
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3. Index theory and minimax values

In this article, we consider an index i with the following properties:
(i) i(K) is an integer greater or equal than 1 and is defined whenever K is

a nonempty, compact and symmetric subset of a topological vector space
such that 0 6∈ K;

(ii) if X is a topological vector space and K ⊆ X \ {0} is compact, symmetric
and nonempty, then there exists an open subset U of X \ {0} such that
K ⊆ U and

i(K̂) ≤ i(K) for any compact, symmetric and nonempty K̂ ⊆ U ;

(iii) if X,Y are two topological vector spaces, K ⊆ X \ {0} is compact, sym-
metric and nonempty and π : K → Y \ {0} is continuous and odd, we
have

i(π(K)) ≥ i(K) .

Well known examples are the Krasnosel’skĭı genus (see e.g. [15, 22]) and the Z2-
cohomological index (see [11, 12]). More general examples are contained in [4].

In the following, if X is a topological vector space we will denote by Ks the
family of nonempty, compact and symmetric subsets of X \ {0}.

If X is just a vector space, we denote by Ks,F the family of nonempty, compact
and symmetric subsets K of some finite dimensional subspace of X such that 0 6∈ K.
Of course, we mean that the subspace is endowed with the unique topology which
makes it a topological vector space.

Let us point out a situation in which the behavior of i on Ks is completely
determined by that on Ks,F .

Proposition 3.1. If X is a metrizable and locally convex topological vector space,
the following facts hold:

(a) for every K ∈ Ks and every sequence (Kh) in Ks converging to K with
respect to the H-topology, it holds

i(K) ≥ lim sup
h→∞

i(Kh) ;

(b) for every K ∈ Ks there exists a sequence (Kh) in Ks,F converging to K
with respect to the H-topology such that

i(K) = lim
h→∞

i(Kh) .

Proof. Assertion (a) easily follows from property (ii) of the index i. To prove (b),
consider a compatible distance d on X such that d(−u,−v) = d(u, v) and such that
Br(u) is convex for any u ∈ X and r > 0 (see e.g. [23]).

Given K ∈ Ks, let r > 0 with K ∩Br(0) = ∅ and let F ⊆ K be a finite set such
that

K ⊆ ∪v∈FBr(v) .

By substituting F with F ∪ (−F ), we may assume that F is symmetric. For every
v ∈ F , let ϑv : X → [0, 1] be a continuous function such that

ϑv(u) = 0 whenever u 6∈ Br(v) ,∑
v∈F

ϑv(u) = 1 for all u ∈ K ,
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v∈F

ϑv(u) ≤ 1 for all u ∈ X ,

ϑ−v(u) = ϑv(−u) for all v ∈ F and u ∈ X .

Since 0 ∈ conv(F ), we can define an odd and continuous map π : X → conv(F ) as

π(u) =
∑
v∈F

ϑv(u) v .

For every u ∈ K and v ∈ F , we have either ϑv(u) = 0 or d(v, u) < r, whence

π(u) ∈ conv({v ∈ F : d(v, u) < r}) for all u ∈ K ,

which implies
d(π(u), u) < r for all u ∈ K .

In particular, we have 0 6∈ π(K), π(K) ∈ Ks,F , dH(π(K),K) < r and

i(π(K)) ≥ i(K)

by property (iii) of the index i. Then assertion (b) follows. �

In an equivalent way, one can say that i : Ks → [1,+∞[ is the upper semicon-
tinuous envelope of its restriction to Ks,F .

Now let X be a metrizable and locally convex topological vector space and let
f : X → [0,+∞] and g : X \ {0} → R be two functions such that:

(a) f and g are even and positively homogeneous of degree 1;
(b) f is convex;
(c) for every b ∈ R, the restriction of g to {u ∈ X\{0} : f(u) ≤ b} is continuous.

For every m ≥ 1, one can define a minimax value cm as

cm = inf
K∈K(m)

s

sup
K
f ,

where K(m)
s is the family K’s in Ks such that

K ⊆ {u ∈ X \ {0} : g(u) = 1} , i(K) ≥ m,

with the convention

inf
K∈K(m)

s

sup
K
f = +∞ if K(m)

s = ∅.

One can also consider
inf

K∈K(m)
s,F

sup
K
f ,

where K(m)
s,F is the family K’s in Ks,F such that

K ⊆ {u ∈ X \ {0} : g(u) = 1} , i(K) ≥ m,

with analogous convention if K(m)
s,F = ∅.

We aim to show that the two values agree, so that the topology of X plays a
role just in assumption (c).

Theorem 3.2. For every integer m ≥ 1 we have

inf
K∈K(m)

s

sup
K
f = inf

K∈K(m)
s,F

sup
K
f .
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Proof. Of course, we have

inf
K∈K(m)

s

sup
K
f ≤ inf

K∈K(m)
s,F

sup
K
f .

To prove the converse, let K ∈ K(m)
s with

sup
K
f < +∞

and let b ∈ R with
b > sup

K
f .

Consider a compatible distance d on X as in the proof of Proposition 3.1. By
assumption (c) we can find r > 0 such that K ∩Br(0) = ∅ and

g(w) > 0 , sup
K
f < b g(w)

whenever w ∈ X with d(w,K) < r and f(w) < b .
(3.1)

Now let F , ϑv and π be as in the proof of Proposition 3.1, so that π(K) ∈ Ks,F

with i(π(K)) ≥ i(K) ≥ m and d(π(u), u) < r with

π(u) ∈ conv({v ∈ F : d(v, u) < r}) for all u ∈ K .

Since f is convex, for every u ∈ K there exists v ∈ F such that d(v, u) < r and
f(π(u)) ≤ f(v) < b, whence g(π(u)) > 0 and

f(π(u))
g(π(u))

≤ f(v)
g(π(u))

< b

by (3.1). Since g is even and continuous on π(K) by assumption (c), if we set

K̂ =
{ π(u)
g(π(u))

: u ∈ K
}
,

we have K̂ ∈ K(m)
s,F with

supbK f ≤ b

and the assertion follows by the arbitrariness of b. �

Corollary 3.3. Under the assumptions of Theorem 3.2, let Y be a vector subspace
of X such that

{u ∈ X \ {0} : g(u) > 0 and f(u) < +∞} ⊆ Y

and let τY be any topology on Y which makes Y a metrizable and locally convex
topological vector space such that, for every b ∈ R, the restriction of g to

{u ∈ Y \ {0} : f(u) ≤ b}

is τY -continuous.
Then the minimax values defined in the space Y agree with those defined in the

originary space X.

Proof. First of all, there is no change if X is substituted by Y endowed with the
topology of X. By Theorem 3.2 it is equivalent to consider the classes K(m)

s,F which
do not change, when passing from the topology of X to τY . �
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4. Variational convergence of functions and sup-functions

Let X be a metrizable and locally convex topological vector space and, for every
h ∈ N, let fh : X → [0,+∞] and gh : X \ {0} → R be two functions such that:

(a) fh and gh are both even and positively homogeneous of degree 1;
(b) fh is convex;
(c) for every b ∈ R, the restriction of gh to {u ∈ X \ {0} : fh(u) ≤ b} is contin-

uous.
For any integer m ≥ 1, denote by K(m)

s,h the family of nonempty, compact and
symmetric subsets K of

{u ∈ X \ {0} : gh(u) = 1}
such that i(K) ≥ m and define F (m)

h : K → [0,+∞] as

F (m)
h (K) =

{
supK fh if K ∈ K(m)

s,h ,

+∞ otherwise .

The set K will be endowed with the H-topology.
Let also f : X → [0,+∞] and g : X → R be two even functions such that

g(0) = 0 and define K(m)
s ⊆ K and F (m) : K → [0,+∞] in an analogous way.

Theorem 4.1. Assume that

f(u) ≥
(

Γ− lim sup
h→∞

fh

)
(u) for all u ∈ X

and that, for every strictly increasing sequence (hn) in N and every sequence (un)
in X \ {0} converging to u 6= 0 such that

sup
n∈N

fhn
(un) < +∞ ,

it holds
g(u) = lim

n→∞
ghn(un) .

Then, for every m ≥ 1, we have

F (m)(K) ≥
(

Γ− lim sup
h→∞

F (m)
h

)
(K) for all K ∈ K ,

inf
K∈K

F (m)(K) ≥ lim sup
h→∞

(
inf

K∈K
F (m)

h (K)
)
,

inf
K∈K(m)

s

sup
K
f ≥ lim sup

h→∞

(
inf

K∈K(m)
s,h

sup
K
fh

)
.

Proof. Let m ≥ 1 and let K ∈ K with F (m)(K) < +∞. Then K is a nonempty,
compact and symmetric subset of {u ∈ X\{0} : g(u) = 1} with i(K) ≥ m. Consider
a compatible distance d on X as in the proof of Proposition 3.1.

Now, let b ∈ R with
b > F (m)(K) = sup

K
f

and let δ > 0. Let σ ∈]0, 1[ be such that

sup
K
f + σ < bs whenever |s− 1| < σ , (4.1)

d
(
s−1 w, u

)
< δ whenever u ∈ K, w ∈ X with d(w, u) < σ and |s− 1| < σ .

(4.2)
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Then let h ∈ N and r ∈]0, σ/2] be such that K ∩B2r(0) = ∅ and

|gh(w)− 1| < σ (4.3)

for any h ≥ h and any w ∈ X with d(w,K) < 2r and fh(w) < b+ σ.
Again, let F and ϑv be as in the proof of Proposition 3.1. Since F is a finite set,

by (d) of Proposition 2.2 we can define, for every h ∈ N, an odd map ψh : F → X
such that

lim
h→∞

ψh(v) = v for all v ∈ F ,

f(v) ≥ lim sup
h→∞

fh(ψh(v)) for all v ∈ F .

Without loss of generality, we assume that

d(ψh(v), v) < r and fh(ψh(v)) < f(v) + σ for any h ≥ h and v ∈ F .
Then define an odd and continuous map πh : X → conv(ψh(F )) as

πh(u) =
∑
v∈F

ϑv(u)ψh(v) .

For every u ∈ K and v ∈ F , we have either ϑv(u) = 0 or d(v, u) < r, hence
d(ψh(v), u) < 2r. Therefore,

πh(u) ∈ conv
(
{ψh(v) : v ∈ F , d(ψh(v), u) < 2r}

)
for all u ∈ K ,

whence
d(πh(u), u) < 2r ≤ σ for all h ≥ h and u ∈ K .

Moreover, since fh is convex, for every u ∈ K there exists v ∈ F such that
d(ψh(v), u) < 2r and fh(πh(u)) ≤ fh(ψh(v)) < f(v) + σ, whence

fh(πh(u)) < b+ σ for all h ≥ h and u ∈ K .

From (4.3), it follows

πh(u) 6= 0 and |gh(πh(u))− 1| < σ for all h ≥ h and u ∈ K
and πh(K) is a compact and symmetric subset of X \ {0} with

i(πh(K)) ≥ i(K) ≥ m.

Moreover,
fh(πh(u))
gh(πh(u))

<
f(v) + σ

gh(πh(u))
< b

by (4.1) and gh is continuous and even on πh(K). If we set

Kh =
{ πh(u)
gh(πh(u))

: u ∈ K
}
,

we have Kh ∈ K(m)
s,h and

fh(w) < b for all h ≥ h and w ∈ Kh ,

whence
F (m)

h (Kh) ≤ b for all h ≥ h .
Moreover, we have

d

(
πh(u)

gh(πh(u))
, u

)
< δ for all h ≥ h and u ∈ K
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by (4.2) and (4.3), whence

dH (Kh,K) < δ for all h ≥ h .
It follows

lim sup
h→∞

(
inf
{
F (m)

h (K̂) : dH
(
K̂,K

)
< δ
})
≤ b ,

hence (
Γ− lim sup

h→∞
F (m)

h

)
(K) ≤ b

by the arbitrariness of δ. We conclude that

F (m)(K) ≥
(

Γ− lim sup
h→∞

F (m)
h

)
(K)

by the arbitrariness of b.
From (e) of Proposition 2.2 we infer that

inf
K∈K

F (m)(K) ≥ lim sup
h→∞

(
inf

K∈K
F (m)

h (K)
)

and the last assertion is just a reformulation of this fact. �

Theorem 4.2. Assume that

f(u) ≤
(

Γ− lim inf
h→∞

fh

)
(u) for all u ∈ X

and that, for every strictly increasing sequence (hn) in N and every sequence (un)
in X \ {0} such that

sup
n∈N

fhn
(un) < +∞ , lim

n→∞
(un, ghn

(un)) = (u, c) with c > 0 ,

it holds
u 6= 0 and g(u) = c .

Then, for every m ≥ 1, we have

F (m)(K) ≤
(

Γ− lim inf
h→∞

F (m)
h

)
(K) for all K ∈ K .

Proof. Let m ≥ 1, let K ∈ K and let (Kh) be a sequence converging to K in K
such that (

Γ− lim inf
h→∞

F (m)
h

)
(K) = lim inf

h→∞
F (m)

h (Kh) .

Without loss of generality, we may assume that this value is not +∞. Let b ∈ R
with

b > lim inf
h→∞

F (m)
h (Kh) .

Then there exists a subsequence (Khn
) such that

sup
n∈N

sup
Khn

fhn = sup
n∈N
F (m)

hn
(Khn) < b .

In particular, Khn
∈ K(m)

s,hn
so that K also is symmetric.

On the other hand, for every u ∈ K, there exists uh ∈ Kh with uh → u. Since
fhn

(uhn
) < b and ghn

(uhn
) = 1, it follows that

f(u) ≤ lim inf
h→∞

fh(uh) ≤ lim inf
n→∞

fhn(uhn) ≤ b for all u ∈ K,

K ⊆ {u ∈ X \ {0} : g(u) = 1} .
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Let U be an open subset of X \ {0} such that K ⊆ U and

i(K̂) ≤ i(K)

for any nonempty, compact and symmetric subset K̂ of U . Since Khn ⊆ U even-
tually as n→∞, we have i(Khn

) ≤ i(K) eventually as n→∞, whence i(K) ≥ m.
Therefore,

F (m)(K) = sup
K
f ≤ b .

By the arbitrariness of b, the assertion follows. �

Corollary 4.3. Assume that

f(u) ≤
(

Γ− lim inf
h→∞

fh

)
(u) for all u ∈ X

and that for every strictly increasing sequence (hn) in N and every sequence (un)
in X \ {0} such that

sup
n∈N

fhn
(un) < +∞ , lim

n→∞
ghn

(un) = c with c > 0 ,

there exists a subsequence (unj ) such that

lim
j→∞

unj = u with u 6= 0 and g(u) = c .

Then, for every m ≥ 1, the sequence (F (m)
h ) is asymptotically equicoercive and

F (m)(K) ≤
(

Γ− lim inf
h→∞

F (m)
h

)
(K) for all K ∈ K ,

inf
K∈K

F (m)(K) ≤ lim inf
h→∞

(
inf

K∈K
F (m)

h (K)
)
,

inf
K∈K(m)

s

sup
K
f ≤ lim inf

h→∞

(
inf

K∈K(m)
s,h

sup
K
fh

)
.

Proof. If we define f̃h : X → [0,+∞] and F̃h : K → [0,+∞] as

f̃h(u) =

{
fh(u) if gh(u) = 1 ,
+∞ otherwise ,

F̃h(K) = sup
K
f̃h ,

it is easily seen that (f̃h) is asymptotically equicoercive. By Proposition 2.5 (F̃h)
also is asymptotically equicoercive. In turn, from F (m)

h ≥ F̃h it follows that (F (m)
h )

is asymptotically equicoercive.
From Theorem 4.2 we infer that

F (m)(K) ≤
(

Γ− lim inf
h→∞

F (m)
h

)
(K) for all K ∈ K

and the other assertions follow from Proposition 2.4. �

Corollary 4.4. Assume that

f(u) =
(

Γ− lim
h→∞

fh

)
(u) for all u ∈ X

and that, for every strictly increasing sequence (hn) in N and every sequence (un)
in X \ {0} such that

sup
n∈N

fhn
(un) < +∞ ,
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there exists a subsequence (unj
) converging to some u in X with

lim
j→∞

ghnj
(unj ) = g(u) .

Then, for every m ≥ 1, the sequence (F (m)
h ) is asymptotically equicoercive and

F (m)(K) =
(

Γ− lim
h→∞

F (m)
h

)
(K) for all K ∈ K ,

inf
K∈K

F (m)(K) = lim
h→∞

(
inf

K∈K
F (m)

h (K)
)
,

inf
K∈K(m)

s

sup
K
f = lim

h→∞

(
inf

K∈K(m)
s,h

sup
K
fh

)
.

Proof. Since g(0) = 0, if (unj ) is convergent to some u in X with

sup
n∈N

fhn(un) < +∞ , lim
n→∞

ghn(un) = c > 0 ,

it follows that u 6= 0 and g(u) = c. Then the assertion is just a combination of
Theorem 4.1 and Corollary 4.3. �

5. Minimax values and functionals of calculus of variations

Throughout this section, Ω denotes an open subset of RN with N ≥ 2 and, for
any q ∈ [1,∞], ‖ · ‖q the usual norm in Lq. Since Ω is allowed to be unbounded,
for any p ∈]1, N [ we will consider the Banach space D1,p

0 (Ω) (see e.g. [17]) endowed
with the norm

‖u‖ = ‖∇u‖p =
(∫

Ω

|∇u|p dx
)1/p

.

Recall that D1,p
0 (Ω) is continuously embedded in Lp∗(Ω), where p∗ = Np/(N − p),

and contains C∞c (Ω) as a dense vector subspace. For any p ∈]1, N [, define Ep :
L1

loc(Ω)→ [0,+∞] as

Ep(u) =

{
‖∇u‖p if u ∈ D1,p

0 (Ω) ,
+∞ otherwise .

In the case p = 1, define first Ê1 : L1
loc(Ω)→ [0,+∞] as

Ê1(u) =

{∫
Ω
|∇u| dx if u ∈ C1

c (Ω) ,
+∞ otherwise ,

then denote by E1 : L1
loc(Ω) → [0,+∞] the lower semicontinuous envelope of Ê1

with respect to the L1
loc(Ω)-topology. If Ω is bounded and has Lipschitz boundary,

then E1 has a well known integral representation (see e.g. [7, Example 3.14]).
In any case, E1 is convex, even and positively homogeneous of degree 1. Moreover,

X1 = {u ∈ L1
loc(Ω) : E1(u) < +∞}

is a vector subspace of L1
loc(Ω) and E1 is a norm on X1 which makes X1 a normed

space continuously embedded in L1∗(Ω) = L
N

N−1 (Ω).
More precisely, if we set

S(N, p) = inf
{ ∫

RN |∇u|p dx( ∫
RN |u|p∗ dx

)p/p∗
: u ∈ C1

c (RN ) \ {0}
}

whenever 1 ≤ p < N ,
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then we have

inf
1≤p≤q

S(N, p) > 0 for all q ∈]1, N [ ,

S(N, p)1/p ‖u‖p∗ ≤ Ep(u) whenever 1 ≤ p < N and Ep(u) < +∞ .

It follows easily that, for every q ∈]1, N [ and b ∈ R, the set

∪1≤p≤q

{
u ∈ L1

loc(Ω) : Ep(u) ≤ b
}

has compact closure in L1
loc(Ω).

Now, given p ∈ [1, N [, consider Vp ∈ LN/p(Ω). Let %p : R → R be the odd
function such that

%p(s) = s1/p for all s ≥ 0
and define gp : L1

loc(Ω)→ R as

gp(u) =

{
%p

( ∫
Ω
Vp |u|p dx

)
if u ∈ Lp∗(Ω) ,

0 otherwise .
(5.1)

Proposition 5.1. The following facts hold:
(a) gp is even and positively homogeneous of degree 1;
(b) for every b ∈ R, the restriction of gp to

{
u ∈ L1

loc(Ω) : Ep(u) ≤ b
}

is con-
tinuous.

Proof. Assertion (a) is obvious. If (un) is convergent to u in L1
loc(Ω) with Ep(un) ≤

b, then (un) is bounded in Lp∗(Ω) and assertion (b) also follows (see also [25,
Lemma 2.13]). �

We aim to compare the minimax values with respect to the L1
loc(Ω)-topology

with those with respect to a stronger topology. As before, denote by K(m)
s,p the

family of compact and symmetric subsets K of

{u ∈ L1
loc(Ω) : gp(u) = 1}

such that i(K) ≥ m, with respect to the topology of L1
loc(Ω).

If 1 < p < N , denote also by V(m)
p the family of compact and symmetric subsets

K of {
u ∈ D1,p

0 (Ω) :
∫

Ω

Vp |u|p dx = 1
}

such that i(K) ≥ m, with respect to the norm topology of D1,p
0 (Ω).

If p = 1, denote by V(m)
1 the family of compact and symmetric subsets K of{
u ∈ L

N
N−1 (Ω) :

∫
Ω

V1 |u| dx = 1
}

such that i(K) ≥ m, with respect to the norm topology of L
N

N−1 (Ω).

Theorem 5.2. Let fp : L1
loc(Ω)→ [0,+∞] be convex, even and positively homoge-

neous of degree 1. Moreover, suppose there exists ν > 0 such that

fp(u) ≥ ν Ep(u) for all u ∈ L1
loc(Ω) .

Then, for every m ≥ 1, we have

inf
K∈K(m)

s,p

sup
K
fp = inf

K∈V(m)
p

sup
K
fp .
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Proof. From Proposition 5.1 and the lower estimate on fp we infer that, for every
b ∈ R, the restriction of gp to {u ∈ L1

loc(Ω) : fp(u) ≤ b} is L1
loc(Ω)-continuous.

Of course, the same is true if we consider a stronger topology. Then the assertion
follows from Corollary 3.3. �

Now, in view of the convergence results of the next section, let us prove some
further basic facts concerning Ep and gp. The authors want to thank Lorenzo Brasco
for pointing out that a previous version of this theorem was incorrect.

Theorem 5.3. For every sequence (ph) decreasing to p in [1, N [, we have

Ep(u) =
(

Γ− lim
h→∞

Eph

)
(u) for all u ∈ L1

loc(Ω) .

Proof. Let us prove only the case p = 1 < ph. The other cases are similar and even
simpler. Let d be a compatible distance on L1

loc(Ω) and let u ∈ L1
loc(Ω). Let b ∈ R

with
b >

(
Γ− lim inf

h→∞
Eph

)
(u)

and let (uh) be a sequence converging to u in L1
loc(Ω) such that(

Γ− lim inf
h→∞

Eph

)
(u) = lim inf

h→∞
Eph

(uh) .

Let (Ephn
) be such that

sup
n∈N
Ephn

(uhn
) < b .

First of all,

sup
n∈N

∫
Ω

|uhn |p
∗
hn dx < +∞ ,

so that u ∈ L
N

N−1 (Ω). Let vn ∈ C1
c (Ω) be such that

d(vn, uhn) <
1
n
, Ephn

(vn) < b .

Then (vn) also converges to u in L1
loc(Ω) and is bounded in L

N
N−1
loc (Ω). For every

ϑ ∈ C1
c (RN ) with 0 ≤ ϑ ≤ 1, we have

b > ‖∇vn‖phn
≥ ‖ϑ∇vn‖phn

≥ ‖∇(ϑvn)‖phn
− ‖vn∇ϑ‖phn

≥ Ln(supp(ϑ))
1−phn

phn ‖∇(ϑvn)‖1 − ‖vn∇ϑ‖phn

≥ Ln(supp(ϑ))
1−phn

phn E1(ϑvn)− ‖vn∇ϑ‖phn
,

where Ln denotes the Lebesgue measure. Passing to the lower limit as n→∞, we
obtain

b ≥ E1(ϑu)− ‖u∇ϑ‖1 .
Let ϑ : RN → [0, 1] be a C1-function such that ϑ(x) = 1 if |x| ≤ 1 and ϑ(x) = 0 if
|x| ≥ 2 and let ϑk(x) = ϑ(x/k). Then

b ≥ E1(ϑku)−
∫

Ω

|u| |∇ϑk| dx .
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It is easily seen that (ϑku) is convergent to u in L1
loc(Ω), while (|∇ϑk|) is bounded

in LN (Ω) and convergent to 0 a.e. in Ω. Passing to the lower limit as k → ∞, we
obtain b ≥ E1(u), hence

E1(u) ≤
(

Γ− lim inf
h→∞

Eph

)
(u)

by the arbitrariness of b.
Now let u ∈ L1

loc(Ω), let b ∈ R with b > E1(u) and let δ > 0. Let w ∈ C1
c (Ω)

with d(w, u) < δ and ‖∇w‖1 < b. Then

b > lim
h→∞

Eph
(w) ,

whence
b > lim sup

h→∞

(
inf{Eph

(v) : d(v, u) < δ}
)
.

By the arbitrariness of δ, it follows that

b ≥
(

Γ− lim sup
h→∞

Eph

)
(u) ,

hence
E1(u) ≥

(
Γ− lim sup

h→∞
Eph

)
(u)

by the arbitrariness of b. �

Theorem 5.4. Let (ph) be a sequence converging to p in [1, N [ and let Vh ∈
LN/ph(Ω) and V ∈ LN/p(Ω) be such that

lim
h→∞

Vh(x) = V (x) for a.e. x ∈ Ω ,

lim
h→∞

‖Vh‖N/ph
= ‖V ‖N/p .

Define gh, g : L1
loc(Ω) → R according to (5.1). Then, for every strictly increasing

sequence (hn) in N and (un) in L1
loc(Ω) such that

sup
n∈N
Ephn

(un) < +∞ ,

there exists a subsequence (unj
) such that

lim
j→∞

unj = u in L1
loc(Ω) ,

lim
j→∞

ghnj
(unj

) = g(u) .

Proof. Up to a subsequence, (un) is convergent to some u in L1
loc(Ω) and a.e. in Ω.

Moreover, for every ε > 0 there exists Cε > 0 independent of n such that∣∣Vhn
|un|phn − V |u|p

∣∣ ≤ Cε|Vhn
|N/phn + ε|un|p

∗
hn + |V | |u|p ,

whence

Cε|Vhn |N/phn + ε|un|p
∗
hn −

∣∣Vhn |un|phn − V |u|p
∣∣ ≥ −|V | |u|p .

From Fatou’s lemma it follows that

Cε

∫
Ω

|V |N/p dx

≤ Cε

∫
Ω

|V |N/p dx+ ε
(

sup
n∈N
‖un‖

p∗hn

p∗hn

)
− lim sup

n→∞

∫
Ω

∣∣Vhn
|un|phn − V |u|p

∣∣ dx ,
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whence

lim sup
n→∞

∫
Ω

∣∣Vhn |un|phn − V |u|p
∣∣ dx ≤ ε( sup

n∈N
‖un‖

p∗hn

p∗hn

)
.

Since (Ephn
(un)) is bounded, we infer that

sup
n∈N
‖un‖

p∗hn

p∗hn

< +∞

and the assertion follows by the arbitrariness of ε. �

6. Convergence of minimax values for functionals of calculus of
variations

In this section, Ω still denotes an open subset of RN with N ≥ 2 and, for any
p ∈ [1, N [, Ep : L1

loc(Ω)→ [0,+∞] the functional introduced in the previous section.
Assume that (ph) is a sequence converging to p in [1, N [, f : L1

loc(Ω)→ [0,+∞] is
a functional, (fh) is a sequence of functionals from L1

loc(Ω) to [0,+∞], V ∈ LN/p(Ω)
and (Vh) is a sequence with Vh ∈ LN/ph(Ω). Also suppose that:

(H1) f is even;
(H2) each fh is convex, even and positively homogeneous of degree 1; moreover,

there exists ν > 0 such that

fh(u) ≥ νEph
(u) for all h ∈ N and u ∈ L1

loc(Ω) ;

(H3) we have

lim
h→∞

Vh(x) = V (x) for a.e. x ∈ Ω ,

lim
h→∞

‖Vh‖N/ph
= ‖V ‖N/p .

Let K be the family of nonempty compact subsets of L1
loc(Ω) endowed with

the H-topology and define gh, g : L1
loc(Ω) → R according to (5.1). Then define

K(m)
s,h ,K

(m)
s ⊆ K and F (m)

h ,F (m) : K → [0,+∞] as in Section 4.

Theorem 6.1. Assume that

f(u) ≥
(

Γ− lim sup
h→∞

fh

)
(u) for all u ∈ L1

loc(Ω) .

Then, for every m ≥ 1, we have

F (m)(K) ≥
(

Γ− lim sup
h→∞

F (m)
h

)
(K) for all K ∈ K ,

inf
K∈K

F (m)(K) ≥ lim sup
h→∞

(
inf

K∈K
F (m)

h (K)
)
,

inf
K∈K(m)

s

sup
K
f ≥ lim sup

h→∞

(
inf

K∈K(m)
s,h

sup
K
fh

)
.

The proof of the above theorem follows from Theorem 4.1, Proposition 5.1 and
Theorem 5.4.

Theorem 6.2. Assume that

f(u) ≤
(

Γ− lim inf
h→∞

fh

)
(u) for all u ∈ L1

loc(Ω) .
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Then, for every m ≥ 1, the sequence (F (m)
h ) is asymptotically equicoercive and we

have

F (m)(K) ≤
(

Γ− lim inf
h→∞

F (m)
h

)
(K) for all K ∈ K ,

inf
K∈K

F (m)(K) ≤ lim inf
h→∞

(
inf

K∈K
F (m)

h (K)
)
,

inf
K∈K(m)

s

sup
K
f ≤ lim inf

h→∞

(
inf

K∈K(m)
s,h

sup
K
fh

)
.

The proof of the above theorem follows from Corollary 4.3, Proposition 5.1 and
Theorem 5.4.

Corollary 6.3. Assume that

f(u) =
(

Γ− lim
h→∞

fh

)
(u) for all u ∈ L1

loc(Ω) .

Then, for every m ≥ 1, the sequence (F (m)
h ) is asymptotically equicoercive and we

have

F (m)(K) =
(

Γ− lim
h→∞

F (m)
h

)
(K) for all K ∈ K ,

inf
K∈K

F (m)(K) = lim
h→∞

(
inf

K∈K
F (m)

h (K)
)
,

inf
K∈K(m)

s

sup
K
f = lim

h→∞

(
inf

K∈K(m)
s,h

sup
K
fh

)
.

The proof of the above corollary follows from Corollary 4.4, Proposition 5.1 and
Theorem 5.4.

As an example, whenever 1 ≤ p < N and m ≥ 1, consider again Vp ∈ LN/p(Ω)
and the families V(m)

p already defined in Section 5. Define

λ(m)
p = inf

K∈V(m)
p

sup
u∈K

(
Ep(u)

)p
.

In particular, if 1 < p < N we have

λ(m)
p = inf

K∈V(m)
p

sup
u∈K

∫
Ω

|∇u|p dx .

Theorem 6.4. Let (ph) be a sequence decreasing to p in [1, N [ and assume that

lim
h→∞

Vph
(x) = Vp(x) for a.e. x ∈ Ω ,

lim
h→∞

‖Vph
‖N/ph

= ‖Vp‖N/p .

Then, for every m ≥ 1, we have limh→∞ λ
(m)
ph = λ

(m)
p .

Proof. Of course, it is equivalent to show that

lim
h→∞

(
λ(m)

ph

)1/ph

=
(
λ(m)

p

)1/p

.

By Theorem 5.2 we get the same values λ(m)
p using the L1

loc(Ω)-topology. Then the
assertion follows from Corollary 6.3 and Theorem 5.3. �
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