Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 266, pp. 1-19. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

LIMIT OF MINIMAX VALUES UNDER Γ-CONVERGENCE

MARCO DEGIOVANNI, MARCO MARZOCCHI

Abstract

We consider a sequence of minimax values related to a class of even functionals. We show the continuous dependence of these values under the Γ-convergence of the functionals.

1. Introduction

Let X be a Banach space and $f, g: X \rightarrow \mathbb{R}$ two functions of class C^{1}. Assume also that f and g are even and positively homogeneous of the same degree.

Several results of critical point theory (see [4, 15, 22, 25]) are based on the construction of a sequence of minimax values $\left(c_{m}\right)$ given by

$$
c_{m}=\inf _{K \in \mathcal{K}_{s}^{(m)}} \max _{u \in K} f(u),
$$

where $\mathcal{K}_{s}^{(m)}$ is the family of compact and symmetric subsets K of

$$
\{u \in X: g(u)=1\}
$$

such that $\mathrm{i}(K) \geq m$ and i is a topological index which takes into account the symmetry of f and g. Typical examples are the Krasnosel'skiĭ genus (see e.g. [15, [22, 25]) and the \mathbb{Z}_{2}-cohomological index (see [11, 12]). More general examples are contained in [4].

A natural question concerns the behavior of the minimax values c_{m} when f and g are substituted by two sequences $\left(f_{h}\right)$ and $\left(g_{h}\right)$ converging in a suitable sense. This problem has been recently treated (see [5, 16, 21] and references therein) in the setting of homogenization problems and limit behavior of the p-Laplace operator.

As pointed out in [5], one has

$$
c_{m}=\inf _{K \in \mathcal{K}} \mathcal{F}^{(m)}(K)
$$

where \mathcal{K} is the family of nonempty compact subsets K of X and $\mathcal{F}^{(m)}: \mathcal{K} \rightarrow \overline{\mathbb{R}}$ is defined as

$$
\mathcal{F}^{(m)}(K)= \begin{cases}\max _{u \in K} f(u) & \text { if } K \in \mathcal{K}_{s}^{(m)} \\ +\infty & \text { otherwise }\end{cases}
$$

[^0]In this way the behavior of minimax values of f is reduced to that of infimum values for the related functionals $\mathcal{F}^{(m)}$ and the convergence of infima has been extensively studied in the setting of Γ-convergence of functionals (see e.g. [3, 7]).

Let us mention that the behavior of critical values under Γ-convergence has been already studied also in [1, 9, 13, 14,

A goal of this article is to answer a question raised in [5, Remark 5.2], concerning the relation between the Γ-convergence of the functionals $\left(f_{h}\right)$ and that of the related functionals $\left(\mathcal{F}_{h}^{(m)}\right)$ (see the next Corollaries 4.4 and 6.3). By the way, [5, Remark 5.2] seemed to suggest a negative answer, while we will show that it is affirmative.

In particular, our results allow to treat the convergence of the minimax eigenvalues λ associated to nonlinear problems of the form

$$
\begin{gathered}
-\Delta_{p} u=\lambda V_{p}|u|^{p-2} u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where Ω is a (possibly unbounded) open subset on $\mathbb{R}^{N}, 1 \leq p<N$ and the weight V_{p} is possibly indefinite. As usual, in the case $p=1$ a suitable relaxed interpretation of the problem has to be introduced. For $1<p<N$ fixed, eigenvalue problems of this kind have been treated in [17, 24]. For $p=1$ with Ω bounded and $V_{1}(x)=1$, we refer the reader to [6, 10, 18, 19, 20].

In Theorem 6.4 we will show the right continuity with respect to p of the minimax eigenvalues. When Ω is bounded and $V_{p}(x)=1$, the problem has been already treated in [5, 16, 21].

A related question concerns, for f and g fixed, the dependence of the minimax values on the topology of the space. Actually, in the setting of classical critical point theory the topology is chosen so that f and g are of class C^{1}, while minimization methods and Γ-convergence techniques prefer weaker topologies in which the sets

$$
\{u \in X: f(u) \leq b, g(u)=1\}
$$

are compact, but then f cannot be continuous.
In Corollary 3.3 we prove, under quite general assumptions, that the minimax values are not affected by a change of topology. Then in Theorem 5.2 we show an application in the setting of functionals of the Calculus of variations.

2. Review on variational convergence

Throughout this section, X will denote a metrizable topological space.
Definition 2.1. Let $\left(f_{h}\right)$ be a sequence of functions from X to $\overline{\mathbb{R}}$. According to [7, Definition 4.1], we define two functions

$$
\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right): X \rightarrow \overline{\mathbb{R}}, \quad\left(\Gamma-\limsup _{h \rightarrow \infty} f_{h}\right): X \rightarrow \overline{\mathbb{R}}
$$

as

$$
\begin{aligned}
& \left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right)(u)=\sup _{U \in \mathcal{N}(u)}\left[\liminf _{h \rightarrow \infty}\left(\inf \left\{f_{h}(v): v \in U\right\}\right)\right] \\
& \left(\Gamma-\limsup _{h \rightarrow \infty} f_{h}\right)(u)=\sup _{U \in \mathcal{N}(u)}\left[\limsup _{h \rightarrow \infty}\left(\inf \left\{f_{h}(v): v \in U\right\}\right)\right]
\end{aligned}
$$

where $\mathcal{N}(u)$ denotes the family of neighborhoods of u.

If at some $u \in X$ we have

$$
\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right)(u)=\left(\Gamma-\limsup _{h \rightarrow \infty} f_{h}\right)(u)
$$

we simply write

$$
\left(\Gamma-\lim _{h \rightarrow \infty} f_{h}\right)(u)
$$

Let us also recall [7, Propositions 8.1 and 7.1].
Proposition 2.2. The following facts hold:
(a) for every $u \in X$ and every sequence $\left(u_{h}\right)$ converging to u in X, it holds

$$
\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right)(u) \leq \liminf _{h \rightarrow \infty} f_{h}\left(u_{h}\right)
$$

(b) for every $u \in X$ there exists a sequence $\left(u_{h}\right)$ converging to u in X such that

$$
\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right)(u)=\liminf _{h \rightarrow \infty} f_{h}\left(u_{h}\right)
$$

(c) for every $u \in X$ and every sequence $\left(u_{h}\right)$ converging to u in X, it holds

$$
\left(\Gamma-\limsup _{h \rightarrow \infty} f_{h}\right)(u) \leq \limsup _{h \rightarrow \infty} f_{h}\left(u_{h}\right)
$$

(d) for every $u \in X$ there exists a sequence $\left(u_{h}\right)$ converging to u in X such that

$$
\left(\Gamma-\limsup _{h \rightarrow \infty} f_{h}\right)(u)=\limsup _{h \rightarrow \infty} f_{h}\left(u_{h}\right)
$$

(e) we have

$$
\inf _{X}\left(\Gamma-\limsup _{h \rightarrow \infty} f_{h}\right) \geq \limsup _{h \rightarrow \infty}\left(\inf _{X} f_{h}\right) .
$$

Now let us recall from [8, Definition 5.2] a variant of the notion of equicoercivity.
Definition 2.3. A sequence $\left(f_{h}\right)$ of functions from X to $\overline{\mathbb{R}}$ is said to be asymptotically equicoercive if, for every strictly increasing sequence $\left(h_{n}\right)$ in \mathbb{N} and every sequence $\left(u_{n}\right)$ in X satisfying

$$
\sup _{n \in \mathbb{N}} f_{h_{n}}\left(u_{n}\right)<+\infty
$$

there exists a subsequence $\left(u_{n_{j}}\right)$ converging in X.
The next result is a simple variant of [7, Proposition 7.2]. We prove it for reader's convenience.

Proposition 2.4. If $\left(f_{h}\right)$ is asymptotically equicoercive, we have

$$
\inf _{X}\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right) \leq \liminf _{h \rightarrow \infty}\left(\inf _{X} f_{h}\right)
$$

Proof. Without loss of generality, we may assume that

$$
\liminf _{h \rightarrow \infty}\left(\inf _{X} f_{h}\right)<+\infty
$$

Let

$$
b>\liminf _{h \rightarrow \infty}\left(\inf _{X} f_{h}\right)
$$

and let $\left(f_{h_{n}}\right)$ be a subsequence such that

$$
\sup _{n \in \mathbb{N}}\left(\inf _{X} f_{h_{n}}\right)<b
$$

Let $u_{n} \in X$ be such that

$$
f_{h_{n}}\left(u_{n}\right)<b
$$

Then a subsequence $\left(u_{n_{j}}\right)$ is convergent to some u in X. We infer that

$$
\inf _{X}\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right) \leq\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right)(u) \leq \liminf _{j \rightarrow \infty} f_{h_{n_{j}}}\left(u_{n_{j}}\right) \leq b
$$

and the assertion follows by the arbitrariness of b.
In the following, we denote by \mathcal{K} be the family of nonempty compact subsets of X. If d is a compatible distance on X, the associated Hausdorff distance $d_{\mathcal{H}}$ is defined on \mathcal{K} as

$$
d_{\mathcal{H}}\left(K_{1}, K_{2}\right)=\max \left\{\max _{u \in K_{1}} d\left(u, K_{2}\right), \max _{v \in K_{2}} d\left(v, K_{1}\right)\right\}
$$

The \mathcal{H}-topology is the topology on \mathcal{K} induced by $d_{\mathcal{H}}$. Recall that the \mathcal{H}-topology just depends on the topology of X, not on the distance d. Therefore \mathcal{K} has an intrinsic structure of metrizable topological space.

Proposition 2.5. Let $\left(f_{h}\right)$ be a sequence of functions from X to $\overline{\mathbb{R}}$ and define $\mathcal{F}_{h}: \mathcal{K} \rightarrow \overline{\mathbb{R}}$ as

$$
\mathcal{F}_{h}(K)=\sup _{K} f_{h}
$$

Then $\left(f_{h}\right)$ is asymptotically equicoercive if and only if $\left(\mathcal{F}_{h}\right)$ is asymptotically equicoercive with respect to the \mathcal{H}-topology.

Proof. Assume that $\left(f_{h}\right)$ is asymptotically equicoercive and let $\left(h_{n}\right)$ be a strictly increasing sequence in \mathbb{N} and $\left(K_{n}\right)$ a sequence in \mathcal{K} such that

$$
\sup _{n \in \mathbb{N}} \mathcal{F}_{h_{n}}\left(K_{n}\right)<+\infty
$$

We claim that $\overline{\cup_{n \in \mathbb{N}} K_{n}}$ is compact.
Actually, given a compatible distance d on X, let $\left(u_{j}\right)$ be a sequence in this set and let $v_{j} \in K_{n_{j}}$ be such that $d\left(v_{j}, u_{j}\right) \rightarrow 0$. Up to a subsequence, either $\left(n_{j}\right)$ is constant or $\left(n_{j}\right)$ is strictly increasing. In the former case it is obvious that $\left(v_{j}\right)$ admits a convergent subsequence, while in the latter case this is due to the asymptotic equicoercivity of $\left(f_{h}\right)$. In any case, $\left(u_{j}\right)$ also admits a convergent subsequence.

By Blaschke's theorem (see e.g. [2, Theorem 4.4.15]) we infer that the image of the sequence $\left(K_{n}\right)$ is included in a compact subset of \mathcal{K} and the assertion follows.

Conversely, assume that $\left(\mathcal{F}_{h}\right)$ is asymptotically equicoercive and let $\left(h_{n}\right)$ and (u_{n}) be such that

$$
\sup _{n \in \mathbb{N}} f_{h_{n}}\left(u_{n}\right)<+\infty
$$

If we set $K_{n}=\left\{u_{n}\right\}$, then $\left(K_{n}\right)$ is a sequence in \mathcal{K} with

$$
\sup _{n \in \mathbb{N}} \mathcal{F}_{h_{n}}\left(K_{n}\right)<+\infty
$$

If $\left(K_{n_{j}}\right)$ is convergent in \mathcal{K}, then $\left(u_{n_{j}}\right)$ is convergent in X.

3. Index theory and minimax values

In this article, we consider an index i with the following properties:
(i) $\mathrm{i}(K)$ is an integer greater or equal than 1 and is defined whenever K is a nonempty, compact and symmetric subset of a topological vector space such that $0 \notin K$;
(ii) if X is a topological vector space and $K \subseteq X \backslash\{0\}$ is compact, symmetric and nonempty, then there exists an open subset U of $X \backslash\{0\}$ such that $K \subseteq U$ and
$\mathrm{i}(\widehat{K}) \leq \mathrm{i}(K)$ for any compact, symmetric and nonempty $\widehat{K} \subseteq U ;$
(iii) if X, Y are two topological vector spaces, $K \subseteq X \backslash\{0\}$ is compact, symmetric and nonempty and $\pi: K \rightarrow Y \backslash\{0\}$ is continuous and odd, we have

$$
\mathrm{i}(\pi(K)) \geq \mathrm{i}(K)
$$

Well known examples are the Krasnosel'skiĭ genus (see e.g. [15, 22]) and the $\mathbb{Z}_{2^{-}}$ cohomological index (see [11, 12]). More general examples are contained in [4].

In the following, if X is a topological vector space we will denote by \mathcal{K}_{s} the family of nonempty, compact and symmetric subsets of $X \backslash\{0\}$.

If X is just a vector space, we denote by $\mathcal{K}_{s, F}$ the family of nonempty, compact and symmetric subsets K of some finite dimensional subspace of X such that $0 \notin K$. Of course, we mean that the subspace is endowed with the unique topology which makes it a topological vector space.

Let us point out a situation in which the behavior of i on \mathcal{K}_{s} is completely determined by that on $\mathcal{K}_{s, F}$.

Proposition 3.1. If X is a metrizable and locally convex topological vector space, the following facts hold:
(a) for every $K \in \mathcal{K}_{s}$ and every sequence $\left(K_{h}\right)$ in \mathcal{K}_{s} converging to K with respect to the \mathcal{H}-topology, it holds

$$
\mathrm{i}(K) \geq \limsup _{h \rightarrow \infty} \mathrm{i}\left(K_{h}\right)
$$

(b) for every $K \in \mathcal{K}_{s}$ there exists a sequence $\left(K_{h}\right)$ in $\mathcal{K}_{s, F}$ converging to K with respect to the \mathcal{H}-topology such that

$$
\mathrm{i}(K)=\lim _{h \rightarrow \infty} \mathrm{i}\left(K_{h}\right)
$$

Proof. Assertion (a) easily follows from property (ii) of the index i. To prove (b), consider a compatible distance d on X such that $d(-u,-v)=d(u, v)$ and such that $B_{r}(u)$ is convex for any $u \in X$ and $r>0$ (see e.g. [23]).

Given $K \in \mathcal{K}_{s}$, let $r>0$ with $K \cap B_{r}(0)=\emptyset$ and let $F \subseteq K$ be a finite set such that

$$
K \subseteq \cup_{v \in F} B_{r}(v)
$$

By substituting F with $F \cup(-F)$, we may assume that F is symmetric. For every $v \in F$, let $\vartheta_{v}: X \rightarrow[0,1]$ be a continuous function such that

$$
\begin{gathered}
\vartheta_{v}(u)=0 \quad \text { whenever } u \notin B_{r}(v) \\
\sum_{v \in F} \vartheta_{v}(u)=1 \quad \text { for all } u \in K
\end{gathered}
$$

$$
\begin{gathered}
\sum_{v \in F} \vartheta_{v}(u) \leq 1 \quad \text { for all } u \in X \\
\vartheta_{-v}(u)=\vartheta_{v}(-u) \text { for all } v \in F \text { and } u \in X .
\end{gathered}
$$

Since $0 \in \operatorname{conv}(F)$, we can define an odd and continuous map $\pi: X \rightarrow \operatorname{conv}(F)$ as

$$
\pi(u)=\sum_{v \in F} \vartheta_{v}(u) v
$$

For every $u \in K$ and $v \in F$, we have either $\vartheta_{v}(u)=0$ or $d(v, u)<r$, whence

$$
\pi(u) \in \operatorname{conv}(\{v \in F: d(v, u)<r\}) \quad \text { for all } u \in K
$$

which implies

$$
d(\pi(u), u)<r \quad \text { for all } u \in K
$$

In particular, we have $0 \notin \pi(K), \pi(K) \in \mathcal{K}_{s, F}, d_{\mathcal{H}}(\pi(K), K)<r$ and

$$
\mathrm{i}(\pi(K)) \geq \mathrm{i}(K)
$$

by property (iii) of the index i. Then assertion (b) follows.
In an equivalent way, one can say that i: $\mathcal{K}_{s} \rightarrow[1,+\infty[$ is the upper semicontinuous envelope of its restriction to $\mathcal{K}_{s, F}$.

Now let X be a metrizable and locally convex topological vector space and let $f: X \rightarrow[0,+\infty]$ and $g: X \backslash\{0\} \rightarrow \mathbb{R}$ be two functions such that:
(a) f and g are even and positively homogeneous of degree 1 ;
(b) f is convex;
(c) for every $b \in \mathbb{R}$, the restriction of g to $\{u \in X \backslash\{0\}: f(u) \leq b\}$ is continuous. For every $m \geq 1$, one can define a minimax value c_{m} as

$$
c_{m}=\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f
$$

where $\mathcal{K}_{s}^{(m)}$ is the family K 's in \mathcal{K}_{s} such that

$$
K \subseteq\{u \in X \backslash\{0\}: g(u)=1\}, \quad \mathrm{i}(K) \geq m
$$

with the convention

$$
\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f=+\infty \quad \text { if } \mathcal{K}_{s}^{(m)}=\emptyset
$$

One can also consider

$$
\inf _{K \in \mathcal{K}_{s, F}^{(m)}} \sup _{K} f,
$$

where $\mathcal{K}_{s, F}^{(m)}$ is the family K 's in $\mathcal{K}_{s, F}$ such that

$$
K \subseteq\{u \in X \backslash\{0\}: g(u)=1\}, \quad \mathrm{i}(K) \geq m
$$

with analogous convention if $\mathcal{K}_{s, F}^{(m)}=\emptyset$.
We aim to show that the two values agree, so that the topology of X plays a role just in assumption (c).
Theorem 3.2. For every integer $m \geq 1$ we have

$$
\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f=\inf _{K \in \mathcal{K}_{s, F}^{(m)}} \sup _{K} f
$$

Proof. Of course, we have

$$
\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f \leq \inf _{K \in \mathcal{K}_{s, F}^{(m)}} \sup _{K} f
$$

To prove the converse, let $K \in \mathcal{K}_{s}^{(m)}$ with

$$
\sup _{K} f<+\infty
$$

and let $b \in \mathbb{R}$ with

$$
b>\sup _{K} f .
$$

Consider a compatible distance d on X as in the proof of Proposition 3.1. By assumption (c) we can find $r>0$ such that $K \cap B_{r}(0)=\emptyset$ and

$$
\begin{align*}
& g(w)>0, \quad \sup _{K} f<b g(w) \tag{3.1}\\
& \text { whenever } w \in X \text { with } d(w, K)<r \text { and } f(w)<b
\end{align*}
$$

Now let F, ϑ_{v} and π be as in the proof of Proposition 3.1, so that $\pi(K) \in \mathcal{K}_{s, F}$ with $\mathrm{i}(\pi(K)) \geq \mathrm{i}(K) \geq m$ and $d(\pi(u), u)<r$ with

$$
\pi(u) \in \operatorname{conv}(\{v \in F: d(v, u)<r\}) \quad \text { for all } u \in K
$$

Since f is convex, for every $u \in K$ there exists $v \in F$ such that $d(v, u)<r$ and $f(\pi(u)) \leq f(v)<b$, whence $g(\pi(u))>0$ and

$$
\frac{f(\pi(u))}{g(\pi(u))} \leq \frac{f(v)}{g(\pi(u))}<b
$$

by (3.1). Since g is even and continuous on $\pi(K)$ by assumption (c), if we set

$$
\widehat{K}=\left\{\frac{\pi(u)}{g(\pi(u))}: u \in K\right\}
$$

we have $\widehat{K} \in \mathcal{K}_{s, F}^{(m)}$ with

$$
\sup _{\widehat{K}} f \leq b
$$

and the assertion follows by the arbitrariness of b.
Corollary 3.3. Under the assumptions of Theorem 3.2, let Y be a vector subspace of X such that

$$
\{u \in X \backslash\{0\}: g(u)>0 \text { and } f(u)<+\infty\} \subseteq Y
$$

and let τ_{Y} be any topology on Y which makes Y a metrizable and locally convex topological vector space such that, for every $b \in \mathbb{R}$, the restriction of g to

$$
\{u \in Y \backslash\{0\}: f(u) \leq b\}
$$

is τ_{Y}-continuous.
Then the minimax values defined in the space Y agree with those defined in the originary space X.

Proof. First of all, there is no change if X is substituted by Y endowed with the topology of X. By Theorem 3.2 it is equivalent to consider the classes $\mathcal{K}_{s, F}^{(m)}$ which do not change, when passing from the topology of X to τ_{Y}.

4. Variational convergence of functions and sup-Functions

Let X be a metrizable and locally convex topological vector space and, for every $h \in \mathbb{N}$, let $f_{h}: X \rightarrow[0,+\infty]$ and $g_{h}: X \backslash\{0\} \rightarrow \mathbb{R}$ be two functions such that:
(a) f_{h} and g_{h} are both even and positively homogeneous of degree 1 ;
(b) f_{h} is convex;
(c) for every $b \in \mathbb{R}$, the restriction of g_{h} to $\left\{u \in X \backslash\{0\}: f_{h}(u) \leq b\right\}$ is continuous.
For any integer $m \geq 1$, denote by $\mathcal{K}_{s, h}^{(m)}$ the family of nonempty, compact and symmetric subsets K of

$$
\left\{u \in X \backslash\{0\}: g_{h}(u)=1\right\}
$$

such that $\mathrm{i}(K) \geq m$ and define $\mathcal{F}_{h}^{(m)}: \mathcal{K} \rightarrow[0,+\infty]$ as

$$
\mathcal{F}_{h}^{(m)}(K)= \begin{cases}\sup _{K} f_{h} & \text { if } K \in \mathcal{K}_{s, h}^{(m)} \\ +\infty & \text { otherwise }\end{cases}
$$

The set \mathcal{K} will be endowed with the \mathcal{H}-topology.
Let also $f: X \rightarrow[0,+\infty]$ and $g: X \rightarrow \mathbb{R}$ be two even functions such that $g(0)=0$ and define $\mathcal{K}_{s}^{(m)} \subseteq \mathcal{K}$ and $\mathcal{F}^{(m)}: \mathcal{K} \rightarrow[0,+\infty]$ in an analogous way.

Theorem 4.1. Assume that

$$
f(u) \geq\left(\Gamma-\limsup _{h \rightarrow \infty} f_{h}\right)(u) \quad \text { for all } u \in X
$$

and that, for every strictly increasing sequence $\left(h_{n}\right)$ in \mathbb{N} and every sequence $\left(u_{n}\right)$ in $X \backslash\{0\}$ converging to $u \neq 0$ such that

$$
\sup _{n \in \mathbb{N}} f_{h_{n}}\left(u_{n}\right)<+\infty
$$

it holds

$$
g(u)=\lim _{n \rightarrow \infty} g_{h_{n}}\left(u_{n}\right)
$$

Then, for every $m \geq 1$, we have

$$
\begin{gathered}
\mathcal{F}^{(m)}(K) \geq\left(\Gamma-\limsup _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K) \quad \text { for all } K \in \mathcal{K} \\
\inf _{K \in \mathcal{K}} \mathcal{F}^{(m)}(K) \geq \limsup _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}} \mathcal{F}_{h}^{(m)}(K)\right) \\
\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f \geq \limsup _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}_{s, h}^{(m)}} \sup _{K} f_{h}\right)
\end{gathered}
$$

Proof. Let $m \geq 1$ and let $K \in \mathcal{K}$ with $\mathcal{F}^{(m)}(K)<+\infty$. Then K is a nonempty, compact and symmetric subset of $\{u \in X \backslash\{0\}: g(u)=1\}$ with $\mathrm{i}(K) \geq m$. Consider a compatible distance d on X as in the proof of Proposition 3.1.

Now, let $b \in \mathbb{R}$ with

$$
b>\mathcal{F}^{(m)}(K)=\sup _{K} f
$$

and let $\delta>0$. Let $\sigma \in] 0,1[$ be such that

$$
\begin{equation*}
\sup _{K} f+\sigma<b s \quad \text { whenever }|s-1|<\sigma \tag{4.1}
\end{equation*}
$$

$d\left(s^{-1} w, u\right)<\delta \quad$ whenever $u \in K, w \in X$ with $d(w, u)<\sigma$ and $|s-1|<\sigma$.

Then let $\bar{h} \in \mathbb{N}$ and $r \in] 0, \sigma / 2]$ be such that $K \cap B_{2 r}(0)=\emptyset$ and

$$
\begin{equation*}
\left|g_{h}(w)-1\right|<\sigma \tag{4.3}
\end{equation*}
$$

for any $h \geq \bar{h}$ and any $w \in X$ with $d(w, K)<2 r$ and $f_{h}(w)<b+\sigma$.
Again, let F and ϑ_{v} be as in the proof of Proposition 3.1. Since F is a finite set, by (d) of Proposition 2.2 we can define, for every $h \in \mathbb{N}$, an odd map $\psi_{h}: F \rightarrow X$ such that

$$
\begin{gathered}
\lim _{h \rightarrow \infty} \psi_{h}(v)=v \quad \text { for all } v \in F, \\
f(v) \geq \limsup _{h \rightarrow \infty} f_{h}\left(\psi_{h}(v)\right) \quad \text { for all } v \in F .
\end{gathered}
$$

Without loss of generality, we assume that

$$
d\left(\psi_{h}(v), v\right)<r \text { and } f_{h}\left(\psi_{h}(v)\right)<f(v)+\sigma \text { for any } h \geq \bar{h} \text { and } v \in F .
$$

Then define an odd and continuous map $\pi_{h}: X \rightarrow \operatorname{conv}\left(\psi_{h}(F)\right)$ as

$$
\pi_{h}(u)=\sum_{v \in F} \vartheta_{v}(u) \psi_{h}(v) .
$$

For every $u \in K$ and $v \in F$, we have either $\vartheta_{v}(u)=0$ or $d(v, u)<r$, hence $d\left(\psi_{h}(v), u\right)<2 r$. Therefore,

$$
\pi_{h}(u) \in \operatorname{conv}\left(\left\{\psi_{h}(v): v \in F, d\left(\psi_{h}(v), u\right)<2 r\right\}\right) \quad \text { for all } u \in K
$$

whence

$$
d\left(\pi_{h}(u), u\right)<2 r \leq \sigma \quad \text { for all } h \geq \bar{h} \text { and } u \in K
$$

Moreover, since f_{h} is convex, for every $u \in K$ there exists $v \in F$ such that $d\left(\psi_{h}(v), u\right)<2 r$ and $f_{h}\left(\pi_{h}(u)\right) \leq f_{h}\left(\psi_{h}(v)\right)<f(v)+\sigma$, whence

$$
f_{h}\left(\pi_{h}(u)\right)<b+\sigma \quad \text { for all } h \geq \bar{h} \text { and } u \in K
$$

From (4.3), it follows

$$
\pi_{h}(u) \neq 0 \text { and }\left|g_{h}\left(\pi_{h}(u)\right)-1\right|<\sigma \quad \text { for all } h \geq \bar{h} \text { and } u \in K
$$

and $\pi_{h}(K)$ is a compact and symmetric subset of $X \backslash\{0\}$ with

$$
\mathrm{i}\left(\pi_{h}(K)\right) \geq \mathrm{i}(K) \geq m
$$

Moreover,

$$
\frac{f_{h}\left(\pi_{h}(u)\right)}{g_{h}\left(\pi_{h}(u)\right)}<\frac{f(v)+\sigma}{g_{h}\left(\pi_{h}(u)\right)}<b
$$

by (4.1) and g_{h} is continuous and even on $\pi_{h}(K)$. If we set

$$
K_{h}=\left\{\frac{\pi_{h}(u)}{g_{h}\left(\pi_{h}(u)\right)}: u \in K\right\},
$$

we have $K_{h} \in \mathcal{K}_{s, h}^{(m)}$ and

$$
f_{h}(w)<b \quad \text { for all } h \geq \bar{h} \text { and } w \in K_{h}
$$

whence

$$
\mathcal{F}_{h}^{(m)}\left(K_{h}\right) \leq b \quad \text { for all } h \geq \bar{h}
$$

Moreover, we have

$$
d\left(\frac{\pi_{h}(u)}{g_{h}\left(\pi_{h}(u)\right)}, u\right)<\delta \quad \text { for all } h \geq \bar{h} \text { and } u \in K
$$

by (4.2) and 4.3), whence

$$
d_{\mathcal{H}}\left(K_{h}, K\right)<\delta \quad \text { for all } h \geq \bar{h}
$$

It follows

$$
\limsup _{h \rightarrow \infty}\left(\inf \left\{\mathcal{F}_{h}^{(m)}(\widehat{K}): d_{\mathcal{H}}(\widehat{K}, K)<\delta\right\}\right) \leq b
$$

hence

$$
\left(\Gamma-\limsup _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K) \leq b
$$

by the arbitrariness of δ. We conclude that

$$
\mathcal{F}^{(m)}(K) \geq\left(\Gamma-\limsup _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K)
$$

by the arbitrariness of b.
From (e) of Proposition 2.2 we infer that

$$
\inf _{K \in \mathcal{K}} \mathcal{F}^{(m)}(K) \geq \limsup _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}} \mathcal{F}_{h}^{(m)}(K)\right)
$$

and the last assertion is just a reformulation of this fact.
Theorem 4.2. Assume that

$$
f(u) \leq\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right)(u) \quad \text { for all } u \in X
$$

and that, for every strictly increasing sequence $\left(h_{n}\right)$ in \mathbb{N} and every sequence $\left(u_{n}\right)$ in $X \backslash\{0\}$ such that

$$
\sup _{n \in \mathbb{N}} f_{h_{n}}\left(u_{n}\right)<+\infty, \quad \lim _{n \rightarrow \infty}\left(u_{n}, g_{h_{n}}\left(u_{n}\right)\right)=(u, c) \quad \text { with } c>0
$$

it holds

$$
u \neq 0 \text { and } g(u)=c .
$$

Then, for every $m \geq 1$, we have

$$
\mathcal{F}^{(m)}(K) \leq\left(\Gamma-\liminf _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K) \quad \text { for all } K \in \mathcal{K}
$$

Proof. Let $m \geq 1$, let $K \in \mathcal{K}$ and let $\left(K_{h}\right)$ be a sequence converging to K in \mathcal{K} such that

$$
\left(\Gamma-\liminf _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K)=\liminf _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\left(K_{h}\right)
$$

Without loss of generality, we may assume that this value is not $+\infty$. Let $b \in \mathbb{R}$ with

$$
b>\liminf _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\left(K_{h}\right)
$$

Then there exists a subsequence $\left(K_{h_{n}}\right)$ such that

$$
\sup _{n \in \mathbb{N}} \sup _{K_{h_{n}}} f_{h_{n}}=\sup _{n \in \mathbb{N}} \mathcal{F}_{h_{n}}^{(m)}\left(K_{h_{n}}\right)<b
$$

In particular, $K_{h_{n}} \in \mathcal{K}_{s, h_{n}}^{(m)}$ so that K also is symmetric.
On the other hand, for every $u \in K$, there exists $u_{h} \in K_{h}$ with $u_{h} \rightarrow u$. Since $f_{h_{n}}\left(u_{h_{n}}\right)<b$ and $g_{h_{n}}\left(u_{h_{n}}\right)=1$, it follows that

$$
\begin{gathered}
f(u) \leq \liminf _{h \rightarrow \infty} f_{h}\left(u_{h}\right) \leq \liminf _{n \rightarrow \infty} f_{h_{n}}\left(u_{h_{n}}\right) \leq b \quad \text { for all } u \in K \\
K \subseteq\{u \in X \backslash\{0\}: g(u)=1\}
\end{gathered}
$$

Let U be an open subset of $X \backslash\{0\}$ such that $K \subseteq U$ and

$$
\mathrm{i}(\widehat{K}) \leq \mathrm{i}(K)
$$

for any nonempty, compact and symmetric subset \widehat{K} of U. Since $K_{h_{n}} \subseteq U$ eventually as $n \rightarrow \infty$, we have $\mathrm{i}\left(K_{h_{n}}\right) \leq \mathrm{i}(K)$ eventually as $n \rightarrow \infty$, whence $\mathrm{i}(K) \geq m$. Therefore,

$$
\mathcal{F}^{(m)}(K)=\sup _{K} f \leq b
$$

By the arbitrariness of b, the assertion follows.
Corollary 4.3. Assume that

$$
f(u) \leq\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right)(u) \quad \text { for all } u \in X
$$

and that for every strictly increasing sequence $\left(h_{n}\right)$ in \mathbb{N} and every sequence $\left(u_{n}\right)$ in $X \backslash\{0\}$ such that

$$
\sup _{n \in \mathbb{N}} f_{h_{n}}\left(u_{n}\right)<+\infty, \quad \lim _{n \rightarrow \infty} g_{h_{n}}\left(u_{n}\right)=c \quad \text { with } c>0
$$

there exists a subsequence $\left(u_{n_{j}}\right)$ such that

$$
\lim _{j \rightarrow \infty} u_{n_{j}}=u \quad \text { with } u \neq 0 \text { and } g(u)=c
$$

Then, for every $m \geq 1$, the sequence $\left(\mathcal{F}_{h}^{(m)}\right)$ is asymptotically equicoercive and

$$
\begin{gathered}
\mathcal{F}^{(m)}(K) \leq\left(\Gamma-\liminf _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K) \quad \text { for all } K \in \mathcal{K}, \\
\inf _{K \in \mathcal{K}} \mathcal{F}^{(m)}(K) \leq \liminf _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}} \mathcal{F}_{h}^{(m)}(K)\right) \\
\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f \leq \liminf _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}_{s, h}^{(m)}} \sup _{K} f_{h}\right) .
\end{gathered}
$$

Proof. If we define $\tilde{f}_{h}: X \rightarrow[0,+\infty]$ and $\widetilde{\mathcal{F}}_{h}: \mathcal{K} \rightarrow[0,+\infty]$ as

$$
\begin{gathered}
\tilde{f}_{h}(u)= \begin{cases}f_{h}(u) & \text { if } g_{h}(u)=1 \\
+\infty & \text { otherwise }\end{cases} \\
\widetilde{\mathcal{F}}_{h}(K)=\sup _{K} \tilde{f}_{h}
\end{gathered}
$$

it is easily seen that $\left(\tilde{f}_{h}\right)$ is asymptotically equicoercive. By Proposition $2.5\left(\widetilde{\mathcal{F}}_{h}\right)$ also is asymptotically equicoercive. In turn, from $\mathcal{F}_{h}^{(m)} \geq \widetilde{\mathcal{F}}_{h}$ it follows that $\left(\mathcal{F}_{h}^{(m)}\right)$ is asymptotically equicoercive.

From Theorem 4.2 we infer that

$$
\mathcal{F}^{(m)}(K) \leq\left(\Gamma-\liminf _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K) \quad \text { for all } K \in \mathcal{K}
$$

and the other assertions follow from Proposition 2.4
Corollary 4.4. Assume that

$$
f(u)=\left(\Gamma-\lim _{h \rightarrow \infty} f_{h}\right)(u) \quad \text { for all } u \in X
$$

and that, for every strictly increasing sequence $\left(h_{n}\right)$ in \mathbb{N} and every sequence (u_{n}) in $X \backslash\{0\}$ such that

$$
\sup _{n \in \mathbb{N}} f_{h_{n}}\left(u_{n}\right)<+\infty
$$

there exists a subsequence $\left(u_{n_{j}}\right)$ converging to some u in X with

$$
\lim _{j \rightarrow \infty} g_{h_{n_{j}}}\left(u_{n_{j}}\right)=g(u) .
$$

Then, for every $m \geq 1$, the sequence $\left(\mathcal{F}_{h}^{(m)}\right)$ is asymptotically equicoercive and

$$
\begin{gathered}
\mathcal{F}^{(m)}(K)=\left(\Gamma-\lim _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K) \quad \text { for all } K \in \mathcal{K} \\
\inf _{K \in \mathcal{K}} \mathcal{F}^{(m)}(K)=\lim _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}} \mathcal{F}_{h}^{(m)}(K)\right) \\
\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f=\lim _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}_{s, h}^{(m)}} \sup _{K} f_{h}\right)
\end{gathered}
$$

Proof. Since $g(0)=0$, if $\left(u_{n_{j}}\right)$ is convergent to some u in X with

$$
\sup _{n \in \mathbb{N}} f_{h_{n}}\left(u_{n}\right)<+\infty, \quad \lim _{n \rightarrow \infty} g_{h_{n}}\left(u_{n}\right)=c>0
$$

it follows that $u \neq 0$ and $g(u)=c$. Then the assertion is just a combination of Theorem 4.1 and Corollary 4.3.

5. Minimax values and functionals of calculus of variations

Throughout this section, Ω denotes an open subset of \mathbb{R}^{N} with $N \geq 2$ and, for any $q \in[1, \infty],\|\cdot\|_{q}$ the usual norm in L^{q}. Since Ω is allowed to be unbounded, for any $p \in] 1, N\left[\right.$ we will consider the Banach space $D_{0}^{1, p}(\Omega)$ (see e.g. [17]) endowed with the norm

$$
\|u\|=\|\nabla u\|_{p}=\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{1 / p}
$$

Recall that $D_{0}^{1, p}(\Omega)$ is continuously embedded in $L^{p^{*}}(\Omega)$, where $p^{*}=N p /(N-p)$, and contains $C_{c}^{\infty}(\Omega)$ as a dense vector subspace. For any $\left.p \in\right] 1, N\left[\right.$, define \mathcal{E}_{p} : $L_{\mathrm{loc}}^{1}(\Omega) \rightarrow[0,+\infty]$ as

$$
\mathcal{E}_{p}(u)= \begin{cases}\|\nabla u\|_{p} & \text { if } u \in D_{0}^{1, p}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

In the case $p=1$, define first $\widehat{\mathcal{E}}_{1}: L_{\mathrm{loc}}^{1}(\Omega) \rightarrow[0,+\infty]$ as

$$
\widehat{\mathcal{E}}_{1}(u)= \begin{cases}\int_{\Omega}|\nabla u| d x & \text { if } u \in C_{c}^{1}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

then denote by $\mathcal{E}_{1}: L_{\text {loc }}^{1}(\Omega) \rightarrow[0,+\infty]$ the lower semicontinuous envelope of $\widehat{\mathcal{E}}$ with respect to the $L_{\text {loc }}^{1}(\Omega)$-topology. If Ω is bounded and has Lipschitz boundary, then \mathcal{E}_{1} has a well known integral representation (see e.g. [7, Example 3.14]).

In any case, \mathcal{E}_{1} is convex, even and positively homogeneous of degree 1. Moreover,

$$
X_{1}=\left\{u \in L_{\mathrm{loc}}^{1}(\Omega): \mathcal{E}_{1}(u)<+\infty\right\}
$$

is a vector subspace of $L_{\mathrm{loc}}^{1}(\Omega)$ and \mathcal{E}_{1} is a norm on X_{1} which makes X_{1} a normed space continuously embedded in $L^{1^{*}}(\Omega)=L^{\frac{N}{N-1}}(\Omega)$.

More precisely, if we set

$$
S(N, p)=\inf \left\{\frac{\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x}{\left(\int_{\mathbb{R}^{N}}|u|^{p^{*}} d x\right)^{p / p^{*}}}: u \in C_{c}^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}\right\} \quad \text { whenever } 1 \leq p<N
$$

then we have

$$
\begin{gathered}
\left.\inf _{1 \leq p \leq q} S(N, p)>0 \quad \text { for all } q \in\right] 1, N[\\
S(N, p)^{1 / p}\|u\|_{p^{*}} \leq \mathcal{E}_{p}(u) \quad \text { whenever } 1 \leq p<N \text { and } \mathcal{E}_{p}(u)<+\infty .
\end{gathered}
$$

It follows easily that, for every $q \in] 1, N[$ and $b \in \mathbb{R}$, the set

$$
\cup_{1 \leq p \leq q}\left\{u \in L_{\mathrm{loc}}^{1}(\Omega): \mathcal{E}_{p}(u) \leq b\right\}
$$

has compact closure in $L_{\mathrm{loc}}^{1}(\Omega)$.
Now, given $p \in\left[1, N\left[\right.\right.$, consider $V_{p} \in L^{N / p}(\Omega)$. Let $\varrho_{p}: \mathbb{R} \rightarrow \mathbb{R}$ be the odd function such that

$$
\varrho_{p}(s)=s^{1 / p} \quad \text { for all } s \geq 0
$$

and define $g_{p}: L_{\text {loc }}^{1}(\Omega) \rightarrow \mathbb{R}$ as

$$
g_{p}(u)= \begin{cases}\varrho_{p}\left(\int_{\Omega} V_{p}|u|^{p} d x\right) & \text { if } u \in L^{p^{*}}(\Omega) \tag{5.1}\\ 0 & \text { otherwise }\end{cases}
$$

Proposition 5.1. The following facts hold:
(a) g_{p} is even and positively homogeneous of degree 1;
(b) for every $b \in \mathbb{R}$, the restriction of g_{p} to $\left\{u \in L_{\mathrm{loc}}^{1}(\Omega): \mathcal{E}_{p}(u) \leq b\right\}$ is continuous.

Proof. Assertion (a) is obvious. If $\left(u_{n}\right)$ is convergent to u in $L_{\text {loc }}^{1}(\Omega)$ with $\mathcal{E}_{p}\left(u_{n}\right) \leq$ b, then $\left(u_{n}\right)$ is bounded in $L^{p^{*}}(\Omega)$ and assertion (b) also follows (see also [25, Lemma 2.13]).

We aim to compare the minimax values with respect to the $L_{\text {loc }}^{1}(\Omega)$-topology with those with respect to a stronger topology. As before, denote by $\mathcal{K}_{s, p}^{(m)}$ the family of compact and symmetric subsets K of

$$
\left\{u \in L_{\mathrm{loc}}^{1}(\Omega): g_{p}(u)=1\right\}
$$

such that $\mathrm{i}(K) \geq m$, with respect to the topology of $L_{\mathrm{loc}}^{1}(\Omega)$.
If $1<p<N$, denote also by $\mathcal{V}_{p}^{(m)}$ the family of compact and symmetric subsets K of

$$
\left\{u \in D_{0}^{1, p}(\Omega): \int_{\Omega} V_{p}|u|^{p} d x=1\right\}
$$

such that $\mathrm{i}(K) \geq m$, with respect to the norm topology of $D_{0}^{1, p}(\Omega)$.
If $p=1$, denote by $\mathcal{V}_{1}^{(m)}$ the family of compact and symmetric subsets K of

$$
\left\{u \in L^{\frac{N}{N-1}}(\Omega): \int_{\Omega} V_{1}|u| d x=1\right\}
$$

such that $\mathrm{i}(K) \geq m$, with respect to the norm topology of $L^{\frac{N}{N-1}}(\Omega)$.
Theorem 5.2. Let $f_{p}: L_{\mathrm{loc}}^{1}(\Omega) \rightarrow[0,+\infty]$ be convex, even and positively homogeneous of degree 1. Moreover, suppose there exists $\nu>0$ such that

$$
f_{p}(u) \geq \nu \mathcal{E}_{p}(u) \quad \text { for all } u \in L_{\mathrm{loc}}^{1}(\Omega)
$$

Then, for every $m \geq 1$, we have

$$
\inf _{K \in \mathcal{K}_{s, p}^{(m)}} \sup _{K} f_{p}=\inf _{K \in \mathcal{V}_{p}^{(m)}} \sup _{K} f_{p}
$$

Proof. From Proposition 5.1 and the lower estimate on f_{p} we infer that, for every $b \in \mathbb{R}$, the restriction of g_{p} to $\left\{u \in L_{\mathrm{loc}}^{1}(\Omega): f_{p}(u) \leq b\right\}$ is $L_{\mathrm{loc}}^{1}(\Omega)$-continuous. Of course, the same is true if we consider a stronger topology. Then the assertion follows from Corollary 3.3

Now, in view of the convergence results of the next section, let us prove some further basic facts concerning \mathcal{E}_{p} and g_{p}. The authors want to thank Lorenzo Brasco for pointing out that a previous version of this theorem was incorrect.

Theorem 5.3. For every sequence $\left(p_{h}\right)$ decreasing to p in $[1, N[$, we have

$$
\mathcal{E}_{p}(u)=\left(\Gamma-\lim _{h \rightarrow \infty} \mathcal{E}_{p_{h}}\right)(u) \quad \text { for all } u \in L_{\mathrm{loc}}^{1}(\Omega)
$$

Proof. Let us prove only the case $p=1<p_{h}$. The other cases are similar and even simpler. Let d be a compatible distance on $L_{\mathrm{loc}}^{1}(\Omega)$ and let $u \in L_{\mathrm{loc}}^{1}(\Omega)$. Let $b \in \mathbb{R}$ with

$$
b>\left(\Gamma-\liminf _{h \rightarrow \infty} \mathcal{E}_{p_{h}}\right)(u)
$$

and let $\left(u_{h}\right)$ be a sequence converging to u in $L_{\mathrm{loc}}^{1}(\Omega)$ such that

$$
\left(\Gamma-\liminf _{h \rightarrow \infty} \mathcal{E}_{p_{h}}\right)(u)=\liminf _{h \rightarrow \infty} \mathcal{E}_{p_{h}}\left(u_{h}\right)
$$

Let $\left(\mathcal{E}_{p_{h_{n}}}\right)$ be such that

$$
\sup _{n \in \mathbb{N}} \mathcal{E}_{p_{h_{n}}}\left(u_{h_{n}}\right)<b
$$

First of all,

$$
\sup _{n \in \mathbb{N}} \int_{\Omega}\left|u_{h_{n}}\right|^{p_{h_{n}}^{*}} d x<+\infty
$$

so that $u \in L^{\frac{N}{N-1}}(\Omega)$. Let $v_{n} \in C_{c}^{1}(\Omega)$ be such that

$$
d\left(v_{n}, u_{h_{n}}\right)<\frac{1}{n}, \quad \mathcal{E}_{p_{h_{n}}}\left(v_{n}\right)<b .
$$

Then $\left(v_{n}\right)$ also converges to u in $L_{\mathrm{loc}}^{1}(\Omega)$ and is bounded in $L_{\mathrm{loc}}^{\frac{N}{N-1}}(\Omega)$. For every $\vartheta \in C_{c}^{1}\left(\mathbb{R}^{N}\right)$ with $0 \leq \vartheta \leq 1$, we have

$$
\begin{aligned}
b & >\left\|\nabla v_{n}\right\|_{p_{h_{n}}} \geq\left\|\vartheta \nabla v_{n}\right\|_{p_{h_{n}}} \\
& \geq\left\|\nabla\left(\vartheta v_{n}\right)\right\|_{p_{h_{n}}}-\left\|v_{n} \nabla \vartheta\right\|_{p_{h_{n}}} \\
& \geq \mathcal{L}^{n}(\operatorname{supp}(\vartheta))^{\frac{1-p_{h_{n}}}{p_{h_{n}}}}\left\|\nabla\left(\vartheta v_{n}\right)\right\|_{1}-\left\|v_{n} \nabla \vartheta\right\|_{p_{h_{n}}} \\
& \geq \mathcal{L}^{n}(\operatorname{supp}(\vartheta))^{\frac{1-p_{h_{n}}}{p_{h_{n}}}} \mathcal{E}_{1}\left(\vartheta v_{n}\right)-\left\|v_{n} \nabla \vartheta\right\|_{p_{h_{n}}},
\end{aligned}
$$

where \mathcal{L}^{n} denotes the Lebesgue measure. Passing to the lower limit as $n \rightarrow \infty$, we obtain

$$
b \geq \mathcal{E}_{1}(\vartheta u)-\|u \nabla \vartheta\|_{1} .
$$

Let $\vartheta: \mathbb{R}^{N} \rightarrow[0,1]$ be a C^{1}-function such that $\vartheta(x)=1$ if $|x| \leq 1$ and $\vartheta(x)=0$ if $|x| \geq 2$ and let $\vartheta_{k}(x)=\vartheta(x / k)$. Then

$$
b \geq \mathcal{E}_{1}\left(\vartheta_{k} u\right)-\int_{\Omega}|u|\left|\nabla \vartheta_{k}\right| d x
$$

It is easily seen that $\left(\vartheta_{k} u\right)$ is convergent to u in $L_{\text {loc }}^{1}(\Omega)$, while $\left(\left|\nabla \vartheta_{k}\right|\right)$ is bounded in $L^{N}(\Omega)$ and convergent to 0 a.e. in Ω. Passing to the lower limit as $k \rightarrow \infty$, we obtain $b \geq \mathcal{E}_{1}(u)$, hence

$$
\mathcal{E}_{1}(u) \leq\left(\Gamma-\liminf _{h \rightarrow \infty} \mathcal{E}_{p_{h}}\right)(u)
$$

by the arbitrariness of b.
Now let $u \in L_{\text {loc }}^{1}(\Omega)$, let $b \in \mathbb{R}$ with $b>\mathcal{E}_{1}(u)$ and let $\delta>0$. Let $w \in C_{c}^{1}(\Omega)$ with $d(w, u)<\delta$ and $\|\nabla w\|_{1}<b$. Then

$$
b>\lim _{h \rightarrow \infty} \mathcal{E}_{p_{h}}(w),
$$

whence

$$
b>\limsup _{h \rightarrow \infty}\left(\inf \left\{\mathcal{E}_{p_{h}}(v): d(v, u)<\delta\right\}\right) .
$$

By the arbitrariness of δ, it follows that

$$
b \geq\left(\Gamma-\limsup _{h \rightarrow \infty} \mathcal{E}_{p_{h}}\right)(u)
$$

hence

$$
\mathcal{E}_{1}(u) \geq\left(\Gamma-\limsup _{h \rightarrow \infty} \mathcal{E}_{p_{h}}\right)(u)
$$

by the arbitrariness of b.
Theorem 5.4. Let $\left(p_{h}\right)$ be a sequence converging to p in $\left[1, N\left[\right.\right.$ and let $V_{h} \in$ $L^{N / p_{h}}(\Omega)$ and $V \in L^{N / p}(\Omega)$ be such that

$$
\begin{gathered}
\lim _{h \rightarrow \infty} V_{h}(x)=V(x) \quad \text { for a.e. } x \in \Omega \\
\lim _{h \rightarrow \infty}\left\|V_{h}\right\|_{N / p_{h}}=\|V\|_{N / p}
\end{gathered}
$$

Define $g_{h}, g: L_{\text {loc }}^{1}(\Omega) \rightarrow \mathbb{R}$ according to (5.1). Then, for every strictly increasing sequence $\left(h_{n}\right)$ in \mathbb{N} and $\left(u_{n}\right)$ in $L_{\mathrm{loc}}^{1}(\Omega)$ such that

$$
\sup _{n \in \mathbb{N}} \mathcal{E}_{p_{h_{n}}}\left(u_{n}\right)<+\infty
$$

there exists a subsequence $\left(u_{n_{j}}\right)$ such that

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} u_{n_{j}}=u \quad \text { in } L_{\mathrm{loc}}^{1}(\Omega), \\
& \lim _{j \rightarrow \infty} g_{h_{n_{j}}}\left(u_{n_{j}}\right)=g(u) .
\end{aligned}
$$

Proof. Up to a subsequence, $\left(u_{n}\right)$ is convergent to some u in $L_{\text {loc }}^{1}(\Omega)$ and a.e. in Ω. Moreover, for every $\varepsilon>0$ there exists $C_{\varepsilon}>0$ independent of n such that

$$
\left.\left|V_{h_{n}}\right| u_{n}\right|^{p_{h_{n}}}-\left.V|u|^{p}\left|\leq C_{\varepsilon}\right| V_{h_{n}}\right|^{N / p_{h_{n}}}+\varepsilon\left|u_{n}\right|^{p_{h_{n}}^{*}}+|V||u|^{p},
$$

whence

$$
C_{\varepsilon}\left|V_{h_{n}}\right|^{N / p_{h_{n}}}+\varepsilon\left|u_{n}\right|^{p_{h_{n}}^{*}}-\left.\left|V_{h_{n}}\right| u_{n}\right|^{p_{h_{n}}}-\left.V|u|^{p}|\geq-|V|| u\right|^{p}
$$

From Fatou's lemma it follows that

$$
\begin{aligned}
& C_{\varepsilon} \int_{\Omega}|V|^{N / p} d x \\
& \leq C_{\varepsilon} \int_{\Omega}|V|^{N / p} d x+\varepsilon\left(\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{p_{h_{n}}^{*}}^{p_{n_{n}}^{*}}\right)-\left.\limsup _{n \rightarrow \infty} \int_{\Omega}\left|V_{h_{n}}\right| u_{n}\right|^{p_{h_{n}}}-V|u|^{p} \mid d x
\end{aligned}
$$

whence

$$
\left.\limsup _{n \rightarrow \infty} \int_{\Omega}\left|V_{h_{n}}\right| u_{n}\right|^{p_{h_{n}}}-V|u|^{p} \mid d x \leq \varepsilon\left(\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{p_{h_{n}}^{*}}^{p_{h_{n}}^{*}}\right)
$$

Since $\left(\mathcal{E}_{p_{h_{n}}}\left(u_{n}\right)\right)$ is bounded, we infer that

$$
\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{p_{h_{n}}^{*}}^{p_{*_{n}}^{*}}<+\infty
$$

and the assertion follows by the arbitrariness of ε.

6. Convergence of minimax values for functionals of calculus of VARIATIONS

In this section, Ω still denotes an open subset of \mathbb{R}^{N} with $N \geq 2$ and, for any $p \in\left[1, N\left[, \mathcal{E}_{p}: L_{\mathrm{loc}}^{1}(\Omega) \rightarrow[0,+\infty]\right.\right.$ the functional introduced in the previous section.

Assume that $\left(p_{h}\right)$ is a sequence converging to p in $\left[1, N\left[, f: L_{\mathrm{loc}}^{1}(\Omega) \rightarrow[0,+\infty]\right.\right.$ is a functional, $\left(f_{h}\right)$ is a sequence of functionals from $L_{\text {loc }}^{1}(\Omega)$ to $[0,+\infty], V \in L^{N / p}(\Omega)$ and $\left(V_{h}\right)$ is a sequence with $V_{h} \in L^{N / p_{h}}(\Omega)$. Also suppose that:
(H1) f is even;
(H2) each f_{h} is convex, even and positively homogeneous of degree 1 ; moreover, there exists $\nu>0$ such that

$$
f_{h}(u) \geq \nu \mathcal{E}_{p_{h}}(u) \quad \text { for all } h \in \mathbb{N} \text { and } u \in L_{\mathrm{loc}}^{1}(\Omega)
$$

(H3) we have

$$
\begin{gathered}
\lim _{h \rightarrow \infty} V_{h}(x)=V(x) \quad \text { for a.e. } x \in \Omega \\
\lim _{h \rightarrow \infty}\left\|V_{h}\right\|_{N / p_{h}}=\|V\|_{N / p}
\end{gathered}
$$

Let \mathcal{K} be the family of nonempty compact subsets of $L_{\mathrm{loc}}^{1}(\Omega)$ endowed with the \mathcal{H}-topology and define $g_{h}, g: L_{\text {loc }}^{1}(\Omega) \rightarrow \mathbb{R}$ according to (5.1). Then define $\mathcal{K}_{s, h}^{(m)}, \mathcal{K}_{s}^{(m)} \subseteq \mathcal{K}$ and $\mathcal{F}_{h}^{(m)}, \mathcal{F}^{(m)}: \mathcal{K} \rightarrow[0,+\infty]$ as in Section 4 .

Theorem 6.1. Assume that

$$
f(u) \geq\left(\Gamma-\limsup _{h \rightarrow \infty} f_{h}\right)(u) \quad \text { for all } u \in L_{\mathrm{loc}}^{1}(\Omega)
$$

Then, for every $m \geq 1$, we have

$$
\begin{gathered}
\mathcal{F}^{(m)}(K) \geq\left(\Gamma-\limsup _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K) \quad \text { for all } K \in \mathcal{K} \\
\inf _{K \in \mathcal{K}} \mathcal{F}^{(m)}(K) \geq \limsup _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}} \mathcal{F}_{h}^{(m)}(K)\right) \\
\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f \geq \limsup _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}_{s, h}^{(m)}} \sup _{K} f_{h}\right)
\end{gathered}
$$

The proof of the above theorem follows from Theorem 4.1. Proposition 5.1 and Theorem 5.4.

Theorem 6.2. Assume that

$$
f(u) \leq\left(\Gamma-\liminf _{h \rightarrow \infty} f_{h}\right)(u) \quad \text { for all } u \in L_{\mathrm{loc}}^{1}(\Omega)
$$

Then, for every $m \geq 1$, the sequence $\left(\mathcal{F}_{h}^{(m)}\right)$ is asymptotically equicoercive and we have

$$
\begin{gathered}
\mathcal{F}^{(m)}(K) \leq\left(\Gamma-\liminf _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K) \quad \text { for all } K \in \mathcal{K}, \\
\inf _{K \in \mathcal{K}} \mathcal{F}^{(m)}(K) \leq \liminf _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}} \mathcal{F}_{h}^{(m)}(K)\right), \\
\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f \leq \liminf _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}_{s, h}^{(m)}} \sup _{K} f_{h}\right) .
\end{gathered}
$$

The proof of the above theorem follows from Corollary 4.3. Proposition 5.1 and Theorem 5.4.

Corollary 6.3. Assume that

$$
f(u)=\left(\Gamma-\lim _{h \rightarrow \infty} f_{h}\right)(u) \quad \text { for all } u \in L_{\mathrm{loc}}^{1}(\Omega)
$$

Then, for every $m \geq 1$, the sequence $\left(\mathcal{F}_{h}^{(m)}\right)$ is asymptotically equicoercive and we have

$$
\begin{gathered}
\mathcal{F}^{(m)}(K)=\left(\Gamma-\lim _{h \rightarrow \infty} \mathcal{F}_{h}^{(m)}\right)(K) \quad \text { for all } K \in \mathcal{K} \\
\inf _{K \in \mathcal{K}} \mathcal{F}^{(m)}(K)=\lim _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}} \mathcal{F}_{h}^{(m)}(K)\right) \\
\inf _{K \in \mathcal{K}_{s}^{(m)}} \sup _{K} f=\lim _{h \rightarrow \infty}\left(\inf _{K \in \mathcal{K}_{s, h}^{(m)}} \sup _{K} f_{h}\right)
\end{gathered}
$$

The proof of the above corollary follows from Corollary 4.4. Proposition 5.1 and Theorem 5.4.

As an example, whenever $1 \leq p<N$ and $m \geq 1$, consider again $V_{p} \in L^{N / p}(\Omega)$ and the families $\mathcal{V}_{p}^{(m)}$ already defined in Section 5. Define

$$
\lambda_{p}^{(m)}=\inf _{K \in \mathcal{V}_{p}^{(m)}} \sup _{u \in K}\left(\mathcal{E}_{p}(u)\right)^{p}
$$

In particular, if $1<p<N$ we have

$$
\lambda_{p}^{(m)}=\inf _{K \in \mathcal{V}_{p}^{(m)}} \sup _{u \in K} \int_{\Omega}|\nabla u|^{p} d x .
$$

Theorem 6.4. Let $\left(p_{h}\right)$ be a sequence decreasing to p in $[1, N[$ and assume that

$$
\begin{gathered}
\lim _{h \rightarrow \infty} V_{p_{h}}(x)=V_{p}(x) \quad \text { for a.e. } x \in \Omega \\
\lim _{h \rightarrow \infty}\left\|V_{p_{h}}\right\|_{N / p_{h}}=\left\|V_{p}\right\|_{N / p}
\end{gathered}
$$

Then, for every $m \geq 1$, we have $\lim _{h \rightarrow \infty} \lambda_{p_{h}}^{(m)}=\lambda_{p}^{(m)}$.
Proof. Of course, it is equivalent to show that

$$
\lim _{h \rightarrow \infty}\left(\lambda_{p_{h}}^{(m)}\right)^{1 / p_{h}}=\left(\lambda_{p}^{(m)}\right)^{1 / p}
$$

By Theorem 5.2 we get the same values $\lambda_{p}^{(m)}$ using the $L_{\text {loc }}^{1}(\Omega)$-topology. Then the assertion follows from Corollary 6.3 and Theorem 5.3 .

Acknowledgments. This research was partially supported by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (INdAM)

References

[1] A. Ambrosetti, C. Sbordone; Γ-convergenza e G-convergenza per problemi non lineari di tipo ellittico, Boll. Un. Mat. Ital., A (5), 13 (1976), no. 2, 352-362.
[2] L. Ambrosio, P. Tilli; Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, 25, Oxford University Press, Oxford, 2004.
[3] H. Attouch; Variational convergence for functions and operators, Applicable Mathematics Series, Pitman, Boston, 1984.
[4] T. Bartsch; Topological methods for variational problems with symmetries, Lecture Notes in Mathematics, 1560, Springer-Verlag, Berlin, 1993.
[5] T. Champion, L. De Pascale; Asymptotic behaviour of nonlinear eigenvalue problems involving p-Laplacian-type operators, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), no. 6, 1179-1195.
[6] K. C. Chang; The spectrum of the 1-Laplace operator, Commun. Contemp. Math., 11 (2009), no. 5, 865-894.
[7] G. Dal Maso; An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, Boston, 1993.
[8] M. Degiovanni; Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura Appl., (4) 156 (1990), 37-71.
[9] M. Degiovanni, J. Eisner; Stability of essential values under Γ-convergence, Ricerche Mat., 49 (2000), suppl., 319-339.
[10] M. Degiovanni, P. Magrone; Linking solutions for quasilinear equations at critical growth involving the "1-Laplace" operator, Calc. Var. Partial Differential Equations, 36 (2009), no. 4, 591-609.
[11] E. R. Fadell, P. H. Rabinowitz; Bifurcation for odd potential operators and an alternative topological index, J. Functional Analysis, 26 (1977), no. 1, 48-67.
[12] E. R. Fadell, P. H. Rabinowitz; Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), no. 2, 139-174.
[13] A. Groli; On Γ-convergence for problems of jumping type, Electron. J. Differential Equations, (2003), No. 60, 16 pp.
[14] R. L. Jerrard, P. Sternberg; Critical points via Γ-convergence: general theory and applications, J. Eur. Math. Soc. (JEMS), 11 (2009), no. 4, 705-753.
[15] M. A. Krasnosel'skiĭ; Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book, The Macmillan Co., New York, 1964.
[16] S. Littig, F. Schuricht; Convergence of the eigenvalues of the p-Laplace operator as poes to 1, Calc. Var. Partial Differential Equations, 49 (2014), no. 1-2, 707-727.
[17] M. Lucia, F. Schuricht; A class of degenerate elliptic eigenvalue problems, Adv. Nonlinear Anal., 2 (2013), no. 1, 91-125.
[18] Z. Milbers, F. Schuricht; Existence of a sequence of eigensolutions for the 1-Laplace operator, J. Lond. Math. Soc. (2), 82 (2010), no. 1, 74-88.
[19] Z. Milbers, F. Schuricht; Some special aspects related to the 1-Laplace operator, Adv. Calc. Var., 4 (2011), no. 1, 101-126.
[20] Z. Milbers, F. Schuricht; Necessary condition for eigensolutions of the 1-Laplace operator by means of inner variations, Math. Ann., 356 (2013), no. 1, 147-177.
[21] E. Parini; Continuity of the variational eigenvalues of the p-Laplacian with respect to p, Bull. Aust. Math. Soc., 83 (2011), no. 3, 376-381.
[22] P. H. Rabinowitz; Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, 1986.
[23] W. Rudin; Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991.
[24] A. Szulkin, M. Willem; Eigenvalue problems with indefinite weight, Studia Math., 135 (1999), no. 2, 191-201.
[25] M. Willem; Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, Boston, 1996.

Marco Degiovanni
Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia, Italy

E-mail address: marco.degiovanni@unicatt.it
Marco Marzocchi
Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia, Italy

E-mail address: marco.marzocchi@unicatt.it

[^0]: 2000 Mathematics Subject Classification. 35P30, 49R05, 58E05.
 Key words and phrases. Nonlinear eigenvalues; variational convergence; p-Laplace operator; total variation.
 (C)2014 Texas State University - San Marcos.

 Submitted November 15, 2014. Published December 25, 2014.

