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RELATIONSHIP BETWEEN SOLUTIONS TO A QUASILINEAR
ELLIPTIC EQUATION IN ORLICZ SPACES

FEI FANG, ZHENG ZHOU

Abstract. In this article, we consider three types of solutions in Orlicz spaces

for the quasilinear elliptic problem

− div(a(|∇u|)∇u) = 0.

By applying a comparison principle, we establish the relationships between
viscosity supersolutions, weak supersolutions, and superharmonic functions.

1. Introduction

In this article, we study three types of solutions, in Orlicz-Sobolev spaces, to the
quasilinear elliptic problem

− div(a(|∇u|)∇u) = 0 . (1.1)

The operator − div(a|∇u|∇u) will be denoted by −∆P . As special case, when
a(t) = |t|p−2, the operator −∆P is the usual p-Laplacian.

In the past decades, there have been many publications about p-Laplacian equa-
tions; see [2, 3, 7, 8, 9, 15, 19]. With the background of Orlicz-Sobolev spaces, the
operator −∆P has been studied widely; see for example [5, 12, 13, 14, 24]. The
operator −∆P plays an important role in geometry and physics. The nonlinear
Hodge Theorem is generated by the operator −∆P , see [16] (each cohomology class
of a Manifold has a unique P -harmonic representative).

Also the operator −∆P has important physical background, for example:
(1) nonlinear elasticity: P (t) = (1 + t2)γ − 1, γ > 1

2 ;
(2) plasticity: P (t) = tα(log(1 + t))β , α ≥ 1, β > 0;
(3) generalized Newtonian fluids: P (t) =

∫ t
0
s1−α(sinh−1 s)βds, 0 ≤ α ≤ 1,

β > 0.
Obviously, the operator −div(a|∇u|∇u) is nonhomogeneous. To deal with this
situation, as in [4, 5, 12, 13, 14], we introduce an Orlicz-Sobolev space setting for
the operator. Set

p(t) :=

{
a(|t|)t, t 6= 0,
0, t = 0,

(1.2)
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where p(t) : R → R is an increasing homeomorphism from R onto itself (such
functions are called Young or N -functions). If we set

P (t) :=
∫ t

0

p(s)ds, P̃ (t) :=
∫ t

0

p−1(s)ds,

then P and P̃ are complementary N -functions (see [1, 22, 23]).
To construct an Orlicz-Sobolev space setting for operator −∆P , we Assume the

following conditions on p(t):
(P0) a(t) ∈ C1(0,+∞), a(t) > 0,
(P1) 1 < p− := inft>0

tp(t)
P (t) ≤ p

+ := supt>0
tp(t)
P (t) < +∞,

(P2) 0 < a− := inft>0
tp
′
(t)

p(t) ≤ a
+ := supt>0

tp
′
(t)

p(t) < +∞.

Under condition (P1), the function P (t) satisfies ∆2-condition; i.e.,

P (2t) ≤ kP (t), t > 0,

for some constant k > 0. Under the conditions (P0) and (P1), the Orlicz space LP

coincides with the set (equivalence classes) of measurable functions u : Ω→ R such
that ∫

Ω

P (|u|) dx < +∞. (1.3)

The space LP (Ω) is a Banach space endowed with the Luxemburg norm

|u|P := inf
{
k > 0,

∫
Ω

P

(
|u|
k

)
dx < 1

}
.

We shall denote by W 1,P (Ω) the corresponding Orlicz-Sobolev space with the norm

‖u‖W 1,P (Ω) := |u|P + ||∇u||P .

We denote by W 1,P
0 (Ω) the closure of C∞0 in W 1,P (Ω). The Orlicz-Sobolev conju-

gate function P∗ of P is given by

P−1
∗ (t) :=

∫ t

0

P−1(τ)

τ
N+1

N

dτ. (1.4)

Define a new norm

‖u‖1,P = ‖u‖ := inf
{
k > 0 :

∫
Ω

P
( |∇u|
k

)
dx < 1

}
.

One can prove the above two norms are equivalent. The reader is referred to
[1, 22, 23] for more information on Orlicz-Sobolev spaces. In the proofs of our
results we shall use the following results.

Lemma 1.1 ([1, 22, 23]). Under assumptions (P0) and (P1), the spaces LP (Ω),
W 1,P

0 (Ω) and W 1,P (Ω) are separable and reflexive Banach spaces.

Lemma 1.2 ([1, 22, 23]). Let P and Q be N -functions.
(1) If

∫ +∞
1

P−1(t)

t
N+1

N

= ∞ and Q grow essentially more slowly than P∗, then the

embedding W 1,P (Ω) ↪→ LQ(Ω) is compact and the embedding W 1,P (Ω) ↪→ LP∗(Ω)
is continuous.

(2) If
∫ +∞

1
P−1(t)

t
N+1

N

<∞, then the embedding W 1,P (Ω) ↪→ LQ(Ω) is compact and

the embedding W 1,P (Ω) ↪→ L∞(Ω) is continuous.
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Lemma 1.3. Under conditions (P0)–(P2), we have

(1) if 0 < t < 1, then P (1)tp
+ ≤ P (t) ≤ P (1)tp

−
;

(2) if t > 1, then P (1)tp
− ≤ P (t) ≤ P (1)tp

+
.

Lemma 1.4 ([12]). Let ρ(u) =
∫

Ω
P (u)dx, we have

(1) if |u|P < 1, then |u|p
+

P ≤ ρ(u) ≤ |u|p
−

P ;
(2) if |u|P > 1, then |u|p

−

P ≤ ρ(u) ≤ |u|p
+

P ;
(3) if 0 < t < 1, then tp

+
P (u) ≤ P (tu) ≤ tp−P (u);

(4) if t > 1, then tp
−
P (u) ≤ P (tu) ≤ tp+P (u).

Lemma 1.5 ([12]). Let ρ̃(u) =
∫

Ω
P̃ (u)dx, we have

(1) if |u|P̃ < 1, then |u|p
−/(p−−1)

P̃
≤ ρ̃(u) ≤ |u|p

+/(p+−1)

P̃
;

(2) if |u|P̃ > 1, then |u|p
+/(p+−1)

P̃
≤ ρ̃(u) ≤ |u|p

−/(p−−1)

P̃
;

(3) if 0 < t < 1, then tp
−/(p−−1)P̃ (u) ≤ P̃ (tu) ≤ tp+/(p+−1)P̃ (u);

(4) if t > 1, then tp
+/(p+−1)P̃ (u) ≤ P̃ (tu) ≤ tp−/(p−−1)P̃ (u).

Lemma 1.6 ([14, 22, 23]). Assuming that A(t) and Ã(t) are complementary N -
functions, we have:

(1) Young inequalities: uv ≤ A(u) + Ã(v);
(2) Hölder inequalities: |

∫
Ω
u(x)v(x)dx| ≤ 2|u|A|v|Ã;

(3) Ã(A(u)
u ) ≤ A(u);

(4) Ã∗(
A∗(u)
u ) ≤ A∗(u).

2. Main results and their proofs

As in [21], we define define: weak solutions, viscous solutions, and P -harmonic
functions, for

−∆Pu := −div(a(|∇u|)∇u) = 0. (2.1)

Definition 2.1. A function u ∈W 1,P
loc (Ω) is a weak supersolution (subsolution) of

(2.1) if ∫
Ω

a(|∇u|)∇u∇φdx ≥ (≤)0, (2.2)

for any φ ∈ C∞0 (Ω).

Definition 2.2. A function u : Ω→ (−∞,∞] is called a P -superharmonic function,
if u satisfies

(1) u is lower semicontinuous,
(2) u is bounded almost everywhere,
(3) the comparison principle holds: if v is a weak solution of (2.1) in D ⊂ Ω, u

is continuous on D̄, and u ≥ v on ∂D, then

u ≥ v on D.

A function u : Ω→ [−∞,∞) is P -subharmonic, if −u is P -superharmonic.

Definition 2.3. A function u : Ω → (−∞,∞] is a viscous supersolution of (2.1),
if u satisfies

(1) u is lower semicontinuous,
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(2) u is bounded almost everywhere,
(3) If there exist φ ∈ C2(Ω), such that u(x0) = φ(x0), u(x) > φ(x) and

Dφ(x0) 6= 0, when x 6= x0, then

−∆Pφ(x0) ≥ 0.

A function u : Ω → [−∞,+∞) is a viscosity subsolution to (2.1) if it is upper
semicontinuous, finite a.e., and (3) holds with the inequalities reversed. Hence, a
function u is a viscosity solution if it is both a viscosity supersolution and subso-
lution. The viscosity solution concept was introduced in the early 1980s by Lions
and Crandall as a generalization of the classical concept of what is meant by a
“solution” to a PDE. It has been found that the viscosity solution is the natural
solution concept to use in many applications of PDE’s, including first-order equa-
tions arising in optimal control (the Hamilton-Jacobi equation), differential games
(the Isaacs equation) or front evolution problems [10], as well as second-order equa-
tions such as the ones arising in stochastic optimal control or stochastic differential
games.

Now, we give the following results on the relationships among the viscous solu-
tions, weak solutions of (2.1), and P -harmonic functions.

Theorem 2.4. If u is a local bounded P -superharmonic function, then u is a
supersolution of (2.1).

Theorem 2.5. If u is a supersolution of (2.1), and u satisfies

u(x) = ess lim infy→x u(y) (2.3)

for all x ∈ Ω, then u is a P -superharmonic function.

Theorem 2.6. u is a viscous supersolution of (2.1) if and only if u is a P -
superharmonic function.

Proof of Theorem 2.4. By a similar discussion as in [17], we know that the following
two facts hold.

Fact 1: Let u be a P -superharmonic function in Ω and D ⊂ Ω an open set.
Then there exists an increasing sequence of continuous supersolutions {ui} in D
such that u = limi→∞ ui everywhere in D.

Fact 2: Assume {ui} is an increasing sequence of supersolutions in and that
u = limi→∞ ui is locally bounded. Then u is a supersolution in Ω.

So, by Fact 1, for a P -superharmonic function, we can find an an increasing
sequence {ui} of continuous supersolutions such that u = limi→∞ ui. Thus u is a
supersolution by Fact 2. �

Next we prove Theorems 2.5 and 2.6. First have a lemma whose proof can be
founded in [18, pp. 61-62].

Lemma 2.7. Assume that u, v are supersolution and subsolution of (2.1) respec-
tively, and u ≥ v on ∂Ω in Sobolev sense. Then u ≥ v a.e. in Ω.

Proof of Theorem 2.5. Using a similar method as in [17, Theorem 6.1], we know
that u, as a supersolution, is locally bounded below. By condition (2.3), u is lower
semicontinuous. Since u ∈ W 1,P

0 (Ω), u is bounded almost everywhere. Now we
will prove (3), i.e., the comparison principle holds. Let D ⊂ be an open subset of
Ω. Assume that h is a solution of (2.1) in D, which is upper-continuous in D̄, and
u ≥ h on ∂D. For any open set G ⊂ D, taking ε > 0, we let u+ε ≥ h on D \G. By
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lower semicontinuity of u, the set {u− h ≤ −ε} is closed. Hence, min{u+ ε− h, 0}
has compact support in G. From the Lemma 2.7, we know that u+ ε ≥ h hold a.e.
in G, then u + ε ≥ h in D. By condition (2.3), we get that u + ε ≥ h in D. Let
ε→ 0, the conclusion follows. �

To prove Theorem 2.6, we give some useful lemmas.

Lemma 2.8 ([12]). There exists k0 > 0, such that

(a(|ξ|)ξ − a(|η|)η) · (ξ − η) ≥ k0
P (|ξ − η|)

p−+1
p−

(P (|ξ|) + P (|η|))
1

p−
≥ 0. (2.4)

for any ξ, η ∈ RN , ξ 6= 0

Lemma 2.9. Let u, v ∈W 1,P (Ω) and (u− v)+ ∈W 1,P
0 (Ω). If∫

Ω

a(|∇u|)∇u · ∇φdx ≤
∫

Ω

a(|∇v|)∇v · ∇φdx, (2.5)

for any positive function φ ∈W 1,P
0 (Ω), then u ≤ v a.e. in Ω.

Proof. By the assumption and inequality (2.4), we have

0 ≤
∫

Ω

(a(|∇u|)∇u− a(|∇u|)∇v) · ∇(u− v)+dx ≤ 0. (2.6)

Since ∇(u− v)+ has zero boundary value, we have ∇(u− v)+ = 0. �

Lemma 2.10. Let u ∈W 1,P (Ω), uε ∈W 1,P
0 (Ω) are solutions of

− div(a(|∇u|)∇u) = 0, (2.7)

−div(a(|∇uε|)∇uε) = ε, ε > 0 (2.8)

respectively, and u− uε ∈W 1,P
0 (Ω), then uε converges to u, locally uniformly in Ω

as ε→ 0.

Proof. Similar to (2.6), we obtain∫
Ω

(a(|∇uε|)∇uε − a(|∇u|)∇u) · ∇(uε − u)dx = ε

∫
Ω

(uε − u)dx. (2.9)

For the right-hand term in (2.9), by Lemma 1.2, we deduce

ε

∫
Ω

(uε − u)dx ≤ Cε|∇uε −∇u|P . (2.10)

To estimate the left-hand term in (2.9), by inequalities (2.4) and (2.10), Lemma
1.4, and Hölder inequality, we have∫

Ω

P (|∇uε −∇u|)dx

≤
{∫

Ω

P (|∇uε −∇u|)
p−+1

p−

(P (|∇uε|) + P (|∇u|))
1

p−
dx
} p−

p−+1
{∫

Ω

(P (|∇uε|) + P (|∇u|))dx
} 1

p−+1

≤M
{ 1
k0

∫
Ω

(a(|∇uε|)∇uε − a(|∇u|)∇u) · ∇(uε − u)dx
} p−

p−+1

≤ CM 1
k0
ε{|∇uε −∇u|P }

p−

p−+1
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≤

CM
1
k0
ε
{ ∫

Ω
P (|∇uε −∇u|)dx

} 1
p−+1 , if |∇uε −∇u|P > 1,

CM 1
k0
ε
{ ∫

Ω
P (|∇uε −∇u|)dx

} p−

p+(p−+1) , if |∇uε −∇u|P < 1.

for a constant C > 0.
Then, we obtain that uε converges to u in W 1,P (Ω) as ε → 0. So uε → u a.e.

in Ω. By the regularity argument [24], we easily know that uε converges to u,
uniformly. �

Lemma 2.11. If vε ∈W 1,P (Ω) is a weak solution of

−∆P v = ε, (2.11)

and φ ∈ C2(Ω) satisfies vε(x0) = φ(x0), vε > φ(x), x 6= x0, where x0 is isolated
critical point of φ, or ∇φ(x0) 6= 0, then

lim sup
x→x0,x 6=x0

(−∆Pφ(x)) ≥ ε.

Proof. Without loss of generality, assuming x0 = 0. If the conclusion does not hold,
then there exists r > 0 such that

∇φ(x) 6= 0 and −∆Pφ(x) < 0,

for any 0 < |x| < r.
Next, we prove that φ is a weak subsolution of (2.11) in Br = B(0, r). Let

0 < ρ < r, for any positive η ∈ C∞0 (Br), integrating over Br \Bρ, we obtain

−
∫
|x|=ρ

ηa(|∇φ|)∇φ · x
ρ
dS =

∫
ρ<|x|<r

a(|∇φ|)∇φ · ∇ηdx+
∫
ρ<|x|<r

(∆Pφ)ηdx

It is easy to show that the left-hand term converges to 0 as ρ→ 0 by noticing that∣∣∣− ∫
|x|=ρ

ηa(|∇φ|)∇φ · x
ρ
dS
∣∣∣ ≤ ‖η‖∞max{a(|∇φ|), |∇φ|}ρn−1. (2.12)

By the assumptions, we have∫
ρ<|x|<r

(∆Pφ)ηdx ≥ −ε
∫
ρ<|x|<r

ηdx ≥ −ε
∫
Br

ηdx. (2.13)

Let ρ→ 0, we obtain ∫
Br

a(|∇φ|)∇φ · ∇ηdx ≤ ε
∫
Br

ηdx.

This means that φ is a weak subsolution.
Let m = inf∂Br (vε − φ) > 0, then φ̃ := φ + m is a weak solution of (2.11),

Moreover, φ̃ ≤ vε in ∂Br. Moreover, Lemma 2.9 implies that φ̃ ≤ vε in Br, which
contradicts with φ̃(0) > vε(0). The lemma holds. �

To prove Lemma 2.12, we decompose the operator ∆P into two terms, namely,

−∆Pu = −a(|∇u|)∆u− a′(|∇u|)|∇u|∇
2u∇u · ∇u
|∇u|2

= −a(|∇u|)∆u− a′(|∇u|)|∇u|∆∞u,
(2.14)

where ∆∞u := ∇2u∇u·∇u
|∇u|2 .
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Let X is a n order symmetric matrix, and

A(ξ) := a(|ξ|)I + a′(|ξ|)|ξ| ξ
|ξ|
⊗ ξ

|ξ|
,

F (ξ,X) := trace(A(ξ)X).

Then

∆Pφ = F (∇φ,D2φ) = trace(A(∇φ)D2φ), (2.15)

where ∇φ(x) 6= 0, D2φ = ( ∂2φ
∂xi∂xj

)n×n is Hessian matrix for φ.

Lemma 2.12. Assume that u is a viscous subsolution of (2.1), v is a weak solution
of −∆P v = ε, and u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. Without loss of generality, we assume ε = 1. To prove this conclusion, we
argue by contradiction and assume that u− v has a inner maximum, i.e.,

sup
Ω

(u− v) > sup
∂Ω

(u− v). (2.16)

Consider
wj(x, y) = u(x)− v(y)−Ψj(x, y), j = 1, 2, . . . , (2.17)

where

Ψj(x, y) =
j

q
|x− y|q, q > max{ p−

p− − 1
, 2}.

If (xj , yj) ∈ Ω̄ × Ω̄ is a maximum point of wj , then by (2.16) and [6, Proposition
3.7], we have (xj , yj) is a inner point for j large enough. Since

u(x)− v(y)−Ψj(x, y) ≤ u(xj)− v(yj)−Ψj(xj , yj), x, y ∈ Ω,

and let x = xj , we have

v(y) ≥ −Ψj(xj , y) + v(yj) + Ψj(xj , yj), y ∈ Ω.

Set

φj(y) = −Ψj(xj , y) + v(yj) + Ψ(xj , yj)−
1

q + 1
|y − yj |q+1,

Obviously, v − φj has a strict local minimum at yj . By Lemma 2.11, we obtain

lim sup
y→yj ,y 6=yj

(−∆Pφj(y)) ≥ 1,

which means xj 6= yj . In fact, if xj = yj , by simple calculation, we can get
−∆Pφj(y)→ 0 as y → yj , which is a contradiction.

Next we use a method similar to the proof [21, Proposition 3.3] to complete the
rest of proof. Since (xj , yj) is a local maximum of wj(x, y), then there exist n order
symmetric matrixes of Xj , Yj such that

(DxΨj(xj , yj), Xj) ∈ J̄2,+u(xj),

−(DyΨj(xj , yj), Yj) ∈ J̄2,−u(yj),

and [
Xj 0
0 −Yj

]
≤ D2Ψj(xj , yj) +

1
j

[D2Ψj(xj , yj)]2, (2.18)
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where J̄2,+u(xj), J̄2,−u(yj) are the closure of the second order superjet of u at xj
and the second order subjet of v at yj , respectively. One can refer to [6] for the
definition and properties of jet. By (2.18), one has

Xj ≤ Yj ,
in matrix sense. i.e., 〈(Yj −Xjξ, ξ)〉 ≥ 0 for all ξ ∈ RN . According to [6], viscosity
solutions can be defined using jets instead of test-functions as in Definition 2.3.
Since xj 6= yj , we obtain

ηj ≡ DxΨj(xj , yj) = −DyΨj(xj , yj) 6= 0.

Therefore, (η,X)→ F (η,X) is continuous in the neighbors of (ηj , Xj) and (ηj , Yj).
Since u is a subsolution of (2.1), we infer

−a(|ηj |)
[

trace(Xj) +
a′(|ηj |)ηj
a(|ηj |)

〈Xj
ηj
|ηj |

,
ηj
|ηj |
〉
]
≤ 0.

On the other hand, since ηj 6= 0, by definition of J̄2,− and Lemma 2.11, we obtain

−a(|ηj |)
[

trace(Yj) +
a′(|ηj |)ηj
a(|ηj |)

〈Yj
ηj
|ηj |

,
ηj
|ηj |
〉
]
≥ 1.

So,

0 < 1 ≤ −a(|ηj |)
[

trace(Yj) +
a′(|ηj |)ηj
a(|ηj |)

〈Yj
ηj
|ηj |

,
ηj
|ηj |
〉
]

+ a(|ηj |)
[

trace(Xj) +
a′(|ηj |)ηj
a(|ηj |)

〈Xj
ηj
|ηj |

,
ηj
|ηj |
〉
]

≤ 0,

where the last inequality follows from the fact Xj ≤ Yj . It means that our initial
assumption is false, so

sup
Ω

(u− v) = sup
∂Ω

(u− v) ≤ 0.

�

Proof of Theorem 2.6. Firstly, we prove that the P -superharmonic function is the
viscous supersolution of (2.1). Assuming v is superharmonic, and assuming by
contradiction that v is a not viscous supersolution of (2.1), then there is φ ∈ C2(Ω)
such that v(x0) = φ(x0), v(x) > φ(x) and

−∆Pφ(x0) < 0

for all x 6= x0,∇φ(x0) 6= 0. By continuity, there is r > 0 ∇φ(x) 6= 0 and

−∆Pφ(x) < 0

for all x ∈ B(x0, r). Let

m = inf
|x−x0|=r

(v(x)− φ(x)) > 0,

φ̃ = φ+m,

then φ̃ is a weak subsolution of (2.1) in B(x0, r), and φ̃ ≤ v on ∂B(x0, r). By
Lemma 2.9, φ̃ ≤ v in B(x0, r), thus

φ̃(x0) = φ(x0) +m > v(x0),

which is a contradiction.
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On the other hand, we assume that v is a viscous supersolution of (2.1), and we
will show that v is also a P -superharmonic function. Let D ⊂ Ω and let h ∈ C(D̄)
is a weak solution of (2.1) such that v ≥ h on ∂D. By the lower semicontinuity
of v, for each δ > 0, there exists a smooth domain D′ ⊂ D such that h ≤ v + δ
in D \D′. Here the reason for taking D is that h can be considered as boundary
value. Hence, h belongs to some Orlicz-Sobolev space instead of W 1,P

loc (D).
Given ε > 0, let hε be the unique weak solution of the equation

−∆Phε = −ε, ε > 0,

such that hε−h ∈W 1,P
0 (D′). Then hε is local Lipschitz continuous in D′ (see[24]).

Owing to the smoothness of D′, we have v + δ ≥ hε on ∂D′. From Lemma 2.10,
we easily know that hε converges uniformly to h locally in D′ as ε → 0. Finally,
Lemma 2.12 implies that v + δ ≥ hε in D′, and so v ≥ h in D. This completes our
proof. �

Remark 2.13. The equivalence of weak and viscosity solutions was firstly obtained
by Juutinen, Lindqvist and Manfredi [21] for the p-Laplace equation. In [20], Julin
and Juutinen gave a new proof for this result.

Remark 2.14. Obviously, our results are extension of [20, 21]. Moreover, in [20],
Julin and Juutinen suggest to consider the more generalized equation

− divA(x, u) = 0

and hope to obtain the similar results. Here we believe that if the operator
−divA(x, ·) is equipped a Musielak-Sobolev space, then the similar results can
be obtained. The reader is referred to [11] for more details on Musielak-Sobolev
space theory.

Remark 2.15. Following the method in [20] or [21], we can also obtain the similar
results for the following parabolic equation in Orlicz-Sobolev space

ut − div(a(|∇u|)∇u) = 0,

and we omit it.
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