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RELATIONSHIP BETWEEN SOLUTIONS TO A QUASILINEAR
ELLIPTIC EQUATION IN ORLICZ SPACES

FEI FANG, ZHENG ZHOU

ABSTRACT. In this article, we consider three types of solutions in Orlicz spaces
for the quasilinear elliptic problem

—div(a(|Vu|)Vu) = 0.

By applying a comparison principle, we establish the relationships between
viscosity supersolutions, weak supersolutions, and superharmonic functions.

1. INTRODUCTION

In this article, we study three types of solutions, in Orlicz-Sobolev spaces, to the
quasilinear elliptic problem

—div(a(|]Vu|)Vu) =0. (1.1)

The operator —div(a|Vu|Vu) will be denoted by —Ap. As special case, when
a(t) = [t|P~2, the operator —Ap is the usual p-Laplacian.

In the past decades, there have been many publications about p-Laplacian equa-
tions; see [2, [3, [7, [8, [0} 15l 19]. With the background of Orlicz-Sobolev spaces, the
operator —Ap has been studied widely; see for example [5 [12], 13 14, 24]. The
operator —Ap plays an important role in geometry and physics. The nonlinear
Hodge Theorem is generated by the operator —Ap, see [16] (each cohomology class
of a Manifold has a unique P-harmonic representative).

Also the operator —Ap has important physical background, for example:

(1) nonlinear elasticity: P(t) = (1+t2)Y —1,v > %;
(2) plasticity: P(t) = t*(log(1+1))?, a > 1, 3 > 0;
(3) generalized Newtonian fluids: P(t) = fot s'=(sinh* s)Pds, 0 < a < 1
8> 0.
Obviously, the operator — div(a|Vu|Vu) is nonhomogeneous. To deal with this
situation, as in [4} [5, 12} 13, [I4], we introduce an Orlicz-Sobolev space setting for

the operator. Set
a([t))t, t#0,
t) = 1.2
p(t) {0) o (12)

)
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where p(t) : R — R is an increasing homeomorphism from R onto itself (such
functions are called Young or N-functions). If we set

P(t) ::/0 p(s)ds, P(t) ::/0 pt(s)ds,

then P and P are complementary N-functions (see [T} 22} 23]).

To construct an Orlicz-Sobolev space setting for operator —Ap, we Assume the
following conditions on p(t):

(P0) a(t) € C*(0,+00), a(t) > 0,

(P1) 1 <p~ :=infis tlg((:)) < pt = supyg P((t)) < +00,

(P2) 0 <a™ :=inf;> p(g)) < ati=supys tp(()) < +o0.
Under condition (P1), the function P(t) satisfies As-condition; i.e.,
P(2t) < kP(t), t>0,

for some constant k > 0. Under the conditions (P0) and (P1), the Orlicz space L¥
coincides with the set (equivalence classes) of measurable functions u : @ — R such
that

/ P(|u]) dz < +o0. (1.3)
Q

The space L () is a Banach space endowed with the Luxemburg norm

lulp := inf {k > 0,/ P (|u|> dr < 1}.
Q k

We shall denote by W1¥(Q) the corresponding Orlicz-Sobolev space with the norm
[ullwr.r (o) = lulp + || Vullp.

We denote by W,'"(Q) the closure of C° in WP (Q). The Orlicz-Sobolev conju-

gate function P, of P is given by
t p—1
P~ (1)
)= / o dT. (1.4)
0 TN

= ||Ju| :inf{k>0:/QP(|vku)d <1}

One can prove the above two norms are equivalent. The reader is referred to
[T, 22, 23] for more information on Orlicz-Sobolev spaces. In the proofs of our
results we shall use the following results.

Lemma 1.1 ([1, 22, 23]). Under assumptions (P0) and (P1), the spaces LT (1),
Wol’P(Q) and WLF(Q) are separable and reflexive Banach spaces.
Lemma 1.2 ([1, 22, 23]). Let P and Q be N-functions.

(1) If f+°° Pfo) = oo and Q grow essentially more slowly than P,, then the

embedding Wt P(Q) — L9(Q) is compact and the embedding W1F(Q) — L (Q)
18 continuous.
(2) If f+°° PNH < oo, then the embedding WT (Q) — LP(Q) is compact and

the embedding VV1 P(Q) — L>(Q) is continuous.

Define a new norm




EJDE-2014/265 SOLUTIONS TO A QUASILINEAR ELLIPTIC EQUATION 3

Lemma 1.3. Under conditions (P0)—(P2), we have

1) if0<t <1, then <P <Pt ;

0 1, then P(1)t*" < P(t) < P(1)t?

(2) ift > 1, then P(1)tp’ < P(t) < P(1)tP
Lemma 1.4 ([12]). Let p(u) = [, P(u)dz, we have

(1) f lulp < 1, then |u|§z < o) < Jul} ;

) - +

(2) if [ulp > 1, then [ulls < p(u) < [uf}

(3) if0 <t <1, then t* P(u) < P(tu) < t*” P(u);

(4) ift > 1, then tp‘P(u) < P(tu) < t?" P(u).
Lemma 1.5 ([12]). Let j(u) = [, P(u)dz, we have

(1) if lulp <1, then |u|§;+/(P+ V<) < fufy Y

(2) if [ulp > 1, then [ufy, "7V < plu) < Juft, /P 7;

(3) if 0 <t <1, then t*" /® ~1) P(u) < P(tu) <tp+/( “DP(u);

(4) ift > 1, then t?" /@ =V P(u) < P(tu) < 7 /@ =1 P(u).
Lemma 1.6 ([14, 22, 23]). Assuming that A(t) and A(t) are complementary N -
functions, we have:

(1) Young inequalities: uv < A(u) + A(v);

(2) Holder inequalities: |fQ z)v(x)dx| < 2|ulalv| z;
(3) A(2M) < A(u);

() (A1) < 4, (w).

2. MAIN RESULTS AND THEIR PROOFS

As in [21], we define define: weak solutions, viscous solutions, and P-harmonic
functions, for
— Apu := —div(a(|Vu|)Vu) = 0. (2.1)

Definition 2.1. A function u € VVﬁ)CP (2) is a weak supersolution (subsolution) of

if

/ a(|Vu|)VuVedz > (<)0, (2.2)
for any ¢ € C3°(Q). !
Definition 2.2. A function u :  — (—o00, 0] is called a P-superharmonic function,

if u satisfies

(1) w is lower semicontinuous,

(2) w is bounded almost everywhere,

(3) the comparison principle holds: if v is a weak solution of inDCQ,u
is continuous on D, and u > v on D, then

u>v onD.
A function u : Q — [—00,00) is P-subharmonic, if —u is P-superharmonic.

Definition 2.3. A function u : Q@ — (—o0,00] is a viscous supersolution of (2.1)),
if u satisfies

(1) u is lower semicontinuous,
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(2) w is bounded almost everywhere,
(3) If there exist ¢ € C2(2), such that u(zg) = ¢(z0), u(z) > ¢(z) and
D¢(xg) # 0, when © # xg, then

7AP¢(I0> 2 0

A function u : Q — [—00,+00) is a viscosity subsolution to if it is upper
semicontinuous, finite a.e., and (3) holds with the inequalities reversed. Hence, a
function wu is a viscosity solution if it is both a viscosity supersolution and subso-
lution. The viscosity solution concept was introduced in the early 1980s by Lions
and Crandall as a generalization of the classical concept of what is meant by a
“solution” to a PDE. It has been found that the viscosity solution is the natural
solution concept to use in many applications of PDE’s, including first-order equa-
tions arising in optimal control (the Hamilton-Jacobi equation), differential games
(the Isaacs equation) or front evolution problems [I0], as well as second-order equa-
tions such as the ones arising in stochastic optimal control or stochastic differential
games.

Now, we give the following results on the relationships among the viscous solu-
tions, weak solutions of , and P-harmonic functions.

Theorem 2.4. If u is a local bounded P-superharmonic function, then u is a

supersolution of .
Theorem 2.5. Ifu is a supersolution of , and u satisfies

u(x) = essliminf, ., u(y) (2.3)
for all x € Q, then u is a P-superharmonic function.

Theorem 2.6. u is a viscous supersolution of (2.1)) if and only if v is a P-
superharmonic function.

Proof of Theorem[2.]} By a similar discussion as in [17], we know that the following
two facts hold.

Fact 1: Let u be a P-superharmonic function in 2 and D C €2 an open set.
Then there exists an increasing sequence of continuous supersolutions {u;} in D
such that v = lim;_, ., u; everywhere in D.

Fact 2: Assume {u;} is an increasing sequence of supersolutions in and that
u = lim; o u; is locally bounded. Then w is a supersolution in 2.

So, by Fact 1, for a P-superharmonic function, we can find an an increasing
sequence {u;} of continuous supersolutions such that v = lim;_, o, u;. Thus v is a
supersolution by Fact 2. ([

Next we prove Theorems [2.5] and First have a lemma whose proof can be
founded in [I8] pp. 61-62].

Lemma 2.7. Assume that u,v are supersolution and subsolution of (2.1)) respec-
tively, and u > v on 02 in Sobolev sense. Then u > v a.e. in Q.

Proof of Theorem[2.5. Using a similar method as in [I7, Theorem 6.1], we know
that u, as a supersolution, is locally bounded below. By condition (23)), u is lower
semicontinuous. Since u € WO1 ’P(Q)7 u is bounded almost everywhere. Now we
will prove (3), i.e., the comparison principle holds. Let D C be an open subset of
Q. Assume that h is a solution of in D, which is upper-continuous in D, and
u > h on D. For any open set G C D, taking ¢ > 0, we let u+¢ > hon D\ G. By
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lower semicontinuity of u, the set {u — h < —¢} is closed. Hence, min{u+¢ — h,0}
has compact support in G. From the Lemma [2.7] we know that u+¢ > h hold a.e.
in G, then uw+¢ > h in D. By condition , we get that u+¢e¢ > hin D. Let
¢ — 0, the conclusion follows. [l

To prove Theorem [2.6] we give some useful lemmas.

Lemma 2.8 ([12]). There exists ko > 0, such that

P = nl) > 0. (2.4)
(P(ED) + Pl

p_+1
e

(a(l€))€ — allnl)n) - (€ —n) = ko

for any &,n € RN, £#0
Lemma 2.9. Let u,v € WHP(Q) and (u—v)y € Wy P (Q). If

/ a(|Vu|)Vu - Vodz < / a(|Vv|)Vu - Vedz, (2.5)
Q Q

for any positive function ¢ € Wol’P(Q), then u < v a.e. in €.
Proof. By the assumption and inequality (2.4)), we have

0< /Q(a(|Vu|)Vu —a(|Vu|)Vv) - V(u — v)4dx < 0. (2.6)

Since V(u — v)4 has zero boundary value, we have V(u —v);1 = 0. O

Lemma 2.10. Let u € WHP(Q),u, € Wol’P(Q) are solutions of
—div(a(|Vu|)Vu) =0, (2.7)
—div(a(|Vue|)Vu:) =€, >0 (2.8)

respectively, and u — u. € Wg’P(Q), then ue converges to u, locally uniformly in §)
as e — 0.

Proof. Similar to (2.6, we obtain

/(a(|Vu5|)Vu5 —a(|Vu|)Vu) - V(ue — u)dx = 5/(u5 — u)dx. (2.9)
Q Q

For the right-hand term in (2.9)), by Lemma we deduce
5/(u5 —u)dx < Ce|Vue — Vu|p. (2.10)
Q

To estimate the left-hand term in (2.9), by inequalities (2.4]) and (2.10), Lemma
and Holder inequality, we have

/ P(|Vue — Vul)dx
Q
Pij'l 1

P(|Vue — Vul) ﬁ -
= {/Q (P(|Vu8|)+P(|vu|))pldx} {/Q(P(IWEIHP(NU\))CJQ;}

< M{ [ (@IVul) Vi — al|Vu) V) - V(. — e}

1 T
< CMk—e{WuE — Vu|p}r=+t
0
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OMe{ [y P(IVue — Vaul)dz}» 55, if [Vue — Vulp > 1,

CMEe{ [, P(Vue — Vul)dz} 77070, if |Vu. — Vu|p < 1.

for a constant C' > 0.

Then, we obtain that u. converges to u in WHF(Q) as e — 0. So u. — u a.e.
in Q. By the regularity argument [24], we easily know that u. converges to u,
uniformly. O

Lemma 2.11. Ifv. € WHP(Q) is a weak solution of
—Apv =g, (2.11)

and ¢ € C%(Q) satisfies ve(wo) = ¢(x0),ve > d(z),x # xo, where xq is isolated
critical point of ¢, or Vo (xg) # 0, then

limsup (—Apd(z)) > e.

T—T0,TFT0

Proof. Without loss of generality, assuming xzg = 0. If the conclusion does not hold,
then there exists » > 0 such that

Vo(x) #0 and — Apg(x) <0,

for any 0 < |z| < r.
Next, we prove that ¢ is a weak subsolution of (2.11) in B, = B(0,7). Let
0 < p < r, for any positive n € Cg°(B,), integrating over B, \ B,, we obtain

- / | na([V0) V- 2S5 = oIV - Viida + / (Apnda
z|=p

p<lz|<r p<lz|<r

It is easy to show that the left-hand term converges to 0 as p — 0 by noticing that
x ne
= [ maVODTa- 7dS] < Il max{a(VOD, Wl (212
z|=p

By the assumptions, we have

/ (Apd)ndx > —5/ ndx > —5/ ndx. (2.13)
p<lz|<r p<lz|<r B

I3

Let p — 0, we obtain

/ a(|Ve|)Veo - Vndx < 5/ ndzx.
B

[ B,
This means that ¢ is a weak subsolution.
Let m = infpp (ve — @) > 0, then ¢ := ¢ + m is a weak solution of (2.11)),
Moreover, ¢ < v. in dB,. Moreover, Lemma implies that ¢ < v, in B,., which

contradicts with ¢(0) > v.(0). The lemma holds. O
To prove Lemma [2.12] we decompose the operator Ap into two terms, namely,
V2uVu - Vu
—Apu = —a(|Vu|)Au — o' (|Vu]) | Vu| ——=——
pu = —a(|Vul)u — o' (| V| Vul (i o

= —a(|Vu|)Au — ' (|Vul)|Vul| A,

.— Y’uVu-Vu
where A u 1= N
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Let X is a n order symmetric matrix, and

A(€) = a<|f>1+a'<|s|>§|§| ® g

F(¢, X) := trace(A(§)X).
Then
Ap¢ = F(V, D*¢) = trace(A(Vp)D?¢), (2.15)
where Vo (x) # 0, D?¢p = (%)nxn is Hessian matrix for ¢.
Lemma 2.12. Assume that u is a viscous subsolution of , v is a weak solution
of —Apv=c¢, and u <v on Q. Then u < v in Q.

Proof. Without loss of generality, we assume € = 1. To prove this conclusion, we
argue by contradiction and assume that v — v has a inner maximum, i.e.,

sup(u —v) > sup(u — v). (2.16)
Q o0

Consider

wj(z,y) =u(x) —v(y) — ¥;(z,y), j=12,..., (2.17)
where
p
p— 1,2}.
If (z;,y;) € Q x Q is a maximum point of w;, then by and [6, Proposition
3.7], we have (z;,y;) is a inner point for j large enough. Since

J
Vilw,y) =" le =yl q>max{

and let x = z;, we have

o(y) = =V;(xj,y) +o(y;) + ¥;(5,95),y € Q.
Set
81(0) = —W5(w5.9) + 0lu) + Wy 05) = —ly = w1
Obviously, v — ¢; has a strict local minimum at y;. By Lemma we obtain

limsup (—Apg;(y)) > 1,
Y=Y YFYj

which means z; # y;. In fact, if x; = y;, by simple calculation, we can get
—Ap¢p;i(y) — 0 as y — y;, which is a contradiction.

Next we use a method similar to the proof [21, Proposition 3.3] to complete the
rest of proof. Since (z;,y;) is a local maximum of w;(z,y), then there exist n order
symmetric matrixes of X;,Y; such that

(Do (z5,9;), X;) € T u(zy),
—(DyV(x5,y5),Y;) € J>uly;),
and

X; 0 1
J v < qujj(xjayj) + f[qulj(zjvyj)]{ (218)
0 Y j
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where J2Fu(z;), J>u(y;) are the closure of the second order superjet of u at x;
and the second order subjet of v at y;, respectively. One can refer to [6] for the
definition and properties of jet. By (2.18]), one has

in matrix sense. i.e., ((Y; — X;£,€)) > 0 for all £ € RY. According to [6], viscosity
solutions can be defined using jets instead of test-functions as in Definition [2.3
Since x; # y;, we obtain

n; = DaV(xj,y;) = =Dy V(x;,y;) # 0.

Therefore, (1, X) — F(n, X) is continuous in the neighbors of (n;, X;) and (n;,Y;).
Since u is a subsolution of (2.1]), we infer
a'(Iniln; 1
LU (o, i Thy] <

a(|n;|) n51 " n;]
On the other hand, since n; # 0, by definition of J%~ and Lemma we obtain
a'(IniDnj M M

J J <Y J 7J>] >

a(ln;1) 7 njl” Ins

—a(|n;)[ trace(X;) +

—a(|n;|)[ trace(Y;) +

So,

a'(InjDmj - 1 15
ainh il gl
a(lmI)m<X,nj ﬂﬂ

a(ln;l) 7 Il Injl

0 <1< —a(|n;|)|trace(Y;) +

+ a(|n; ) [ trace(X;) +

<0,
where the last inequality follows from the fact X; <Yj. It means that our initial

assumption is false, so

sup(u — v) = sup(u —v) < 0.
Q BNyl

O
Proof of Theorem[2.6 Firstly, we prove that the P-superharmonic function is the

viscous supersolution of (2.1)). Assuming v is superharmonic, and assuming by
contradiction that v is a not viscous supersolution of (2.1)), then there is ¢ € C?(Q)
such that v(zg) = @(zo),v(z) > ¢(z) and

—Ap¢($0) <0
for all x # xo, Vo () # 0. By continuity, there is r > 0 V¢(z) # 0 and

—Ap(ﬁ(.'lﬁ) <0
for all x € B(xg,r). Let

m= inf (v(x)—¢(x)) >0,

|z—zo|=r

¢=0+m,

then ¢ is a weak subsolution of (2.1)) in B(zg,r), and ¢ < von 0B(zg,r). By
Lemma ¢ < wvin B(xg,r), thus

d(x0) = ¢(x0) +m > v(x0),

which is a contradiction.
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On the other hand, we assume that v is a viscous supersolution of (2.1)), and we
will show that v is also a P-superharmonic function. Let D C Q and let h € C(D)
is a weak solution of such that v > h on 0D. By the lower semicontinuity
of v, for each § > 0, there exists a smooth domain D’ C D such that h < v+ 4
in D\ D’. Here the reason for taking D is that h can be considered as boundary
value. Hence, h belongs to some Orlicz-Sobolev space instead of Wli)’cp (D).

Given € > 0, let h. be the unique weak solution of the equation

—Aph. = —g,e >0,

such that h, —h € Wy* (D). Then h, is local Lipschitz continuous in D’ (see[24]).
Owing to the smoothness of D’, we have v +¢d > h, on dD’. From Lemma :2.10
we easily know that h. converges uniformly to h locally in D’ as ¢ — 0. Finally,
Lemma implies that v +¢ > h, in D’, and so v > h in D. This completes our
proof. (I

Remark 2.13. The equivalence of weak and viscosity solutions was firstly obtained
by Juutinen, Lindqvist and Manfredi [21] for the p-Laplace equation. In [20], Julin
and Juutinen gave a new proof for this result.

Remark 2.14. Obviously, our results are extension of [20, 21]. Moreover, in [20],
Julin and Juutinen suggest to consider the more generalized equation

—divA(z,u) =0

and hope to obtain the similar results. Here we believe that if the operator
—div A(z,-) is equipped a Musielak-Sobolev space, then the similar results can
be obtained. The reader is referred to [II] for more details on Musielak-Sobolev
space theory.

Remark 2.15. Following the method in [20] or [2I], we can also obtain the similar
results for the following parabolic equation in Orlicz-Sobolev space

ug — div(a(|Vu|)Vu) =0,
and we omit it.
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