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SOLUTION OF AN INITIAL-VALUE PROBLEM FOR
PARABOLIC EQUATIONS VIA MONOTONE

OPERATOR METHODS

VINCENZO LA ROSA, CALOGERO VETRO

Abstract. We study a general initial-value problem for parabolic equations
in Banach spaces, by using a monotone operator method. We provide sufficient

conditions for the existence of solution to such problem.

1. Introduction

Over the years, the theory of differential equations has been well investigated and
consequently the methods developed for their solution are strongly related to the
particular equation, see for instance [3]. In [6], Evans furnishes a comprehensive
study on this topic. In this paper, referring to heat equation variants, we con-
sider the existence of solutions for the following initial-value problem for parabolic
equations:

ut(x, t) = q(x, t, u(x, t)) + kuxx(x, t), x ∈ R, t ∈ (0, T ],

u(x, 0) = ϕ(x), x ∈ R,
(1.1)

where we assume that q : R × [0, T ] × R → R is a continuous function, ϕ : R → R
is continuously differentiable, ϕ and ϕ′ are bounded and k, T > 0.

A function u : R× [0, T ]→ R is a solution of the parabolic equation (1.1) if:
(S1) u ∈ C(R× [0, T ]);
(S2) ut, uxx ∈ C(R× [0, T ]);
(S3) u is bounded in R× [0, T ];
(S4) ut(x, t) = q(x, t, u(x, t)) + uxx(x, t) for all (x, t) ∈ R× [0, T ].
The existence and uniqueness of solutions for general initial-value problems on

some (possibly small) interval have been studied extensively, see for instance [2, 12]
and the references therein. Practically, researchers are interested in establishing
how large this interval might be and how solutions of initial-value problems change
when the differential equation or initial conditions are perturbed. In this direc-
tion, some results are obtained by using simple notions and techniques of fixed
point theory. For instance, the well-known Banach’s contraction principle is an
important tool for studying the existence and uniqueness of fixed points of certain

2000 Mathematics Subject Classification. 35K15, 47H07, 47H10.
Key words and phrases. Banach spaces; metric spaces; monotone operators;

parabolic equations; transitive relations.
c©2014 Texas State University - San Marcos.

Submitted April 18, 2014. Published October 22, 2014.

1



2 V. LA ROSA, C. VETRO EJDE-2014/225

self-mappings in metric spaces. Also, it provides a constructive method to find
those fixed points. Finally, various applications to matrix equations, ordinary dif-
ferential equations, and integral equations were presented by using this principle
and its generalizations and extensions, see for instance [1, 5, 9, 11].
Thus, we give a generalization of a fixed point theorem for monotone mappings,
due to Gordji et al [8], in the setting of complete metric spaces endowed with a
transitive relation. Then, by combining our result with Green’s function formalism,
we discuss the existence of solution for the initial-value problem (1.1) via monotone
operator methods.

2. Preliminaries

Let X be a nonempty set. In the sequel M denotes a transitive relation on X,
that is, M is a subset of X ×X such that (x, z) ∈M whenever (x, y), (y, z) ∈M.
Let f : X → X be a mapping andM a subset of X ×X. The setM is f -invariant
if (fx, fy) ∈M whenever (x, y) ∈M.

Example 2.1. Let � be a partial order on X such that (X,�) is a partially ordered
set. Then

M = {(x, y) ∈ X ×X : x � y}
is a transitive relation on X. Also if f : X → X is a nondecreasing mapping, then
the set M is f -invariant.

Now, we present a generalization of Banach’s contraction principle, which will
be extended in this paper. This result is due to Geraghty [7] and was proved by
using the following class of functions.

Definition 2.2. Let Γ denote the class of functions β : [0,+∞) → [0, 1) which
satisfy the condition:

β(tn)→ 1 implies tn → 0, as n→ +∞.

Geraghty proved the following result.

Theorem 2.3. Let (X, d) be a complete metric space and f : X → X be a mapping.
Assume that there exists β ∈ Γ such that

d(fx, fy) ≤ β(d(x, y))d(x, y)

for all x, y ∈ X. Then f has a unique fixed point z ∈ X and, for any choice of
the initial point x0 ∈ X, the sequence {xn} defined by xn = fxn−1 for each n ∈ N
converges to the point z.

On the same line of research, Gordji et al [8] proved existence and uniqueness
results. Before giving a comprehensive theorem, we recall the following class of
control functions.

Definition 2.4. Let Ψ denote the class of functions ψ : [0,+∞)→ [0,+∞) which
satisfy the following conditions:

(i) ψ is nondecreasing;
(ii) ψ is continuous;

(iii) ψ(t) = 0 if and only if t = 0.

Note that, unlike Gordji et al [8], we do not assume that the function ψ is
subadditive. Then, we have:
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Theorem 2.5 ([8, Theorems 2.2-2.3]). Let (X,�) be a partially ordered set and
suppose that there exists a metric d in X such that (X, d) is a complete metric
space. Let f : X → X be a nondecreasing mapping such that there exists x0 ∈ X
with x0 � fx0. Suppose that there exist β ∈ Γ and subadditive ψ ∈ Ψ such that

ψ(d(fx, fy)) ≤ β(ψ(d(x, y)))ψ(d(x, y))

for all x, y ∈ X with x � y. Assume that either f is continuous or X is such
that if an increasing sequence {xn} converges to x, then xn � x for each n ∈ N.
Then f has a fixed point. Besides, if for all x, y ∈ X, there exists z ∈ X which is
comparable to x and y, then f has a unique fixed point in X.

For our further use, we state also the following lemma.

Lemma 2.6. Let (X, d) be a metric space and {xn} be a sequence in X such that:

lim
n→+∞

d(xn+1, xn) = 0.

If {x2n} is not a Cauchy sequence, then there exist ε > 0 and two sequences {mk},
{nk} of positive integers, with mk < nk, such that the following four sequences
{d(x2mk

, x2nk)}, {d(x2mk
, x2nk+1)}, {d(x2mk−1, x2nk)}, {d(x2mk−1, x2nk+1)} tend

to ε as k → +∞.

Notice that assertions similar to Lemma 2.6 (see, e.g. [10]) were used (and
proved) in the course of proofs of some fixed point theorems in various papers.

3. Main Results

Next, we give two existence results with and without continuity hypothesis.
Let f : X → X be a mapping and denote

M(x, y) := max
{
d(x, y), d(x, fx), d(y, fy),

1
2

[d(x, fy) + d(fx, y)]
}

for all x, y ∈ X. In the first theorem, we use the continuity hypothesis of f .

Theorem 3.1. Let (X, d) be a complete metric space endowed with a transitive
relation M on X and f : X → X be a mapping. Assume that the following
conditions hold:

(i) there exist β ∈ Γ and ψ ∈ Ψ such that

ψ(d(fx, fy)) ≤ β(M(x, y))ψ(M(x, y)) (3.1)

for all (x, y) ∈M with x 6= y;
(ii) there exists x0 ∈ X such that (x0, fx0) ∈M;
(iii) M is f -invariant;
(iv) f is continuous.

Then f has a fixed point.

Proof. Let x0 ∈ X such that (x0, fx0) ∈ M. We consider the sequence {xn}
defined by xn = fxn−1 for all n ∈ N. If xn−1 = xn for some n ∈ N, then xn−1 is a
fixed point of f and the existence of a fixed point is proved. Now, we suppose that
xn−1 6= xn for all n ∈ N. From (x0, x1) = (x0, fx0) ∈ M, since M is f -invariant,
we deduce (x1, x2) = (fx0, fx1) ∈M. This implies

(xn−1, xn) ∈M for all n ∈ N. (3.2)
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Now, using (3.1) with x = xn−1 and y = xn, we have

ψ(d(xn, xn+1)) = ψ(d(fxn−1, fxn)) ≤ β(M(xn−1, xn))ψ(M(xn−1, xn)), (3.3)

where

M(xn−1, xn)

= max{d(xn−1, xn), d(xn−1, fxn−1), d(xn, fxn),
1
2

[d(xn−1, fxn) + d(fxn−1, xn)]}

= max{d(xn−1, xn), d(xn, xn+1),
1
2
d(xn−1, xn+1)}

= max{d(xn−1, xn), d(xn, xn+1)}.

If M(xn−1, xn) = d(xn, xn+1), by (3.3), we have

ψ(d(xn, xn+1)) ≤ β(d(xn, xn+1))ψ(d(xn, xn+1)) < ψ(d(xn, xn+1))

which is a contradiction. Then M(xn−1, xn) = d(xn−1, xn). By (3.3), we obtain

ψ(d(xn, xn+1)) ≤ β(d(xn−1, xn))ψ(d(xn−1, xn)) < ψ(d(xn−1, xn)). (3.4)

Thus {d(xn−1, xn)} is a decreasing sequence of nonnegative numbers and hence
there exists

lim
n→+∞

d(xn, xn+1) = r ≥ 0.

Assume r > 0. Since ψ(d(xn−1, xn)) 6= 0 for all n ∈ N, from (3.4) we deduce

ψ(d(xn, xn+1))
ψ(d(xn−1, xn))

≤ β(d(xn−1, xn)) ≤ 1 for all n ∈ N. (3.5)

Letting n→ +∞ in (3.5), by the continuity of the function ψ, we obtain

lim
n→+∞

β(d(xn−1, xn)) = 1.

On the other hand, since β ∈ Γ, we have limn→+∞ d(xn−1, xn) = 0 and so r = 0.
Now, we show that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy
sequence. This implies that {x2n} is not a Cauchy sequence. SinceM is a transitive
relation, from (xn−1, xn) ∈ M for all n ∈ N, we deduce that (xm, xn) ∈ M for all
m,n ∈ N with m < n. If ε, {mk} and {nk} are as in Lemma 2.6, using (3.1) with
x = x2mk−1 and y = x2nk obviously we can assume that x2mk−1 6= x2nk , it follows
that

ψ(d(x2mk
, x2nk+1)) ≤ β(M(x2mk−1, x2nk))ψ(M(x2mk−1, x2nk)) (3.6)

where

M(x2mk−1, x2nk) = max
{
d(x2mk−1, x2nk), d(x2mk−1, x2mk

), d(x2nk , x2nk+1),

1
2

[d(x2mk−1, x2nk+1) + d(x2mk
, x2nk)]

}
.

Then, for k → +∞, we obtain M(x2mk−1, x2nk)→ ε.
We can assume ψ(M(x2mk−1, x2nk)) > 0 for all k ∈ N. From (3.6), we have

ψ(d(x2mk
, x2nk+1))

ψ(M(x2mk−1, x2nk))
≤ β(M(x2mk−1, x2nk)) ≤ 1

for all k ∈ N. Now, letting k → +∞ in the previous inequality, by the continuity
of the function ψ and Lemma 2.6, we obtain

lim
k→+∞

β(M(x2mk−1, x2nk)) = 1.
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Since β ∈ Γ, we have
lim

k→∞
M(x2mk−1, x2nk) = 0

a contradiction and hence {xn} is a Cauchy sequence in (X, d). Since (X, d) is a
complete metric space, there exists z ∈ X such that limn→+∞ xn = z.

If f is a continuous mapping, then

z = lim
n→+∞

xn+1 = lim
n→+∞

fxn = fz

and hence fz = z, that is, z is a fixed point of f . �

In the next theorem, we omit the continuity hypothesis of f .

Theorem 3.2. Let (X, d) be a complete metric space endowed with a transitive
relation M on X and f : X → X be a mapping. Assume that the following
conditions hold:

(i) there exist β ∈ Γ and ψ ∈ Ψ such that

ψ(d(fx, fy)) ≤ β(M(x, y))ψ(M(x, y)) (3.7)

for all (x, y) ∈M with x 6= y;
(ii) there exists x0 ∈ X such that (x0, fx0) ∈M;
(iii) M is f -invariant;
(iv) if {xn} is a sequence in X such that (xn, xn+1) ∈ M for all n ∈ N and

xn → z ∈ X as n→ +∞, then (xn, z) ∈M for all n ∈ N.
Then f has a fixed point.

Proof. Following the proof of Theorem 3.1, we know that {xn} is a Cauchy sequence
in the complete metric space (X, d). Then, there exists z ∈ X such that xn → z as
n→ +∞. On the other hand, from (3.2) and the hypothesis (iv), we have

(xn, z) ∈M for all n ∈ N.
We assume that z 6= fz. From xn 6= xn+1 follows that there exists a subsequence
{xnk} of {xn} with xnk 6= z for all n ∈ N. Using (3.7) with x = xnk and y = z, we
get

ψ(d(fxnk , fz)) ≤ β(M(xnk , z))ψ(M(xnk , z)) < ψ(M(xnk , z)) (3.8)
where

M(xnk , z)

= max
{
d(xnk , z), d(xnk , fxnk), d(z, fz),

1
2

[d(xnk , fz) + d(z, fxnk)]
}

= max
{
d(xnk , z), d(xnk , xnk+1), d(z, fz),

1
2

[d(xnk , z) + d(z, fz) + d(z, xnk+1)]
}
.

Since d(xnk , z), d(xnk , xnk+1)→ 0 as k → +∞, for k great enough, we have

M(xnk , z) = d(z, fz).

Thus from (3.8), we obtain

ψ(d(fxnk , fz)) ≤ β(d(z, fz))ψ(d(z, fz)) (3.9)

for k great enough. Letting k → +∞ in (3.9), by the continuity of the function ψ,
we have

ψ(d(z, fz)) ≤ β(d(z, fz))ψ(d(z, fz)) < ψ(d(z, fz))
Therefore, fz = z; this completes the proof. �
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Thus, by using Theorems 3.1 and 3.2, we are able to establish the existence of
a fixed point. Next step is to give sufficient conditions for obtaining uniqueness.
Precisely, we will consider the following hypothesis:

(U1) For all (x, y) /∈M there exists z ∈ X such that (x, z), (y, z) ∈M and

lim
n→+∞

d(fn−1z, fnz) = 0.

Theorem 3.3. Adding condition (U1) to the hypotheses of Theorem 3.1 (resp.
Theorem 3.2) we obtain uniqueness of the fixed point of f .

Proof. Suppose that x and y, with x 6= y, are two fixed points of f . If (x, y) ∈M,
using (3.1) we have

ψ(d(x, y)) = ψ(d(fx, fy)) ≤ β(M(x, y))ψ(M(x, y))

= β(d(x, y))ψ(d(x, y)) < ψ(d(x, y)),

which is a contradiction and hence x = y. If (x, y) /∈ M, from (U1), there exists
z ∈ X such that (x, z), (y, z) ∈ M. Put zn = fnz for all n ∈ N. Since M is
f -invariant, we have (x, zn), (y, zn) ∈ M for all n ∈ N. Now, using (3.1) for all
n ∈ N such that zn 6= {x, y}, we obtain

ψ(d(x, zn+1)) = ψ(d(fx, fzn)) ≤ β(M(x, zn))ψ(M(x, zn)), (3.10)

ψ(d(y, zn+1)) = ψ(d(fy, fzn)) ≤ β(M(y, zn))ψ(M(y, zn)). (3.11)

Step 1. Assume that there exists a subsequence {znk} of {zn} such that znk → x.
If {znk} has a subsequence that converges to y, in this case we can assume that
znk → y, then from d(x, y) ≤ d(x, znk) + d(znk , y) letting k → +∞, we obtain
d(x, y) = 0, that is x = y. Now, we assume that d(y, znk) > 0 for all k ∈ N. From
(3.11), we have

ψ(d(y, znk+1))
ψ(M(y, znk))

≤ β(M(y, znk)) ≤ 1 (3.12)

for all k ∈ N, where

M(y, znk) = max{d(y, znk), d(y, fy), d(znk , fznk),
1
2

[d(y, fznk) + d(znk , fy)]}

= max{d(y, znk), d(znk , znk+1),
1
2

[d(y, znk+1) + d(znk , y)]}.

Using the continuity of the function ψ, letting k → +∞ in (3.12), we obtain

lim
k→+∞

β(M(y, znk)) = 1 which implies d(y, x) = lim
k→+∞

M(y, znk) = 0

a contradiction and hence x = y. The same holds if there exists a subsequence
{znk} of {zn} such that znk → y.
Step 2. We consider the case that there exist ε > 0 and n(ε) ∈ N such that
d(x, zn) ≥ ε for all n ≥ n(ε). From condition (U1),

M(x, zn) = max{d(x, zn), d(x, fx), d(zn, fzn),
1
2

[d(x, fzn) + d(zn, fx)]}

= max{d(x, zn), d(zn, zn+1),
1
2

[d(x, zn+1) + d(zn, x)]}

and (3.10), we deduce that M(x, zn) = d(x, zn) for n great enough. Consequently,
by (3.10), the sequence {d(x, zn)} for n great enough is decreasing and hence
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d(x, zn) → r ≥ 0. Assume r > 0. Using the continuity of the function ψ, let-
ting n→ +∞ in (3.10), we get

lim
n→+∞

β(M(x, zn)) = 1 which implies r = lim
n→+∞

M(x, zn) = 0

a contradiction and hence r = 0. Similarly, one can prove that d(y, zn) → 0 and
hence d(x, y) = 0, that is, x = y. �

Proceeding as in the proof of Theorems 3.1 and 3.3, we obtain the following
theorem; to avoid repetitions the details are omitted.

Theorem 3.4. Let (X, d) be a complete metric space endowed with a transitive
relation M on X and f : X → X be a mapping. Assume that the following
conditions hold:

(i) there exist β ∈ Γ and ψ ∈ Ψ such that

ψ(d(fx, fy)) ≤ β(ψ(d(x, y)))ψ(d(x, y))

for all (x, y) ∈M with x 6= y;
(ii) there exists x0 ∈ X such that (x0, fx0) ∈M;

(iii) M is f -invariant;
(iv) f is continuous.

Then f has a fixed point. In addition, the fixed point is unique provided that
(v) for all (x, y) /∈M there exists z ∈ X such that (x, z), (y, z) ∈M.

Proceeding as in the proof of Theorems 3.2 and 3.3, we obtain the following
theorem.

Theorem 3.5. Let (X, d) be a complete metric space endowed with a transitive
relation M on X and f : X → X be a mapping. Assume that the following
conditions hold:

(i) there exist β ∈ Γ and ψ ∈ Ψ such that

ψ(d(fx, fy)) ≤ β(ψ(d(x, y)))ψ(d(x, y))

for all (x, y) ∈M with x 6= y;
(ii) there exists x0 ∈ X such that (x0, fx0) ∈M;
(iii) M is f -invariant;
(iv) if {xn} is a sequence in X such that (xn, xn+1) ∈ M for all n ∈ N and

xn → z ∈ X as n→ +∞, then (xn, z) ∈M for all n ∈ N.
Then f has a fixed point. In addition, the fixed point is unique provided that

(v) for all (x, y) /∈M there exists z ∈ X such that (x, z), (y, z) ∈M.

Notice that Theorems 3.4 and 3.5 are generalizations of Theorem 2.5 of Gordji
et al [8]. In fact, we get Theorem 2.5 if we choose the set M as in Example 2.1.
Also, from Theorem 3.4, we deduce the result of Geraghty (Theorem 1) if we choose
M = X ×X and ψ(t) = t.

4. Initial-value problem for parabolic equations

In this section, we adapt the calculations in [8] to our situation. Precisely, by
using Theorem 3.5, we study the existence of solution for the initial-value problem
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(1.1). It is well-know that this problem, see [12], is equivalent to the integral
equation:

u(x, t) =
∫ t

0

dτ

∫ ∞
−∞

e−
(x−ξ)2
4k(t−τ)√

4πk(t− τ)
q(ξ, τ, u(ξ, τ))dξ +

∫ ∞
−∞

e−
(x−ξ)2

4kt

√
4πkt

ϕ(ξ)dξ (4.1)

for all x ∈ R and t ∈ (0, T ].
Here, we consider the Banach space (Ω, ‖ · ‖), where

Ω = {v(x, t) : v, vx ∈ C(R× [0, T ]) and ‖v‖ < +∞},
‖v‖ = sup

x∈R,t∈[0,T ]

|v(x, t)|+ sup
x∈R,t∈[0,T ]

|vx(x, t)|.

Clearly (Ω, ‖ · ‖) with the metric d given by

d(u, v) = sup
x∈R,t∈[0,T ]

|u(x, t)− v(x, t)|+ sup
x∈R,t∈[0,T ]

|ux(x, t)− vx(x, t)|

is a complete metric space. Also the set Ω can be naturally endowed with the
partial order:

for all u, v ∈ Ω, u � v ⇐⇒ u(x, t) ≤ v(x, t) for any x ∈ R and t ∈ [0, T ].

Now we consider a monotone nondecreasing sequence {vn} ⊆ Ω converging to
v ∈ Ω, for all x ∈ R and t ∈ [0, T ]. This means that

v1(x, t) ≤ v2(x, t) ≤ v3(x, t) ≤ · · · vn(x, t) ≤ · · · ≤ v(x, t)

for all x ∈ R and t ∈ [0, T ]. Therefore, condition (iv) of Theorem 3.5 holds true,
by choosing the set M as in Example 2.1.

Our theorem in this section links the existence of a solution for the initial-value
problem (1.1) to the existence of a fixed point for an integral operator. The reader is
referred to the paper of Aronson and Serrin [4] for further discussion of hypotheses
below.

Theorem 4.1. Assume that the following conditions hold:

(a) for any c > 0 with |u| < c, the function q(x, t, u) is bounded and uniformly
Hölder continuous in x and in t for each compact subset of R× [0, T ];

(b) there exists a constant cq ≤ (T + 2π−1/2T 1/2)−1 such that

0 ≤ q(x, t, u(x, t))− q(x, t, v(x, t)) ≤ cq[1− e−min{d(u,v),1}]

for all (u, v) ∈ R× R with v � u;
(c) there exists u0 ∈ Ω such that

u0(x, t) ≤
∫ t

0

dτ

∫ ∞
−∞

e−
(x−ξ)2
4k(t−τ)√

4πk(t− τ)
q(ξ, τ, u0(ξ, τ))dξ +

∫ ∞
−∞

e−
(x−ξ)2
4k(t−τ)

√
4πkt

ϕ(ξ)dξ(x, t)

for all x ∈ R and t ∈ (0, T ].

Then the initial-value problem (1.1) has at least a solution.

Proof. As said above, the initial-value problem (1.1) is equivalent to the integral
equation (4.1) for all x ∈ R and t ∈ (0, T ]. Then, the initial-value problem (1.1)
possesses a solution if and only if the integral equation (4.1) has a solution u
satisfying certain properties. Roughly speaking, this solution can be seen as fixed
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point of an integral operator, so that we can apply our fixed point theorems to get
it. To this aim, we define the operator f : Ω→ Ω by:

(fu)(x, t) =
∫ t

0

dτ

∫ ∞
−∞

e−
(x−ξ)2
4k(t−τ)√

4πk(t− τ)
q(ξ, τ, u(ξ, τ))dξ +

∫ ∞
−∞

e−
(x−ξ)2

4kt

√
4πkt

ϕ(ξ)dξ

for all x ∈ R and t ∈ [0, T ].
We will show that f satisfies all the requirements of Theorem 3.5, by choosing

the set M as in Example 2.1. We have already remarked at the beginning of this
section that condition (iv) of Theorem 3.5 holds true.
Now, by condition (b) we deduce trivially that the operator f is nondecreasing. In
fact, for all u, v ∈ Ω with v � u, from

q(x, t, u(x, t)) ≥ q(x, t, v(x, t))

for all x ∈ R and t ∈ (0, T ], we obtain

(fu)(x, t) =
∫ t

0

dτ

∫ ∞
−∞

e−
(x−ξ)2
4k(t−τ)√

4πk(t− τ)
q(ξ, τ, u(ξ, τ))dξ +

∫ ∞
−∞

e−
(x−ξ)2

4kt

√
4πkt

ϕ(ξ)dξ

≥
∫ t

0

dτ

∫ ∞
−∞

e−
(x−ξ)2
4k(t−τ)√

4πk(t− τ)
q(ξ, τ, v(ξ, τ))dξ +

∫ ∞
−∞

e−
(x−ξ)2

4kt

√
4πkt

ϕ(ξ)dξ

= (fv)(x, t)

for all x ∈ R and t ∈ (0, T ]. Then, f is nondecreasing and, in view of Example
2.1, this implies thatM is f -invariant, that is, condition (iii) of Theorem 3.5 holds.
Clearly, from assertion (c), u0 � fu0 and hence condition (ii) of Theorem 3.5 holds
true.

Now we only need to show that f satisfies the contractive condition in Theorem
3.5. In fact, we get

|(fu)(x, t)− (fv)(x, t)|

≤
∫ t

0

dτ

∫ ∞
−∞

e−
(x−ξ)2
4k(t−τ)√

4πk(t− τ)
|q(ξ, τ, u(ξ, τ))− q(ξ, τ, v(ξ, τ))|dξ

≤ cq[1− e−min{d(u,v),1}]
∫ t

0

dτ

∫ ∞
−∞

e−
(x−ξ)2
4k(t−τ)√

4πk(t− τ)
dξ

≤ cq[1− e−min{d(u,v),1}]T

for all x ∈ R and t ∈ (0, T ]. Analogous reasoning shows that∣∣∂(fu)(x, t)
∂x

− ∂(fv)(x, t)
∂x

∣∣
≤ cq[1− e−min{d(u,v),1}]

∫ t

0

dτ

∫ ∞
−∞

∂

∂x

( 1√
4π(t− τ)

e−
(x−ξ)2
4(t−τ)

)
dξ

≤ cq[1− e−min{d(u,v),1}]2π−1/2T 1/2.

By combining the obtained results, we deduce that

d(fu, fv) ≤ cq(T + 2π−1/2T 1/2)(1− e−min{d(u,v),1}) ≤ 1− e−min{d(u,v),1},
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which further gives us

d(fu, fv) ≤ 1− e−min{d(u,v),1}

min{d(u, v), 1}
d(u, v).

Therefore, condition (i) of Theorem 3.5 holds true with ψ(s) = s, and β(s) =
e−min{s,1}−1
−min{s,1} for s > 0 and β(0) = 1

2 . Thus, we can apply Theorem 3.5 to conclude
that f has a fixed point and hence the initial-value problem (1.1) has a solution. �
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