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A SIXTH-ORDER PARABOLIC EQUATION DESCRIBING
CONTINUUM EVOLUTION OF FILM FREE SURFACE

XIAOPENG ZHAO

ABSTRACT. In this article, we study the regularity of solutions for a sixth-order
parabolic equation. Based on the Schauder type estimates and Campanato
spaces, we prove the existence of classical global solutions.

1. INTRODUCTION

In the previous fifteen-twenty years, essentially sixth-order nonlinear parabolic
partial differential equationa, as models for applications in mechanics and physics,
have become more common in the literature on pure and applied PDEs. Evans,
Galaktionov and King[Il, 2] studied the blow-up behavior and global similarity
patterns of solutions for a sixth order thin film equations containing an unstable
(backward parabolic) second-order term

uy = V- (Ju|"VA%u) — A(julP~ u), n>0,p>0,

with bounded integrable initial data. Jiingel and Milisi¢[3] proved the global in
time existence of weak nonnegative solutions to the following initial value problem
in one space dimension with periodic boundary conditions:

n = Lln] = [n(%(n(logn)m)w + %((logn)m)Q)mL, zeT,t>0,

n(z,0) =ng(x), xe€T.

In [@], by an extension of the method of matched asymptotic expansions, Korzec,
Evans, Miinch and Wangner derived the stationary solutions of a 1D driven sixth
order Cahn-Hilliard equation which arises as a model for epitaxially growing nano-
structures. Li and Liu[5] studied the radial symmetric solutions for the following
sixth order thin film equation:

ug = V- [[ul"VAZ%u], x in the unit ball of R?, n > 0.

Recently, based on the Landau-Ginzburg theory, Pawlow and Zajaczkowski [0]
proved that a 3D sixth order Cahn-Hilliard equation under consideration is well
posed in the sense that it admits a unique global smooth solution which depends
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continuously on the initial datum. We also refer the solvability conditions in H%(R?)
for sixth order linearized Cahn-Hilliard problem is also studied in [7].

In the study of a thin, solid film grown on a solid substrate, in order to describe
the continuum evolution of the film free surface, there arise a classical surface-
diffusion equation (see [8])

vp = DAgp = DAg(piy + piw) = DAs(JapCap + vA*u+ ) (1.1)

where v,, is the normal surface velocity, D = DgSoQ0Vo/(RT)?* (D is the surface
diffusivity, Sy is the number of atoms per unit area on the surface, {2 is the atomic
volume, V{ is the molar volume of lattice cites in the film, R is the universal gas
constant and T is the absolute temperature), Ag is the surface Laplace operator, v
is the regularization coeflicient that measures the energy of edges and corners, Cy
is the surface curvature tensor and p,, being an exponentially decaying function of
u that has a singularity at u — 0 (see [§]).

In the small-slop approximation, in the particular cases of high-symmetry orien-
tations of a crystal with cubic symmetry, then the evolution equation for the
film thickness can be written in the following form

0
ai: = D {D%u+ D*u — D[|Dul>D*u] + D[wo(u) + ws(u)| Dul? + ws(u) D?u]} ,
(1.2)
where wg 2 3(h) are smooth functions, respectively [ws(ho) = 0, 2w = dd%].
We study the sixth-order nonlinear parabolic equation
%7: = D{m(u) [D°u+ D*u — D(|Du|*D?u) (1.3)

+ D(wo(u) +wa(u)| Dul? + w3 (u) D*u)] },

where (z,t) € Qr, Qr = (0,1) x (0,7). On the basis of physical consideration,
Equation (|1.3)) is supplemented by the following boundary conditions

Du(x,t) = D3u(x,t) = D’u(z,t) =0, x=0,1, (1.4)

and initial condition
u(z,0) = uo(x), x€][0,1]. (1.5)

Our main purpose is to establish the existence of classical global solutions under
much general assumptions. The main difficulties for treating the problem —
are caused by the nonlinearity of the principal part and the lack of maximum
principle. Due to the nonlinearity of the principal part, there are more difficulties in
establishing the global existence of classical solutions. Our method for investigating
the regularity of solutions is based on uniform Schauder type estimates for local in
time solutions, which are relatively less used for such kind of parabolic equations
of sixth order. Our approach lies in the combination of the energy techniques with
some methods based on the framework of Campanato spaces. Now, we give the
main results in this paper.

Theorem 1.1. Assume that
o up € C2[0,1], av € [0,1), Diug(0) = Diug(1) =0 (i = 0,2,4);
e m(s) € CH¥(R), infser m(s) = mo > 0;
o ws(ho) =0, 2wa(h) = wh(h), Wo(s) = [5 wo(s)ds > F[ws(s)]?.

Then (L.3)-(T.5) admits a unique classical solution u(x,t) € CSt*1+5(Qr).
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Remark 1.2. During the past few years, many authors studied the properties of
solutions (such as blow-up behavior and global similarity patterns of solutions, weak
nonnegative solutions, radial symmetric solutions, stationary solutions, solvability
conditions and so on) for sixth-order parabolic equation, but only a few papers were
devoted to the existence of classical solution for sixth order parabolic equation. In
this article, based on the Schauder type estimates, Campanato spaces and a result
in [9], we consider the existence of classical solutions for a sixth-order parabolic
equation which was introduced in [§].

2. PROOF OF THE MAIN RESULT

Based on the classical approach, it is easy for us to conclude that problem —
admits a unique classical solution local in time. So, it is sufficient to make a
priori estimates. First of all, we give the Hélder norm estimate on the local in time
solutions.

Lemma 2.1. Assume that u is a smooth solution of the problem (1.3)-(1.5). Then
there exists a constant C' depending only on the known quantities, such that for any
(1,t1), (2,t2) € Qr and some 0 < a < 1,

lu(z,t1) — u(ze, t2)] < C(jt1 — t2|% + |z — 22|),

|Du(21,t1) — Du(za, t2)| < C(|ty — ta| ™ + |21 — 22]"/?).

Proof. Now, we set
! 1 212 1 2 1 4 1 2
F(t) = (f\D ul? = Z|Dul? + — | Dul* + Wo(u) — =ws(u)|Dul )dm.
o \2 2 12 2

Integrating by parts, from the boundary value condition (|1.4)), we deduce that

d ! 1
%F(t) = / [D?*uD?*u; — DuDuy + §|Du\2DuDut + wo(uw)uy
0

1
— w3 (u) DuDuy — 5w§(u)\Du|2ut]daj

1
1
= / [D?*uD?*u; — DuDuy + §|Du\2DuDut + wo (u)uy
0
1

2wé(u)\Du|2ut]dm

+ w3 (u) D?uu; +
! 1
= / {D‘lu + D%y — gD(\Du|2Du) + wo ()
0
+ ws (u)| Dul?® + wg(U)DQU} ugdx
1
1
_ _/ m(w)|[ DD+ D0 — S D(IDuf Du) + wo(u)
0

2
+ ws (u)| Dul?® + wg(u)Dzu} ‘ dx <0.
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Hence F(t) < F(0), that is

L 1
| G + 5 1Dult + Wo(uw))do
0 2 12
- (2.1)
< F(0)+ 5/ (|Du|2 + wg(u)|Du|2)dfc.
0

It then from Poincaré’s inequality and the boundary value condition (1.4]) follows
that

1 1
1
/ | Duldz < 7/ | D2udz. (2.2)
0 ™ Jo
On the other hand, we have
1 1 3 rl
/ ws(u)| Dul2dz < f/ |Du|4d33+7/ [ (u)]2dz. (2.3)
0 6 Jo 2Jo
Adding (2.1)), (2:2) and (2-3), noticing that Wo(u) > 2[ws(u)]?, we obtain
1
sup / |D?ul?dx < C. (2.4)
o<t<T Jo
Combing (2.2)) and (2.4)) gives
1
sup / |Dul?dz < C, (2.5)
0<t<T Jo

The integration of ([1.3]) over the interval (0,1) yields fol %dm = 0, hence we obtain

/01 u(z, t)de = /01 o (z)dz.

Applying the mean value theorem, we see that for some zj € (0, 1)

1
u(zy,t) = / uo(x)de = M.
0
Then

lu(z, )] < fu(z,t) —u(ey, O] + |ulzy, t)] < I/ Du(t,y)dy| + M.

Taking this into account, we deduce that

sup |u(z,t)| < C, (2.6)

T
On the other hand, a simple calculation shows that
1
/ u?dx < sup |u(z,t)]* < C. (2.7)
0 QT

Combing (2.7)), (2.5) and (2.4)) together, using Sobolev’s embedding theorem, we
derive that

1 1 1 1/2
sup | Du(z,t)| < C(/ u?da +/ | Du|*da +/ |D2u|2dx) <C. (2.8)
Qr 0 0 0
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Multiplying both sides of (1.3) by D*u, integrating the resulting relation with
respect to = over (0, 1), integrating by parts, we have

2dt/ |D2u|2dx+/ m(u)|D%ul?dx

/ m( DduD‘r’udx—i-/ m(u)D(|Du|? D*u) D%u dx
/ m(u)Dwo(u Dsudx—f/ m(u (u)|Du|*)D°du dx
/ m(u 3(u) D?*u) D%u dx

1
—/ m(u)D3uD5uda:—|—/ m(u)|Dul* D*uD’u dx
0 0
1 1
+2/ m(u)Du|D2u\2D5ud$—/ m(u)wl(u) DuDu dx
77/ m(u |Du|3D5ud:1772/ m(u)wh(u) DuD?*uD5u da

- / m(u)ws(u) D*uDu dx
0
=hLh+L+L+1,+ 15+ 1+ I7.
By Nirenberg’s inequality, we derive that

/1 | D3u|*dx
0
< (C"(/O1 |D5u|2dx) 1/6(/01 \D2u|2dﬂc> v + C”(/Ol |D2u|2dx) 1/2)2

1
§5/ |D5u|?dx + C..
0

/1 | D?u|*dx
0
< (C’(/Ol |D5u|2dx>1/24(/01 |D2u2dx)11/24+0”(/01 \D2u|2dx)1/2)4

1
§5/ |D5uldx + C-..
0

and

Hence

1 1
I < sup|m(u)|/ |D3uDPu|dx < C’/ | D3uDPu|dx
Qr 0 0
1 1
Ss/ |D5u\2dx+Cg/ |D3u|?dx (2.10)
0 0

1
< 25/ |D5u|*dx + C.
0
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1
I, < sup|m(u)(Du)2|/ |D3uD5u|dx
Qr 0
1
SC’/ |D3uDPu|dx
0
1
< 26/ |Dul?dx + C.
10
I; < 2sup|m(u)Du\/ |(D*u)?D5u|dx
Qr 0
1 1 1
ga/ \D5u|2dm+C5/ |D2ul*dx < 25/ |D5ul?dx + C.
0 0 0
1 1
I, < sup|m(u)w6(u)|/ |DuDu|dx < C’/ | DuD®u|dx
Qr 0 0
1 1 1
SE/ |D5u|2dm+Cg/ | Dul|?dx SE/ |D5ul?dx + C.
0 0 0
1 1
I < sup|m(u)wé’(u)|Du|2|/ | DuD’u|dx < C’/ | DuDu|dx
Qr 0 0
1 1 1
s/ |D5u\2dz+C’€/ | Du|*dx Ss/ | D5u|?dz + C.
0 0 0
1 1
Is < 25up|m(u)w3’(u)Du\/ |D?uD5uldr < C’/ | D?*uD’u|dx
Qr 0 0
1 1 1
Ss/ \D5u|2dx+C€/ |D?u|?dx ga/ |D5u|?dz + C.
0 0 0

1 1
I; <sup \m(u)wg(u)|/ |D3uDPu|dx < C/ |D3uDPu|dx
Qr 0 0

1 1 1
< 5/ |D5ul*dx + C’E/ |D3ul?dx < 26/ |Dul*dx + C.
0 0 0

Summing up, noticing that m(s) > mgy > 0, we obtain

d [t 1
—/ |D2ul?dx + (2mo — 225)/ |DPul?dx < C,

where ¢ is small enough, it satisfies 2mg — 10e > 0. Therefore,

// | Dou|?dxdt < C.

th/ | D3ul|? dm—i—/ D(m(u)Du) D6uda:+/ D(m(u)D?u) D% dx

/ D[m(u)D(|Du|? D*u)] D%u dx

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Multiplying both sides of the equation (1.3) by DSu, integrating the resulting rela-
tion with respect to = over (0, 1), after integrating by parts, and using the boundary
value conditions, we have
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1
- / Dm(u)D(wo(u) + wo ()| Dul? + ws(u) D*u)]| Dou d.
0
Simple calculations show that
1d /1 |D3u|?dx + /1 m(u)|DSu|*dx
1 1 1 (
= —/ m/(u) DuD’uD%u dx — / m(u)D*uD%u dx — / m/(u) DuD3uD%u dx
0 0 0
1
+ / m(u)(|Du|* D*u dx + 6 DuD?*uD?u 4 2| D*u|? D*u) D%u dx
0
1
+/ m’ (u) Du(|Dul? D3u + 2Du|D*u|*) Db dx
0
1 1
- / m(u)(wh(u)D*u 4wy (u)|Dul?) D%u dx — / m’ (u)wy(u)| Du|? D dx:
0 0

1
- / m’ (u) Du(wh(w)| Du|? Du + 2ws (u) DuD?*u) D%u dx
0

1
- / m(u)[wh (u)| Dul* + 5wh(w)| Du|? D*u + 2ws (u)| D*ul?
0
+ 2wy (v) DuD*u) Dy dx

1
- / m(u)[wh (u) DuD*u + 2wh(u) D3u + wh(u) D*u) DSu da
0

—/0 m’ (u) Du(wh () D*u + w3 (u) D3u) Do da

=:tlg+Ig+ Lo+ i+ Lo+ Lis+ Lo+ Lis + Lie + Li7 + Lis.
By Nirenberg’s inequality, we deduce that

/1 |D5ul?dx
0
< (c’(/o1 |D6u|2dx)g(/01 \D2u|2dx>% +c”(/01 |D2u|2dx)l/2)2
< 5/1 |DSu|?dz + C..
0
1
/ |D*ul?dx
0
< (c’(/ol |D6u|2dx)i</01 \D2u|2dx>% +c”(/01 |D2u|2d9c>1/2)2
< 8/1 |DSu|?dz + C..
0
1
/ |D3ul*dx
0
< (C’(/l |D6u|2dx> 1/8(/1 \D2u|2dx>3/8 —I—C"(/l |D2u|2dx> 1/2)2
0 0 0
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1
§s/ |DSu|?dx + C..
0

/1 |D?ul*dx
0
< (C”(/Ol |D6u|2d:1:)3%2 (/01 \D2u|2dx>§7g + C”(/Ol |D2u|2dx)1/2)4
< 5/1 |DSu|?dz + C-..
0

1
/ |D?u|Sdx

0
< (C’(/O1 |D6u|2dx>214(/01 \D%de)i‘*‘i +c”(/01 |D2u|2dx)1/2>4

1
SE/ |D%u|?dx + C..
0

and
1
/\D3u|4dx
0
1 5 1 11 1 1/2\ 4
< (c’ / |DSul?dz)” /\D2u|2dx el / |D?ul?dx
(), )" (), ) e, ) )
1
Se/ |DSul?dx + C..
0
Therefore,

1 1
Ig < sup|m'(u)Du\/ |D5uDCu|dx < c/ | D5uDCu|dx
Qr 0 0
1 1 1
< 6/ |DSul*dx + C’E/ |Dul?dr < 26/ | DCul*dx + C..
0 0 0
1 1
Iy < sup |m(u)|/ | D*uDSu|dz < C’/ |D*uDu|dx
Qr 0 0
1 1 1
< 5/ | DSu|dx + CE/ | D ul?dr < 25/ | DSul?dx + C..
0 0 0
1 1
Ip < sup |m’(u)Du|/ | D3uD%u|dx < C/ | D3uD%u|dx
Qr 0 0
1 1 1
< E/ | DSul?dx + C’E/ |D3ul?dx < 25/ |DSul?dx + C”.
0 0 0
1 1
I, <sup \m(u)(Du)2|/ | D*uD%u|dx + 6 sup |m(u)Du\/ | D?uD3uD%u|dx
Qr 0 Qr 0

1
+25up|m(u)|/ | D?u|3 D% dx
Qr 0
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1 1 1
SC/ |D3uD6u|d:E+C/ |D2uD3uD6u\dﬂc—|—C/ | D?u| D% dx
0 0 0
1 1 1 1
§5/ \D6u|2dx+05(/ |D3u|2dx+/ \D2u|4dx+/ | D3u|*da
0 0 0 0
1
—l—/ | D?u|dx
0
1
< 25/ | DSu|?dx + C.
0
1 1
Is gsup|m’(u)(Du)3|/ |D3uD6u|dx+28up|m'(u)(Du)2|/ |(D*u)?DSu|dx
Qr 0 Qr 0
1 1
SC’/ |D3uD6u\daU—|—C’/ |(D?u)?D%ul|dx
01 10 1
SE/ |D6u|2d$+05(/ |D3u|2d.’lj+/ |D2u|4d$>
0 0 0
1
< 25/ | DSu|?dx + C.
0
1 1
I3 Ssup\m(u)w’o(uﬂ/ |D2uD6u|dJ;—|—sup|m(u)w6’(u)Du|/ | DuD%u|dz
Qr 0 Qr 0
1 1
SC/ |D2uD6u|dx+C/ | DuDSu|dx
0 0
1 1 1
§z—:/ |D6u|2dx+C5</ |D2u|2dx+/ |Du|2dx)
0 0 0
1
Se/ |D6u|2dx+0.
0

1 1 1
I, < sup |m'(u)w6(u)Du|/ | DuDCu|dx < C’/ DuDSu dx < 6/ | DSu|?dz+C.
Qr 0 0 0

1
L5 < sup|m’(u)w’2(u)(Du)3\/ | DuDSu|dx
Qr 0
1
+28up|m'(u)w2(u)(Du)2|/ | D?uDSu|dx
Qr 0
1 1
< c/ |DuDGu|dx+C/ |D2uDCu|dx
0 0
1 1 1
Ss/ |D6u\2da:+05(/ |Du|2dx—|—/ | D2u2da)
0 0 0

1
Sa/ |DSul?dx + C.
0

1
Iig < sup|m(u)w/2’(u)(Du)3\/ | DuDSu|dx
0

T
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1
+55up|m(u)w’2(u)(Du)2|/ | D?uDSu|dx
Qr 0
1
+25up|m(u)w2(u)|/ |(D*u)?D%u|dx
Qr 0
1
+ 28up|m(u)w2(u)Du|/ | D3uDSu|dx
Qr 0
1 1 1
SC’/ |DuD6u|da:+C’/ |D2uD6u\dx—|—C’/ |(D?u)?D%u|dx
0 ) 0 0
+C’/ |D3uDCu|dx
0
1 1 1 1
gs/ |D6u\2dz+C’g(/ |Du|2dx+/ |D2u\2dz+/ | D?u|*dx
0 0 0 0

1
+/ |D3u|2dx)
0

1
< 25/ | DSu|?dx + C.
0

1 1
L7 < sup |m(u)wjy (v)Du| [ |D*uD%u|dz 4 2sup |m(u)w}(u) | D3uDO|dx
0 QT )

|
T C

1
+sup|m(u)w3(u)|/ | D*uD%u|dx
Qr 0
1 1 1
SC/ \DQuD6u|dx+C/ |D3uD6u\dﬂc+C/ | D*uDSu|dx
0 0 0
1 1 1 1
§5/ |D6u|2da:+Cs(/ \D2u|2da:+/ |D3u|2dx+/ |DYu|?dx)
0 0 0 0

1
< 25/ |D6u\2dx+0.
0

1 1
L < sup|m'(u)wé(u)Du|/ \D2UD6u|dx+sup|m’(u)w3(u)Du|/ | D3uDSu|dx
Qr 0 Qr 0
1 1
< C’/ |D2uD6u|dw+C/ |D3uDCu|dx
0 0
1 1 1
Se/ |D6u|2da:+08(/ \D2u|2dx—|—/ |D3u|2dx)
0 0 0
1
< 25/ | DSu|?dx + C.
0
Summing up, noticing that m(s) > mgy > 0, we obtain

d [ 1
d—/ |D3ul*dx + (2mo — 385)/ |DSu?dx < C,
t Jo 0
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where ¢ is small enough, it satisfies 2my — 38¢ > 0. Hence

1
sup / |D3u|?dx < C. (2.18)
0<t<T Jo

Combing (2.7), (2.5)), (2.4) and (2.18) together, using Sobolev’s embedding theorem,

we derive that

1 1/2
sup |D?u(x,t)| < C(/ [udz + \Du|2|D2u|2|D3u\2]dx) <C. (2.19)
Qr 0
By (2.5) and (2.6)), we deduce that
lu(z1,t) — u(ze,t)] < Clzg — x|, 0<a<l1. (2.20)

Integrating the equation (T.3)) with respect to x over (y,y+(At)Y/6) x (t1,t,), where
0<ty <ty <T, At =ty —t1, we deduce that

y+(AL)!/C
/ (2, 1) — u(z, t)]dz
Yy

= [ [t ) (P°uty'ss) + D*uty/5) = D(Duly' )P DPuly', )

+ D(wo(u(y', ) + wau(y', )| Duly’,5) + ws(uly', ) D*u(y', )
—m(u(y, s))(D*u(y. s) + D*u(y, s) = D(|Duly, s)*Duly, s))

+ D(wo(uly, 8)) +ws(uly, )| Duly, $)|* + ws(uly, ) D*u(y, s)) ) | ds.
Set
N(s,y) = m(u(y’,)) (D*u(y', 5) + D*uly/,5) = D(Duly/5)*D*u(y, 5))

+ D(wo(u(y', ) + ws(uly', )| Duly, ) + ws(u(y', ) D*u(y',s)) )
— m(u(y,s))(Du(y, s) + D*uly, 5) = D(|Duly, s)*D*u(y, s))
+ D{awo(uly, 5)) + ws(uly, 5))| Duly, $)1* + ws(uly, 5) D*u(y, s)) ),

where ' = y + (At)'/. Then, the above equality is converted into
1 to
(Ao / fuly + 8(AE)S, t2) — u(y + 6(ADYS t))db = [ N(s,y)ds.
0 t1
Integrating above equality with respect to y over (z,z + (At)Y/9), we immediately

obtain
)1/6

ta  px+(At
(At)1/3(u(x*,t2)—u(x*,tl)):/t / N(s,y)dyds.

Here, we have used the mean value theorem, where z* = y* + 9*(At)1/6, y* €
(z,z 4 (At)Y/5), § € (0,1). Then, by Hélder’s inequality and , , ,
we obtain

lu(x*, t) —u(z*, 1) < C(AH)T, 0 < a < 1.
Similar to the above discussion, we have

|Du(21,t1) — Du(za, t2)| < C(|z1 — 2|2 + |t; — ta|12). (2.21)
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The proof is complete. O

To prove Theorem the key estimate is the Holder estimate for D?u. Now,
we give the following lemma which can be seen in [9].

Lemma 2.2. Assume that sup|f| < +oo, a(z,t) € C*5(Qr), 0 < a < 1, and
there exist two constants ag,bg, Ag, By such that 0 < ag < a(z,t) < Ap, 0 < by <
b(z,t) < By for all (z,t) € Qr. If u is a smooth solution for the linear problem

O D¥a(e,()D*) + DY, )Du) = D*f, (1) € Qr,
Du(x,t)|z:0,1 = D?’u(:z:,t)\mzul = D5u(:c,t)|x:0,1 = 0, te [O,T],
u(z,0) =up(z), x€]0,1],
then, for any ¢ € (0, %), there is a constant K depending on aq, by, Ao, Bo, 6, T,
foT u?dxdt and foT | D3u|?dxdt, such that
Ju(wy,t1) = u(ws, t2)| < K(1+sup | f]) (|71 — 2]’ + [t — 1] ).
Now, we prove the main result.
Proof of Theorem [1.1} Suppose that w = D?u—D?uq. Then w satisfies the problem
0
ai; — D¥(a(x,t)D*w) + D3(b(x, t) Dw) = D3,
w(z,t) = D*w(x,t) = D*w(z,t) =0, ==0,1,
w(z,0) =0, xe€]l0,1],
where a(x,t) = m(u), b(z,t) = m(u) and
f(z,t) = m(u)[—~Dup—D*ug+D(| Du|? D*u) — D (wo (u) +ws (u) | Dul* +ws (u) D*u)].
It then follows from (2.4)-(2.19) and Lemma[2.2] that
|D*u(z1,t1) — D?u(za, to)| < C(|jzy — za|%? + [t — to]*/12).
The conclusion follows immediately from the classical theory, since we can trans-
form the equation (1.3)) into the form

% + ay(x,t) DO + ag(z,t) D3u + as(x, t) D u(z, t)
+ ay(z, t)D3u(z, t) + as(x,t) D*u(x, t) + ag(x, t) Du(z, t) = 0.
with the Holder norms on
a(z,t) = —m(u(x, b)), as(z,t) = —m'(u(x,t))Du(z,t),
as(z,t) = m(u(z, ))(|Dulz, ) + ws(u(z, 1) — 1),
ag(x,t) = m/(u(x,t))[|Du(z, t)|* Du(x, t) — Du(z,t)]
+ m(u(z,t))[6Du(z, t) D?*u(x, t) + 2ws(u(z, t)) Du(z, t)
+ 2wj (u) Du(z, t)],
as(x,t) = m(u(z,t))[2| D?*u(x, t)|? + wj(u(z,t)) + 5wh(u(z,t))|Du(z, t)|?
+ 2wy (u(x, 1)) D?u(x, t) + wh (u(z, )| Du(z, t)|* + wh(u(z, ) D*u(z, t)]
+m/ (u(z, t))[2| Du(z, t)|> D?u(x, t) + 2wy (u(z, t))| Du(z, t))?
+ wh(u(z, t))| Du(z, t))* + ws(u(z, t)) Du(z, )]
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ag(z,t) = m’(u(z, t))[wy (u(z, ) Du(z, ) + wy(u(e, )| Du(z, t)|* Du(z, t)]
+ m(u(z, ) [wh(u(z, t)) Du(z, t) + wh (u(z, )| Du(z, t)|?* Du(z, t)].
have been estimated in the above discussion. Then, the proof is complete ([
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