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A FULLY NONLINEAR GENERALIZED MONGE-AMPÈRE PDE
ON A TORUS

VAMSI P. PINGALI

Abstract. We prove an existence result for a “generalized” Monge-Ampère
equation, introduced in [11], under some assumptions on a flat complex 3-torus.

As an application we prove the existence of Chern connections on certain kinds

of holomorphic vector bundles on complex 3-tori whose top Chern character
forms are given representatives.

1. Introduction

The complex Monge-Ampère equation on a Kähler manifold was introduced by
Calabi [4], and was solved by Aubin [1] and Yau [13]. Since then other such fully
nonlinear equations were studied, namely, the Hessian and the inverse Hessian
equations [7, 8, 9]. The inverse Hessian equations were introduced by Chen [5] in
an attempt to find a lower bound on the Mabuchi energy. Actually, in [5] Chen
conjectured that a fairly general fully nonlinear Monge-Ampère type PDE has a
solution. Roughly speaking, instead of requiring the determinant of the complex
Hessian of a function to be prescribed, it requires a combination of the symmetric
polynomials of the Hessian to be given. A real version of such an equation was
studied by Krylov [10] and a general existence result was proven by reducing it to
a Bellman equation. In view of these developments a “generalized Monge-Ampère”
equation was introduced in [11] and a few local “toy models” were studied. As
expected, the equation is quite challenging. The main problem is to find techniques
to prove a priori estimates in order to use the method of continuity to solve the
equation. In this paper we study this equation on a flat complex torus wherein
curvature issues do not play a role. The aim of this basic example is to give insight
into studying this equation in a more general setting. We prove an existence result
(theorem 2.1) in this paper.

A small geometric application of this result is also provided - Given a (k, k) form
η representing the kth Chern character class [tr((Θ)k)] of a vector bundle on a
compact complex manifold, it is very natural to ask whether there is a metric whose
induced Chern connection realises tr((Θ)k) = η. As phrased this question seems
almost intractable. It is not even obvious as to whether there is any connection
satisfying this requirement, leave aside a Chern connection. Work along these lines
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was done by Datta in [6] using the h-principle. Therefore, it is more reasonable
to ask whether equality can be realised for the top Chern character form. To
restrict ourselves further we ask whether any given metric h0 may be conformally
deformed to h0e

−φ so as to satisfy a fully nonlinear PDE of the type treated in
[11]. Admittedly the result we have in this direction (theorem 2.3) imposes quite
a few restrictive assumptions on the type of vector bundles involved. However, the
goal is to simply introduce the problem and solve it in a basic case to highlight the
difficulties involved.

2. Summary of results

We prove an existence and uniqueness theorem for a “generalized” Monge-
Ampère type equation [11] on a flat, complex 3-Torus. In whatever follows ddc =√
−1∂∂̄ and ωf = ω + ddcf .

Theorem 2.1. Let (X,ω =
√
−1ωij̄dzi ∧ dz̄j) be a flat, Kähler complex 3-torus

(i.e. the ωij̄ are constants) C3

Λ and α ≥ ε̃ω ∧ ω (ε̃ > 0) be a smooth harmonic (i.e.
constant coefficient) (2, 2) form on X satisfying ω3 − α ∧ ω > 0. The following
equation has a unique smooth solution φ satisfying 3(ω + ddcφ)2 − α > 0 and∫
X
φ = 0:

T (φ) = ω3
φ − α ∧ ωφ = η = eF (ω3 − ω ∧ α) > 0, (2.1)

where
∫
X
η =

∫
X

(ω3 − α ∧ ω) and by α ≥ ε̃ω ∧ ω we mean that (α − ε̃ω ∧ ω) =
(
√
−1)2

∑
i fiφi ∧ φ̄i ∧Φi ∧ Φ̄i for smooth functions ε̃ > 0, fi ≥ 0, and (1, 0)-forms

φi, Φi.

Remark 2.2. Let χ be a harmonic (with respect to ω) Kähler form. Define ω̃ as
ω̃ = ω + χ

3 and assume that ω̃3 − ω̃2 ∧ χ > −2χ3

27 . As an interesting consequence
one can see that the equation

ω̃3
φ = χ ∧ ω̃2

φ (2.2)

has a unique solution satisfying ω̃φ > 0 and 3ω̃2
φ > 2χ ∧ ω̃φ if we also assume that

χ satisfies
∫
X
ω3 =

∫
X
χ ∧ ω2. Indeed, equation 2.2 maybe rewritten as

0 = ω̃3
φ − χ ∧ ω̃2

φ = ω3
φ − ωφ ∧

χ2

3
− 2χ3

27
.

Thus we recover existence for an inverse Hessian equation in this very special case
by taking α = χ2

3 and η = 2χ3

27 . (It is easy to verify the remaining conditions of
theorem 2.1.) This also shows that solving the equation in general would give an
alternate proof of existence for some inverse Hessian equations, i.e., some of the
results in [8].

A consequence of theorem 2.1 and the Calabi conjecture is the following theorem
that deals with the existence of a Chern connection with a prescribed top Chern
form.

Theorem 2.3. Let X be a compact complex manifold of dimension n and (V, h0) be
a rank k hermitian holomorphic vector bundle over X. We denote the (normalised)
curvature matrix of the Chern connection ∇0 associated to h0 as Θ0 =

√
−1

2π F0

where F0 is the curvature matrix of ∇0. In the following two cases, given an (n, n)
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form η representing the top Chern character class of V , there exists a smooth metric
h = h0e

−2πφ such that its top Chern-Weil form of the Chern character class is η.
(1) X is a surface, i.e., n = 2, tr(Θ0) > 0, and (tr(Θ0))2 + k(η − tr(Θ2

0)) > 0.
(2) X is a complex 3-torus, kω = tr(Θ0) is a harmonic positive form, α =

3(tr(Θ0))2

k2 − 3 tr(Θ2
0)

k > 0 is harmonic, −2(tr(Θ0))3 + 3k tr(Θ0)∧ tr(Θ2
0) > 0,

and k2(η − tr(Θ3
0)− 2(tr(Θ0))3 + 3k tr(Θ0) ∧ tr(Θ2

0) > 0.

Remark 2.4. We recall that the curvature of a connection ∇ = d+A on a rank-k
vector bundle is defined locally as a k× k-matrix of 2-forms F = dA+A∧A where
the connection A is locally a k × k-matrix of 1-forms. The trace alluded to in
theorem 2.3 is the trace of the matrix F giving rise to a single 2-form (as opposed
to the traces of 2-forms (giving rise to single functions) that occur later on in this
paper).

The hypotheses of theorem 2.3 require some discussion. As a warm-up example,
let us consider the question for a line bundle; i.e., given a metric h0 on a hermitian
holomorphic line bundle L on a complex n-fold with the curvature form denoted as
Θh0 , can we find a new metric h = e−φh0 such that the top Chern character form
(
√
−1

2π (Θh0 + ddcφ))n = η where [η] = chn(L) ? This is just the “usual” Monge-
Ampère equation. To prove existence, the commonly made assumption is Θh0 > 0.
So it is not at all surprising (and almost inevitable) that a “generalized” version of
such an equation would warrant more positivity assumptions, some of which might
seem a little less geometric than desired.

Nevertheless, here are a few examples (certainly not exhaustive) that satisfy the
hypotheses:

(1) X is any compact complex surface, (V, h0) is any rank-k hermitian holo-
morphic vector bundle over X such that tr(Θ0) > 0 and η = (tr(Θ0))2 +
εg tr(Θ0) where

∫
X
g tr(Θ0) = 0 and ε� 1.

(2) X is the complex 3-torus with the standard lattice Z ⊕ Z ⊕ Z. Choose
three line bundles (L1, h1), (L2, h2), (L3, h3) so that their Chern forms are
ω1 =

√
−1
∑
dzi∧dz̄i, ω2 =

√
−1(3dz2∧dz̄2 +dz3∧dz̄3), ω3 = 2dz3∧dz̄3.

Take (V, h0) to be their direct sum and η = tr(Θ3
0) + εg where ε << 1 and∫

g = 0.

3. Proofs of main theorems

Unless specified otherwise, for the remainder of the paper we denote all the
constants (independent of the relevant quantities) appearing in the estimates by C
by default. We first prove the following useful lemma.

Lemma 3.1. Let X be a Kähler 3-manifold. If γ is a non-negative real (1, 1) form
and β be a strongly strictly positive real (2, 2) form (hence ∗β > 0 for the Hodge
star of any Kähler metric) such that γ3 − β ∧ γ > 0 then 3γ2 − β > 0 and γ > 0.

Proof. Since γ3 > 0 it is clear that γ > 0. Let ∗ denote the Hodge star with respect
to γ. Notice that β ∧ γ = ∗β ∧ γ2

2 . Since we are dealing with top forms, we may
divide by (∗β)3 to get γ3

(∗β)3 − ∗β∧γ
2

2(∗β)3 > 0. At a point p, choose coordinates so that
the strictly positive form ∗β is

√
−1
∑
dzi ∧ dz̄i and γ is diagonal with eigenvalues

λi. Then at p, 6λ1λ2λ3− (
∑
i<j λiλj) > 0 thus implying that 6λi > 1. This means

6γ − ∗β > 0. Applying ∗ we see that 3γ2 − β > 0. �
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We need another lemma.

Lemma 3.2. Let X be a Kähler 3-manifold. If γ is a positive real (1, 1) form,
η > 0 is a (3, 3) form, and β be a strongly strictly positive real (2, 2) form, then the
functions F : γ → β∧γ

γ3 and G : γ → η
γ3 are convex.

Proof. Fix a Kähler form ω for X and let ∗ be its Hodge star. Choose coordinates
so that ω =

√
−1
∑
dzi ∧ dz̄i at a point p. By a linear change of coordinates ∗β

may be diagonalised at p. Hence β = −b3dz1 ∧dz̄1 ∧dz2 ∧dz̄2− b2dz3 ∧dz̄3 ∧dz1 ∧
dz̄1− b1dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3 at p. By scaling zi appropriately we may assume that
bi = 1. At p the function F is A→ tr(A)

6 det(A) where A is a positive hermitian matrix.
The fact that this and G(A) = 1

det(A) are convex is proven in [10]. (Notice that
G(A) = KG(A) for some positive constant K.) �

It is easy to see that the set S of γ > 0 in lemma 3.1 satisfying γ3 − β ∧ γ > 0
is a convex open set. In fact a stronger statement holds.

Lemma 3.3. Let γ1, γ2 lie in S and γt = tγ1 + (1 − t)γ2. Then 3γ2
t − β > Ctγ2

1

where C depends only on γ1 and β.

Proof. Notice that

γ3
t − β ∧ γt = γ3

t (1− β ∧ γt
γ3
t

)

≥ γ3
t

(
1− tβ ∧ γ1

γ3
1

− (1− t)β ∧ γ2

γ3
2

)
,

(3.1)

where the last inequality follows from lemma 3.2. Since γ1 and γ2 lie in S,

γ3
t

(
1− tβ ∧ γ1

γ3
1

− (1− t)β ∧ γ2

γ3
2

)
≥ tγ3

t

(
1− β ∧ γ1

γ3
1

)
> C̃tγ3

t , (3.2)

where C̃ is a small positive constant depending only on γ1 and β. Putting 3.1 and
3.2 together we have

γ3
t −

β

1− C̃t
∧ γt > 0 .

This implies (by using lemma 3.1) that

3γ2
t −

β

1− C̃t
> 0

⇒ 3γ2
t − β >

C̃t

1− C̃t
β > Ctγ1 .

�

Proof of Theorem 2.1. We use the method of continuity. Consider the family of
equations for t in [0, 1]

(ω + ddcφt)3 − α ∧ (ω + ddcφt) =
etF

∫
X

(ω3 − α ∧ ω)∫
X
etF (ω3 − α ∧ ω)

(ω3 − α ∧ ω) . (3.3)

At t = 0, φ = 0 is a solution. By lemma 3.1 ellipticity is preserved along the path.
We verify that [11, theorem 2.1] applies here. Indeed, we notice that T (φ)−T (0) =∫ 1

0
dT (tφ)
dt dt = ddcφ∧

∫ 1

0
(3ω2

tφ−α)dt and that lemma 3.3 (along with the substitution
t̃ = 1 − t in the integral) implies that the conditions of theorem 2.1 are satisfied.
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This proves that the set of t for which solutions exist is open, solutions are unique
and have an a priori C0 bound. To prove that it is closed we need C2,β a priori
estimates (by Schauder theory this is enough to bootstrap the regularity). We
proceed to find such estimates for (ω + ddcφ)3 − α ∧ (ω + ddcφ) = fω3. Locally
ω =
√
−1
∑
dzi ∧ dz̄i, u =

∑
|z|2 + φ, and

det(ddcu)− tr(Addcu) = f (3.4)

for some hermitian positive matrix A. If α is diagonalised such that α = dz1 ∧
dz̄1 ∧ dz2 ∧ dz̄2 + . . . then A = 1

6 Id.

C1 estimate: For this we shall not make the assumption that α is harmonic.
This assumption will be used only in the higher order estimates. Following [3] let
O be a point where β = ln(|∇φ|2)− γ(φ) achieves its maximum. (If we prove that
β is bounded, then so is the first derivative. So assume that |∇φ| > 1 without loss
of generality. β is Blocki’s function. γ will be chosen later.) Differentiating once
we see that det(ddcu) tr((ddcu)−1(ddcuk)) − tr(A,kddcu) − tr(Addcuk) = fk (and
similarly for k̄). Let L be the matrix det(ddcu)(ddcu)−1 −A > 0. Hence

tr(Lddcui) = fi + tr(A,iddcu) . (3.5)

At O we may assume that φij̄ is diagonal. Besides, βk = 0 there and tr(Lβkl̄) ≤ 0
at O. The first condition implies that

1
|∇φ|2

(
∑

φikφī + φiφīk)− γ′φk = 0

⇒ 1
|∇φ|2

(φkkφk̄ + φkφk̄k) = γ′φk

(3.6)

at O. Moreover,

βkl̄ = − 1
|∇φ|4

(
∑

φikφī + φiφīk)(
∑

φjl̄φj̄ + φjφj̄l̄)

+
1
|∇φ|2

(
∑

φikl̄φī + φikφīl̄ + φil̄φīk + φiφīkl̄)− γ
′′
φl̄φk − γ′φkl̄ .

(3.7)

Noticing that ddcui = ddcφi, and using 3.5 and 3.6 we get (at O)

0 ≥ tr(Lβkl̄)

= −((γ′)2 + γ
′′
) tr(Lφkφl̄)− γ′ tr(Lddcu) + γ′ tr(L)

+
1
|∇φ|2

(∑
φī(fi + tr(A,iddcu))

+ φi(fī + tr(A,̄idd
cu)) + tr(Lφikφīl̄) + tr(Lφil̄φīk)

)
≥ −((γ′)2 + γ

′′
) tr(Lφkφl̄)− γ′[3 det(ddcu)− tr(Addcu)]

+ γ′
(

det(ddcu)
3∑
i=1

1
uīi
− tr(A)

)
− 2
|∇f |
|∇φ|

− C tr(Addcu)
|∇φ|

+
1
|∇φ|2

(∑
tr(Lφikφīl̄) + tr(Lφil̄φīk)

)
≥ −((γ′)2 + γ

′′
) tr(Lφkφl̄)− γ′[3f + 2 tr(Addcu)] + γ′

(
det(ddcu)

3∑
i=1

1
uīi

)
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− C − C tr(Addcu)
|∇φ|

+
1
|∇φ|2

(∑
tr(Lφikφīl̄) + tr(Lφil̄φīk)

)
≥ −((γ′)2 + γ

′′
) tr(Lφkφl̄)− 2γ′ tr(Addcu)

+ γ′[f + tr(Addcu)]
∑ 1

uīi
− C − C

|∇φ|
tr(Addcu) .

Note that C can potentially depend on γ and hence on ‖φ‖C0 . If we choose γ so
that γ′ > E > 0, and −((γ′)2 +γ

′′
) > Q > 0 (where E and Q are arbitrary positive

constants), then this forces (ddcu)−1(O) to be bounded. For instance γ can be
chosen [3] to be γ(x) = 1

2 ln(2x + 1). Assume that |∇φ| → ∞. If
∑

1
uiī

> 2 + ε

uniformly then surely ∆u(O) is bounded. This observation actually implies that
∆u(O) is bounded.

Lemma 3.4. At any point Q if ∆u→∞, then
∑

1
uiī

> 2 + ε for some uniform ε.

Proof. Choose normal coordinates for ω around Q so that ddcu is diagonal at
Q. Recall that ω3 − α ∧ ω > ε̃ω3 forces Aii < 1 − ε̃. Let uīi(Q) = λi with
λ1 ≥ λ2 ≥ λ3 ≥ C > 0. (If λ3 gets arbitrarily close to 0, then the lemma is
obviously true.) If λ1 → ∞ it is clear from the equation λ1λ2λ3 = f +

∑
Aiiλi

that λ3 should be bounded. Solving for λ1, one can see that λ2 → A11
λ3

. This means
that

∑
1
λi

goes to 1
λ3

+ λ3
A11
≥ 2(1/A11)1/2 > 2 + ε. �

Lemma 3.4 implies that L is bounded below and above at O. This means that
∇φ is bounded at O.
C1,1 estimate: Define g = α∧ωφ

ω3 −φ. Locally g = tr(Addcu)−φ. If g is bounded,
then thanks to the previous C0 estimate on φ, so is tr(Addcu). This will give us
the desired bound on ∆φ and hence on ddcφ, i.e. the C1,1 estimate.

Differentiating equation 3.4 we see that

tr
(
(det(ddcu)(ddcu)−1 −A)ddcuk

)
= fk

⇒ tr(Lddcuk) = fk ,

where the matrix L = det(ddcu)(ddcu)−1−A > 0 is defined as before. In whatever
follows, upper indices do not denote the inverse matrix. They just denote the
original matrix itself and are used to make the Einstein summation convention
work nicely.

Differentiating again and taking the trace after multiplication with A we see that

Akl̄ tr
(
(det(ddcu)(ddcu)−1 −A)ddcukl̄

)
= Akl̄fkl̄ + det(ddcu)Akl̄ tr

(
(ddcu)−1ddcul̄(dd

cu)−1ddcuk
)

− det(ddcu)Akl̄ tr
(
(ddcu)−1ddcul̄

)
tr
(
(ddcu)−1ddcuk

)
which implies

Akl̄ tr
(
Lddcukl̄

)
= Akl̄fkl̄ + det(ddcu)Akl̄ tr

(
(ddcu)−1ddcul̄(dd

cu)−1ddcuk
)

− det(ddcu)Akl̄ tr
(
(ddcu)−1ddcul̄

)
tr
(
(ddcu)−1ddcuk

)
.

(3.8)

Upon differentiating g we see that

gk = tr(Addcuk)− φk ,
gkl̄ = tr(Addcukl̄)− φkl̄ .

(3.9)
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Let us assume that g attains its maximum at a point P . At P , gk = 0, uk = φk,
ukl̄ = φkl̄ + δkl̄, and tr(L[gkl̄]) = Lkl̄gkl̄ ≤ 0. Choose normal coordinates for ω
around P so that ddcu is diagonal at P . Putting these observations, and equations
3.1, 3.8 and 3.9 together we see that at P (all the arbitrary constants that occur
below are positive by convention)

0 ≥ −Lkl̄φkl̄ +Akl̄fkl̄ + det(ddcu)Akl̄ tr
(
(ddcu)−1ddcul̄(dd

cu)−1ddcuk
)

− det(ddcu)Akl̄ tr
(
(ddcu)−1ddcul̄

)
tr
(
(ddcu)−1ddcuk

)
≥ −Lkl̄ukl̄ + tr(L) +Akl̄fkl̄

− det(ddcu)Akl̄ tr
(
(ddcu)−1ddcul̄

)
tr
(
(ddcu)−1ddcuk

)
≥ −3 det(ddcu) + tr(L) +Akl̄ukl̄ − C −Akl̄

(fk + tr(Addcuk))(fl + tr(Addcul))
det(ddcu)

≥ −2Akl̄ukl̄ + tr(L)− C −Akl̄ (fk + uk)(fl + ul)
f + tr(Addcu)

≥ −2Akl̄ukl̄ + det(ddcu) tr((ddcu)−1)− C1 −
C2

f + tr(Addcu)

= −2Akl̄ukl̄ + (f + tr(Addcu)) tr((ddcu)−1)− C1 −
C2

f + tr(Addcu)
.

(3.10)
Let ull̄ at P be λl. Thus at P ,

0 ≥ −2
3∑
l=1

All̄λl +
3∑
l=1

All̄λl

3∑
k=1

1
λk
− C1 −

C2

f + tr(Addcu)

=
( 3∑
k=1

1
λk
− 2
) 3∑
l=1

All̄λl − C1 −
C2

f + tr(Addcu)
.

(3.11)

Using lemma 3.4 we see that if ∆u→∞ at P , then

0 ≥ ε
3∑
l=1

All̄λl − C1 −
C2

f + tr(Addcu)
. (3.12)

It is clear from equation 3.12 that tr(Addcu) is bounded at P and hence so is g. As
mentioned earlier this implies the desired C1,1 estimate.
C2,β estimate: Rewriting the equation (just as in [11]) −1 = − η

(ω+ddcφ)3 −
α∧(ω+ddcφ)
(ω+ddcφ)3 and using lemma 3.2 we see that the (complex version [2][12] of) Evans-

Krylov theory applies to it. This proves the desired estimate.

Proof of Theorem 2.3. The curvature Θ(h) = Θ0 + ddcφ. Hence tr((Θ0 +
ddcφ)n) = η. This equation reduces in the two cases of the theorem to(

ddcφ+
tr(Θ0)
k

)2

=
η − tr((Θ0)2)

k
+

(tr(Θ0))2

k2

and (
ddcφ+

tr(Θ0)
k

)3

−
(
ddcφ+

tr(Θ0)
k

)
∧
(−3 tr(Θ2

0)
k

+ 3
(tr(Θ0))2

k2

)
=
η − tr(Θ3

0)
k

− 2(tr(Θ0))3 − 3k tr(Θ0) ∧ tr(Θ2
0)

k3
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respectively. The first equation may be solved under the given hypotheses using
Aubin-Yau’s solution [13][1] of the Calabi conjecture [4]. The second one is solved
using theorem 2.1.

Acknowledgements. The author wants to thank the anonymous referee for the
useful suggestions.
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