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UNIFORMLY FINALLY BOUNDED SOLUTIONS TO SYSTEMS
OF DIFFERENTIAL EQUATIONS WITH VARIABLE

STRUCTURE AND IMPULSES

KATYA G. DISHLIEVA, ANGEL B. DISHLIEV

Abstract. We study nonlinear non-autonomous systems of ordinary differen-

tial equations with variable structure and impulses. The consecutive changes

on right-hand sides of this system and the impulsive effects on the solution
of the corresponding initial problem take place simultaneously at the moment

when the solution cancels the switching functions. We find sufficient condi-

tions for the uniform final boundedness of solutions. These results are obtained
using a suitable variation of the Lyapunov second method.

1. Introduction

Gurgula and Perestyuk are the first who apply the Lyapunov second method
to study the solutions of impulsive equations. In [13], they use the “classical”
continuous Lyapunov functions to study the stability of the “zero solution” of
such equations. Discontinuous Lyapunov functions were introduced by Bainov
and Simeonov [4]. The solutions qualities of one special class differential equa-
tions with variable structure and impulses are studied for the first time in [17].
The equations, studied in this paper were introduced in [7, 8]. There are numer-
ous applications of equations with impulsive effects. We will point the articles
[1, 3, 5, 8, 9, 15, 16, 18, 20, 21, 22, 23]. The applications of differential equations
with variable structure are mainly in the control theory and engineering practice:
[2, 8, 11, 12, 14, 19]. The main object of this article is to study the following initial
problem for nonlinear non-autonomous systems of ordinary differential equations
with variable structure and impulses at non-fixed moments:

dx

dt
= fi(t, x), if ϕi

(
x(t)

)
6= 0, ti−1 < t < ti; (1.1)

ϕi
(
x(ti)

)
= 0, i = 1, 2, . . . ; (1.2)

x(ti + 0) = x(ti) + Ii
(
x(ti)

)
; (1.3)

x(t0) = x0, (1.4)
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where: fi : R+ × Rn → Rn, ϕi : Rn → R, Ii : Rn → Rn, the initial point
(t0, x0) ∈ R+ × Rn.

Denote the solution of problem (1.1)–(1.4) by x(t; t0, x0) which is left-continuous
at each point in the domain. In general, this solution has a finite jump discontinuity
on the right at the moments t1, t2, . . . . They are named moments of switching. The
functions I1, I2, . . . and ϕ1, ϕ2, . . . are named impulsive and switching functions,
respectively.

We use the following notation:

• Φi
{
x ∈ Rn : ϕi(x) = 0

}
, i = 1, 2, . . . , are called switching hypersurfaces;

• Id is an identity in Rn;
• γ(t0, x0) =

{
x(t : t0, x0), t0 ≤ t ≤ T

}
is a trajectory of problem (1.1)–(1.4)

for t0 ≤ t ≤ T ;
• Bδ(x0) =

{
x ∈ Rn : ‖x− x0‖ < δ

}
, where x0 ∈ Rn and δ = const > 0;

• Bcδ(x0) =
{
x ∈ Rn : ‖x− x0‖ ≥ δ

}
= Rn\Bδ(x0).

Definition 1.1. We say that the solution of system of differential equations with
variable structure and impulses (1.1)–(1.3) is:

• bounded, if (∀t0 ∈ R+)(∀α = const > 0)
(
∃β = β(t0, α) > 0

)
such that(

∀x0 ∈ Bα(x0)
)
⇒
∥∥x(t; t0, x0)

∥∥ < β, t ≥ t0;

• uniformly bounded, if (∀t0 ∈ R+)(∀α = const > 0)
(
∃β = β(α) > 0

)
such

that (
∀x0 ∈ Bα(x0)

)
⇒
∥∥x(t; t0, x0)

∥∥ < β, t ≥ t0;

• quasi-uniformly finally bounded, if (∃β = const > 0) : (∀α = const >
0)
(
∃T = T (α) > 0

)
such that(

∀x0 ∈ Bα(x0)
)
⇒
∥∥x(t; t0, x0)

∥∥ < β, t ≥ t0 + T ;

• uniformly finally bounded, if the solutions are uniformly bounded and quasi-
uniformly finally bounded.

Definition 1.2. We say that a sequence of scalar piecewise continuous Lyapunov
functions {

Vi, Vi : R+ × Rn → R+, i = 1, 2, . . .
}
,

corresponds to the system of differential equations with variable structure and im-
pulses (1.1)–(1.3) if:

(1) Vi ∈ C[R+ × Rn\Φi,R+], i = 1, 2, . . . ;
(2) Vi(t, 0) = 0, t ∈ R+, i = 1, 2, . . . ;
(3) For every point (t, xΦi) ∈ R+×Φi and for each i = 1, 2, . . . , there exist the

limits:

lim
x→xΦi

,Φi(x)<0,
Vi(t, x) = Vi(t, xΦi

− 0) = Vi(t, xΦi
),

lim
x→xΦi

,Φi(x)>0,
Vi(t, x) = Vi(t, xΦi + 0).

We note that in general,

Vi(t, xΦi
) = Vi(t, xΦi

− 0) 6= Vi(t, xΦi
+ 0).
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Definition 1.3. Let {Vi : i = 1, 2, . . . } be a sequence of scalar piecewise continuous
Lyapunov functions. Then for every point (t, x) ∈ R+ × Rn\Φi and for each i =
1, 2, . . . , we define the derivative of Vi at point (t, x) with respect to system (1.1)–
(1.3), as follows:

V̇i(t, x) = V̇i,(1.1)−(1.3)(t, x) = lim
h→+0

1
h

(
Vi(t+ h, x+ hfi(t, x))− Vi(t, x)

)
.

Remark 1.4. It can be shown that for i = 1, 2, . . . and for every point (t, x) =(
t, x(t; t0, x0)

)
∈ [t0,∞)× (Rn\Φi), it holds

V̇ (t, x) = D+
(1.1)−(1.3)Vi

(
t, x(t; t0, x0)

)
= lim sup

h→+0

1
h

(
Vi
(
t+ h, x(t+ h; t0, x0)

)
− Vi

(
t, x(t; t0, x0)

))
.

In other words, the derivative of each Lyapunov function Vi, i = 1, 2, . . . , at every
point (t, x) =

(
t, x(t; t0, x0)

)
with respect to the system of differential equations

(1.1)–(1.3) coincides with the upper right Dini derivative at the same point with
respect to the solution of system under consideration.

We shall use the following class of scalar functions

K =
{
a ∈ C[R+,R+], a ↑↑, a(0) = 0

}
,

i.e. a is a strictly monotonically increasing function and a(0) = 0. We use the
following conditions:

(H1) The functions fi belong to C[R+ × Rn,Rn], i = 1, 2, . . . ;
(H2) There exist the constants Cfi > 0 such that(

∀(t, x) ∈ R+ × Rn
)
⇒ ‖fi(t, x)‖ ≤ Cfi

, i = 1, 2, . . . ;

(H3) The functions ϕi belong to C1[Rn,R], i = 1, 2, . . . ;
(H4) There exist constants Cgradϕi

> 0 such that

(∀x ∈ Rn)⇒
∥∥ gradϕi(x)

∥∥ ≤ Cgradϕi , i = 1, 2, . . . ;

(H5) The functions Ii belong to C[Rn,Rn], i = 1, 2, . . . ;
(H6) There exist the constants Cϕi+1(Id+Ii) > 0 such that

(∀x ∈ Φi)⇒
∣∣ϕi+1

(
(Id+ Ii)(x)

)∣∣ =
∣∣ϕi+1

(
x+ Ii(x)

)∣∣ ≥ Cϕi+1(Id+Ii), i = 1, 2, . . . ;

(H7) The next inequalities are valid

ϕi
(
(Id+ Ii−1)(x)

)
·
〈

gradϕi(x), fi(t, x)
〉
< 0, (t, x) ∈ R+ × Rn, i = 1, 2, . . . ;

(H8) The series
∞∑
i=1

Cϕi(Id+Ii−1)

Cgradϕi
· Cfi

diverges;
(H9) There exist the constants C〈gradϕi,fi〉 > 0 such that(
∀(t, x) ∈ R+ × Rn

)
⇒
∣∣〈 gradϕi(x), fi(t, x)

〉∣∣ ≥ C〈gradϕi,fi〉, i = 1, 2, . . . ;

(H10) For every point (t0, x0) ∈ R+ × Rn and for each i = 1, 2, . . . , the solution
of initial problem

dx

dt
= fi(t, x), x(t0) = x0

exists and it is unique for t ≥ t0;
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(H11) There exists constant CI > 0 such that

(∀x ∈ Rn)⇒
∥∥Ii(x)

∥∥ ≤ CI , i = 1, 2, . . . .

2. Preliminary results

Theorem 2.1 ([10]). Assume conditions (H1)–(H7). Then
(1) If the trajectory γ(t0, x0) of problem (1.1)–(1.4) meets consecutively the

switching hypersurfaces Φi and Φi+1, then the following estimate is valid
for the switching moments ti and ti+1:

ti+1 − ti ≥
Cϕi+1(Id+Ii)

Cgradϕi+1Cfi+1

, i = 1, 2, . . . ;

(2) If the trajectory γ(t0, x0) meets all the switching hypersurfaces Φi, i =
1, 2, . . . , and condition (H8) is satisfied, then the switching moments in-
crease indefinitely; i.e. limi→∞ ti =∞ is satisfied.

Remark 2.2. If the following inequalities are satisfied

0 < Cf1 = Cf2 = . . . ;
0 < Cgradϕ1 = Cgradϕ2 = . . . ;

0 < Cϕ2(Id+I1) = Cϕ3(Id+I2) = . . . ,

then it is easy to establish that
∞∑
j=1

Cϕj(Id+Ij−1)

Cgradϕj
Cfj

=∞.

Therefore, condition (H8) follows by the equalities above. If these equalities and
the conditions (H1)–(H7) are satisfied, and using the previous theorem, we deduce
that the switching moments increase indefinitely.

Theorem 2.3 ([10]). Assume conditions (H1), (H3), (H5), (H7), (H9), (H10).
Then the trajectory of problem (1.1)–(1.4) meets every one of the hypersurfaces Φi,
i = 1, 2, . . . .

Using Theorem 2.1 and condition (H10), we obtain the next theorem.

Theorem 2.4. Assume conditions (H1)–(H8), (H10). Then the solution of problem
(1.1)–(1.4) exists and it is unique for t ≥ t0.

We introduce a piecewise differentiable function V : [t0,∞) → R+ with points
of discontinuity, which coincide with the moments of switching t1, t2, . . . , by

V (t) = V
(
t, x(t; t0, x0)

)

=



V1

(
t, x(t; t0, x0)

)
, if t0 ≤ t ≤ t1;

Vi+1

(
t, x(t; t0, x0)

)
= Vi+1

(
t, x(ti + 0; t0, x0) +

∫ t
ti
fi+1

(
τ, x(τ ; t0, x0)

)
dτ
)

= Vi+1

(
t, x(ti; t0, x0) + Ii

(
x(ti; t0, x0)

)
+
∫ t
ti
fi+1

(
τ, x(τ ; t0, x0)

)
dτ
)
,

if ti < t ≤ ti+1, i = 1, 2, . . . .
(2.1)

It is obvious that the function is continuous from the left in its domain.
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The next theorem contains sufficient conditions under which function, introduced
above is monotonically decreasing.

Theorem 2.5. Assume that:
(1) Conditions (H1)–(H10) hold.
(2) There exists a sequence of scalar piecewise continuous Lyapunov functions{

Vi;Vi : R+ ×D → R+, i = 1, 2, . . .
}
,

corresponding to the impulsive system of differential equations (1.1)–(1.3),
and constant ρ > 0 such that

(2.1) It is satisfied that

Vi+1

(
t+ 0, x+ Ii(x)

)
= Vi+1

(
t, x+ Ii(x)

)
≤ Vi(t, x), (t, x) ∈ R+ ×

(
Bcρ(0) ∩ Φi

)
,

for i = 1, 2, . . . ;
(2.2) It is satisfied that

V̇i(t, x) ≤ 0, (t, x) ∈ R+ ×
(
Bcρ(0) ∩ Φi

)
, i = 1, 2, . . . .

Then function V (t) = V
(
t, x(t; t0, x0)

)
, defined in (2.1), is monotonically decreasing

in every interval (t∗, t∗), for which: t0 < t∗ and

‖x(t; t0, x0)‖ ≥ ρ, t∗ < t < t∗.

Proof. According to Theorem 2.1, limi→∞ ti = ∞. This implies that there are
numbers k and p such that

tk ≤ t∗ < tk+1 < · · · < tk+p ≤ t∗ < tk+p+1.

Within each of the open intervals

(t∗, tk+1); (tk+1, tk+2); . . . ; (tk+p−1, tk+p); (tk+p, t
∗) (2.2)

in accordance with condition (2.2) of the theorem, it is satisfied that
d

dt
V (t) = D+

(1.1)−(1.3)Vi
(
t, x(t; t0, x0)

)
= V̇(1.1)−(1.3)(t, x) = V̇ (t, x) ≤ 0.

So, we conclude that the function V = V (t) is monotonically decreasing in each
one of these intervals.

By condition (2.1) for i = k + 1, k + 2, . . . , k + p, we have

V (ti + 0)− V (ti) = Vi+1

(
ti + 0, x(ti + 0; t0, x0)

)
− V

(
ti, x(ti; t0, x0)

)
= Vi+1

(
ti, x(ti; t0, x0) + Ii

(
x(ti; t0, x0)

))
− Vi

(
ti, x(ti; t0, x0)

)
≤ 0.

In this way, we obtain that function V is monotonically decreasing in the union of
intervals (2.2), i.e. interval (t∗, t∗). The proof is complete. �

The next theorem contains sufficient conditions for the function V , introduced
above, to be bounded.

Theorem 2.6. Assume that:
(1) Conditions (H1)–(H11) hold;
(2) There exists a sequence of scalar piecewise continuous Lyapunov functions{

Vi;Vi : R+ ×D → R+, i = 1, 2, . . .
}
,

corresponding to the impulsive system of differential equations (1.1)–(1.3),
and constant ρ > 0 such that
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(2.1) The functions a, b ∈ K and constant ρ > 0 correspond on the upper
sequence of Lyapunov functions satisfy

(2.1.1) a(‖x‖) ≤ Vi(t, x) ≤ b(‖x‖), (t, x) ∈ R+ ×Bcρ(0), i = 1, 2, . . . ,
(2.1.2) limu→∞ a(u) =∞;

(2.2) It is satisfied that

Vi+1

(
t+ 0, x+ Ii(x)

)
= Vi+1

(
t, x+ Ii(x)

)
≤ Vi+1(t, x), (t, x) ∈ R+ ×

(
Bcρ(0) ∩ Φi

)
, i = 1, 2, . . . ;

(2.3) It is satisfied that

V̇i(t, x) ≤ 0, (t, x) ∈ R+ ×
(
Bcρ(0)\Φi

)
, i = 1, 2, . . . .

Then

(∀α = const ≥ ρ+Ci > 0)(∀x0 ∈ Bα(0))⇒ V (t) = V
(
t, x(t; t0, x0)

)
< α(β), t ≥ t0,

where β = β(α) > a−1
(
b(α+ CI)

)
.

Proof. Let α be an arbitrary positive constant, satisfying the inequality α ≥ ρ+CI .
From the definition of constant β, it follows:

α(β) > b(a+ CI) > a(α+ CI) and β > α+ CI .

Let (t0, x0) ∈ R+ ×Bα(0). Assume that

(∃t∗ > t0) : V (t∗) = V
(
t∗, x(t∗; t0, x0)

)
≥ α(β).

We will note that, it is possible for point t∗ to be a switching moment, i.e. to exist
a number k ∈ N such that t∗ = tk. From the assumptions made and the conditions
of theorem, we obtain

b
(∥∥x(t∗; t0, x0)

∥∥) ≥ V (t∗) ≥ α(β) > b(α),

i.e.
∥∥x(t∗; t0, x0)

∥∥ > α. From the inequality above and having in mind that the
solution of problem is continuous on the left (including the switching points), we
conclude that there is a point t∗ such that

t0 < t∗ < t∗; (2.3)

ρ < α− CI ≤
∥∥x(t∗; t0, x0)

∥∥ ≤ α; (2.4)

α ≤
∥∥x(t; t0, x0)

∥∥, t∗ < t ≤ t∗. (2.5)

Using successively condition (2.2) of this Theorem, inequalities (2.3) and (2.4),
Theorem 2.5, and finally the assumptions made, we conclude that

b
(∥∥x(t∗; t0, x0)

∥∥) ≥ V (t∗, x(t∗; t0, x0)
)

= V (t∗) ≥ V (t∗) > b(α),

from there we have
∥∥x(t∗; t0, x0)

∥∥ > α, which contradicts (2.4). The proof is com-
plete. �

3. Main results

The main objective of this section is finding sufficient conditions for the uni-
form final boundedness of the solutions of system (1.1)–(1.3). The conditions are
obtained by using the sequences of peacewise continuous scalar Lyapunov functions.
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Theorem 3.1. Assume that (H1)–(H11) and conditions (2.1) and (2.2) of Theorem
2.6 are satisfied. Also assume that

V̇i(t, x) ≤ −c(‖x‖), (t, x) ∈ R+ ×
(
Bcρ(0)\Φi

)
, i = 1, 2, . . . ,

where the function c ∈ K. Then the solutions of system of differential equations
with variable structure and impulses (1.1)–(1.3) are uniformly finally bounded.

Proof. According to Theorem 2.6, the solution of system (1.1)–(1.4) is uniformly
bounded. More precisely, let:

α ≥ ρ; (3.1)

β = β(α) > max
{
α+ CI , a

−1
(
b(α)

)}
; (3.2)

(t0, x0) ∈ R+ ×Bα(0). (3.3)

Then ∥∥x(t; t0, x0)
∥∥ < β, t ≥ t0. (3.4)

The statement, formulated above will be valid if we replace the inequalities (3.1)
and (3.2) with

α ≥ ρ+ CI ; (3.5)

β = β(α) > a−1
(
b(α+ CI)

)
. (3.6)

Indeed, inequality (3.1) obviously follows from (3.5). Using (3.6), we obtain

β > a−1
(
b(α+ CI)

)
> a−1

(
b(α)

)
; (3.7)

a(β) > b(α+ CI) > a(α+ CI)⇔ β > α+ CI . (3.8)

From these two inequalities, we obtain (3.2). Finally, by (3.3), (3.5) and (3.6)
follows (3.4).

Let B = ρ+ CI . We shall show that

(∀α = const > ρ+ CI)
(
∃T = T (α) > 0

)
:
(
∀x0 ∈ Bα(0)

)
⇒ ‖x(t; t0, x0)‖ < β, t ≥ t0 + T,

whence, it follows that the solutions of the system are quasi-uniformly finally
bounded.

There is β > B and therefore a(β) > a(B). Let ν be a natural number such that

ν − 1 ≤ a(β)− a(B)
a(B)

< ν.

Denote

θk = t0 + k
a(B)
c(ρ)

, k = 0, 1, . . . , ν.

We will show that regardless of the the choice of initial point x0 ∈ Bα(0), the next
estimates are valid:

V (t) = V
(
t, x(t; t0, x0)

)
< (ν + 1− k)a(B), t ≥ θk, k = 0, 1, . . . , ν. (3.9)

We shall prove the statement by induction. For k = 0, i.e. for t ≥ θ0 = t0, using
Theorem 2.6 we have

V (t) = V
(
t, x(t; t0, x0)

)
< a(β) < (ν + 1− 0)a(B), t ≥ t0 = θ0.

Assume that
V (t) < (ν + 1− k)a(B), t ≥ θk. (3.10)
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We shall show that
V (t) < (ν − k)a(B), t ≥ θk+1.

If the opposite is true, i.e.

(∃t∗ ≥ θk+1) : V (t∗) ≥ (ν − k)a(B),

then by (3.10) for t = θk, the inequality above and monotony of function V (see
Theorem 2.5), we obtain

V (θk)− V (θk+1) ≤ V (θk)− V (t∗) ≤ a(B). (3.11)

On the other hand, using the fact that function V is a piecewise differentiable, and
also the inequality of condition (2) of this theorem, we arrive at the estimate

V (θk+1) ≤ V (θk) +
∫ θk+1

θk

d

dt
V (τ)dτ

< V (θk)− c(ρ)(θk+1 − θk)

= V (θk)− a(B).

which contradicts (3.11). We substitute

T = T (α) =
a(B)
c(ρ)

ν.

Then

t ≥ t0 + T = t0 +
a(B)
c(ρ)

ν = θν .

Then by (3.9) and condition (2.1.1) of Theorem 2.6, finally we obtain

a
(∥∥x(t; t0, x0)

∥∥) ≤ V (t) = V
(
t, x(t; t0, x0)

)
< a(B),

i.e. ‖x(t; t0, x0)‖ < β. The proof is complete. �
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