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WEAKLY LOCALLY THERMAL STABILIZATION OF BRESSE
SYSTEMS

NADINE NAJDI, ALI WEHBE

Abstract. Fatori and Rivera [7] studied the stability of the Bresse system

with one distributed temperature dissipation law operating on the angle dis-
placement equation. They proved that, in general, the energy of the system

does not decay exponentially and they established the rate of t−1/3. In this

article, our goal is to extend their results, by taking into consideration the
important case when the thermal dissipation is locally distributed and to im-

prove the polynomial energy decay rate. We then study the energy decay rate

of Bresse system with one locally thermal dissipation law. Under the equal
speed wave propagation condition, we establish an exponential energy decay

rate. On the contrary, we prove that the energy of the system decays, in

general, at the rate t−1/2.

1. Introduction and statement of main result

In this article, we study the energy decay rate of the Bresse system subject to one
locally temperature dissipation law operating on the angle displacement equation.
The system is governed by the partial differential equations

ρ1ϕtt − κ(ϕx + ψ + lω)x − κ0l(ωx − lϕ) = 0 in (0, L)× (0,∞), (1.1)

ρ2ψtt − bψxx + κ(ϕx + ψ + lω) + α(x)θx = 0 in (0, L)× (0,∞), (1.2)

ρ1ωtt − κ0(ωx − lϕ)x + κl(ϕx + ψ + lω) = 0 in (0, L)× (0,∞), (1.3)

ρ3θt − θxx + T0(αψt)x = 0 in (0, L)× (0,∞) (1.4)

with the boundary conditions

ωx(t, x) = ϕ(t, x) = ψx(t, x) = θ(t, x) = 0 for x = 0, L, (1.5)

ω(t, x) = ϕ(t, x) = ψ(t, x) = θ(t, x) = 0 for x = 0, L, (1.6)

and initial conditions
ω(0, x) = ω0(x), ωt(0, x) = ω1(x), ψ(0, x) = ψ0(x), ψt(0, x) = ψ1(x)

ϕ(0, x) = ϕ0(x), ϕt(0, x) = ϕ1(x), θ(0, x) = θ0(x)
(1.7)
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where ϕ, ψ, ω are the vertical, shear angle and longitudinal displacements; θ is
the temperature deviation from the reference temperature T0 along the shear angle
displacement and α ∈W 2,∞(0;L) is a function verifying the following condition

α ≥ 0 on ]0;L[ and α ≥ α0 > 0 on ]a0; b0[⊂]0;L[. (1.8)

Here ρ1 = ρA, ρ2 = ρI, ρ3 = ρc, κ0 = EA, κ = κ′GA, b = EI and l = R−1

are positive constants for the elastic and thermal material properties. To be more
precise, ρ for density, E for the modulus of elasticity, G for the shear modulus,
κ′ for the shear factor, A for the cross-sectional area, I for the second moment
of area of cross-section, R for the radius of the curvature and c for the thermal
material property (for more details see Lagnese et al. [9]). The velocities of waves
propagations are, respectively, v1 = κ

ρ1
, v2 = b

ρ2
, v3 = κ0

ρ1
.

The energy of solutions of the system (1.1)-(1.4) subject to initial state (1.7) to
either the boundary conditions (1.5) or (1.6) is defined by

E(t) =
1
2

∫ L

0

{κ|ψ + ϕx + lω|2 + b|ψx|2 + κ0|ωx − lϕ|2 + ρ1|ϕt|2 + ρ2|ψt|2

+ ρ1|ωt|2 +
ρ3

T0
|θ|2}dx.

(1.9)

then a straightforward computation gives

d

dt
E(t) = − 1

T0

∫ L

0

|θx|2dx ≤ 0. (1.10)

Then the thermoelastic Bresse system is dissipative in the sense that its energy is
non increasing with respect to the time t. Our goal is to study the effect of this
dissipation on the Bresse system.

Different types of damping have been introduced to Bresse system and sev-
eral uniform and polynomial stability results have been obtained. We start by
recall some results related to the stabilization of elastic Bresse system. Wehbe
and Youssef [18], considered elastic Bresse system subject to two locally internal
dissipation laws. They proved that the system is exponentially stable if and only
if the wave propagation speeds are equal. Otherwise, only a polynomial stability
holds. Alabau-Boussouira et al. [1], considered the same system with one globally
distributed dissipation law. The authors proved that, in general, the system is not
exponentially stable but there exists polynomial decay with rates that depend on
some particular relation between the coefficients. Using boundary conditions of
Dirichlet-Dirichlet-Dirichlet type, they proved that the energy of the system decays
at a rate t−1/3 and at the rate t−

2
3 if κ = κ0. These results are completed by Fatori

and Montiero [6]. Using boundary conditions of Dirichlet-Neumann-Neumann type,
the authors showed that the energy of the elastic Bresse system decays polynomi-
ally at the rate t−1/2 and at the rate t−1if κ = κ0. Noun and Wehbe [14] extended
the results of [1] and [6]. The authors considered the elastic Bresse system subject
to one locally distributed feedback with Dirichlet-Neumann-Neumann or Dirichlet-
Dirichlet-Dirichlet boundary conditions type. They proved that the exponentially
decay rate is preserved when the wave propagation speeds are equal. On the con-
trary, the authors established a polynomial energy decay with rates that depend
on some particular relation between the coefficients and they obtained the rate of
t−1/2 or t−1. Finally, see [17] for the stabilization of elastic Bresse system with
internal indefinite damping and [10] for the stabilization of elastic Bresse system
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with a nonlinear damping acting in the equation of the shear angle displacement,
and nonlinear localized damping in other equations.

For the thermoelastic Bresse system, subject of this paper, there exist two im-
portant results. The first result is due to Liu and Rao [12], when they considered
the Bresse system with two thermal dissipation laws. The authors showed that
the energy decays exponentially when the wave speed of the vertical displacement
coincides with the wave speed of longitudinal displacement or of the shear angle
displacement. Otherwise, they found polynomial decay rates depending on the
boundary conditions. When the system is subject to Dirichlet-Neumann-Neumann
boundary conditions, they showed that the energy decays at the rate t−1/2 and for
fully Dirichlet boundary conditions, they proved that the energy of the system de-
cays as t−

1
4 . This result has been recently improved by Fatori and Rivera [7] in the

sense that the authors considered only one globally dissipative mechanism given
by one temperature, and they established the rate of decay t−1/3 for Dirichlet-
Neumann- Neumann and Dirichlet-Dirichlet-Dirichlet boundary conditions type.
The main result of this paper is to extend the results from [7], by taking into con-
sideration the important case when the thermal dissipation law is locally distributed
on the angle displacement equation i.e the damping coefficient α is not constant
but it is a positive function in W 2,∞(0, L) and strictly positive in an open subin-
terval ]a, b[⊂]0, L[ (the cases a = 0 or b = L are not excluded) and to improve the
polynomial energy decay rate. Then, in this paper, we consider the Bresse system
damped by one thermal dissipation law acting locally on the angle displacement
equation with Dirichlet-Neumann-Neumann or Dirichlet-Dirichlet-Dirichlet bound-
ary conditions types. Under the equal speed wave propagation condition, κ = κ0

and ρ1
ρ2

= κ
b , using a frequency domain approach combining with a piecewise multi-

plier method, we establish an exponential energy decay rate for usual initial data.
On the contrary, in the natural case, when κ 6= κ0 and ρ1

ρ2
6= κ

b , we establish a new
polynomial energy decay rate of type t−1/2 for smooth solution. Finally, if κ = κ0

and ρ1
ρ2
6= κ

b , we establish a new polynomial energy decay rate of type t−1 for the
smooth solution.

We now outline briefly the content of this paper. In section 2, in a convenable
Hilbert space, we formulate system (1.1)-(1.4) with either boundary condition (1.5)
or (1.6) into an evolution equation. We recall the well-posedness of the problem by
the semigroup approach and by a spectrum method we prove that system (1.1)-(1.4)
is strongly stable for usual initial data. In section 3, we consider the particular case
when the speed of the three waves are equal and we establish an exponential energy
decay rate for usual initial data. In section 4, we consider the natural general case
when the speed wave propagations are different two by two and we establish a new
polynomial energy decay rate for smooth initial data.

2. Well-posedness and strong stability

In this section we study the existence, uniqueness and the strong stability of the
solution of (1.1)-(1.7).

2.1. The semigroup setting. We start by study the existence and uniqueness
of the solution of the thermoelastic Bresse system. We first, define the following
energy spaces

H1 = H1
0 × (H1

∗ )
2 × (L2)2 × L2

∗ × L2 and H2 = (H1
0 )3 × (L2)4,
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where

L2
∗ = {f ∈ L2(0, L) :

∫ L

0

f(x)dx = 0}, H1
∗ = {f ∈ H1(0, L) :

∫ L

0

f(x)dx = 0}.

Both spaces H1 and H2 are equipped with the inner product which induces the
energy norm

‖U‖2Hj = κ‖ϕx + ψ + lω‖2 + b‖ψx‖2 + κ0‖ωx − lϕ‖2

+ ρ1‖u‖2 + ρ2‖v‖2 + ρ1‖z‖2 +
ρ3

T0
‖θ‖2.

(2.1)

Here and after, ‖ · ‖ denotes the L2(0, L) norm.

Remark 2.1. In the case of boundary condition (1.6), it is easy to see that ex-
pression (2.1) define a norm on the energy space H2. But in the case of boundary
condition (1.5) the expression (2.1) define a norm on the energy space H1 if L 6= nπ

l
for all positive integer n. Then, here and after, we assume that there exist no n ∈ N
such that L = nπ

l when j = 1.

Next, define a linear unbounded operator Aj : D(Aj)→ Hj by

D(A1) = {U ∈ H1 : ϕ, θ ∈ H1
0 ∩H2, ψ, ω ∈ H1

∗ ∩H2, u, ψx, ωx ∈ H1
0 , v, z ∈ H1

∗}
(2.2)

D(A2) = {U ∈ H2 : ϕ,ψ, ω, θ ∈ H1
0 ∩H2, u, v, z ∈ H1

0} (2.3)

Aj(ϕ,ψ, ω, u, v, z, θ) =



u
v
z

κ
ρ1

(ϕx + ψ + lω)x + κ0l
ρ1

(ωx − lϕ)
b
ρ2
ψxx − κ

ρ2
(ϕx + ψ + lω)− 1

ρ2
α(x)θx

κ0
ρ1

(ωx − lϕ)x − κl
ρ1

(ϕx + ψ + lω)
1
ρ3
θxx − T0

ρ3
(αv)x


(2.4)

for all U = (ϕ,ψ, ω, u, v, z, θ) ∈ D(Aj), j = 1, 2. Thus, if U = (ϕ,ψ, ω, ϕt, ψt, ωt, θ)
is a smooth solution of system (1.1)-(1.7), then the thermoelastic Bresse system is
transformed into a first order evolution equation on the Hilbert space Hj :

Ut = AjU, U(0) = U0 (2.5)

with j = 1, 2 corresponding to the boundary conditions (1.6) and (1.7), respectively.
It is easy to see that the operator Aj is m-dissipative in the energy space Hj ,

j = 1, 2, then we have the following results concerning existence and uniqueness of
solution of the problem (2.5) (see [15], [13]).

Theorem 2.2. The operator Aj generates a C0-semigroup etAj of contractions on
Hj for j = 1, 2. Thus for any initial data U0 ∈ Hj, the problem (2.5) has a unique
weak solution U ∈ C0([0,∞),Hj). Moreover, if U0 ∈ D(Aj), then U is a strong
solution of (2.5), i. e U ∈ C1([0,∞),Hj) ∩ C0([0,∞), D(Aj)).

2.2. Strong stability. In this part, using a spectrum method, we will prove the
strong stability of the C0-semigroup etAj .

Theorem 2.3. The semigroup etAj is strongly stable in the energy space Hj. In
other words

lim
t→+∞

‖etAjU0‖Hj = 0 j = 1, 2, ∀U0 ∈ Hj . (2.6)
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Proof. Since the resolvent of Aj is compact in Hj , j = 1, 2, then using a result due
to Benchimol [3], the system (1.1)-(1.4) is strongly stable if and only if Aj does
not have pure imaginary eigenvalues. By contradiction argument, let 0 6= U =
(ϕ,ψ, ω, u, v, z, θ) ∈ D(Aj), iλ ∈ iR, such that

AjU = iλU.

Our goal is to find a contradiction by proving that U = 0. Taking the real part of
the inner product in Hj of AjU and U , we obtain

0 = Re(iλ‖U‖2Hj ) = Re((AjU,U)Hj ) = − 1
T0

∫ L

0

|θx|2dx.

It follows that
θ = θx = 0 a.e. in (0, L).

Now, detailing the equation AjU = iλU , and using the fact that θ = 0, we obtain

u = iλϕ, (2.7)

v = iλψ, (2.8)

z = iλω, (2.9)
κ

ρ1
(ϕx + ψ + lω)x +

κ0l

ρ1
(ωx − lϕ) = iλu, (2.10)

b

ρ2
ψxx −

κ

ρ2
(ϕx + ψ + lω) = iλv, (2.11)

κ0

ρ1
(ωx − lϕ)x −

κl

ρ1
(ϕx + ψ + lω) = iλz, (2.12)

(αv)x = 0. (2.13)

If λ = 0, then u = v = z = 0 and using Lax-Milgram theorem (see [5]), it is clear
to see that the system (2.10)-(2.12) has the unique trivial solution ϕ = ψ = ω = 0.
This implies that U = 0 and the desired contradiction is proved.

Now, assume that λ 6= 0. Then let ξ(x) =
∫ x
0
v(s)ds, multiply (2.13) by −ξ(x),

and integrate by parts, to obtain∫ L

0

α|v|2dx− α(L)v(L)
∫ L

0

v(s)ds = 0.

In the case of Dirichlet-Neumann-Neumann conditions, we have v ∈ H1
∗ (0, L) then∫ L

0
v(s)ds = 0, and in the case of Dirichlet- Dirichlet-Dirichlet conditions, we have

v ∈ H1
0 (0, L) then v(L) = 0. This together with condition (1.8), implies that

√
αv = 0 a.e. in (0, L) and v = 0 a.e. in (a0, b0). (2.14)

Now, combining equations (2.8), (2.11) and (2.14), we obtain

ψ = 0 and ϕx + lω = 0 a.e. in (a0, b0). (2.15)

Combining equations (2.7), (2.10) and (2.15), we obtain

ρ1λ
2ϕ+ κ0l(ωx − lϕ) = 0, a.e. in (a0, b0). (2.16)

Similarly, combining equations (2.9), (2.12) and (2.15), we obtain

ρ1λ
2ω + κ0(ωx − lϕ)x = 0, a.e. in (a0, b0). (2.17)
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By a direct calculation we deduce that system (2.15)-(2.17) has the solution

ϕ = c, ψ = 0, ω = 0, a.e. in (a0, b0).

Then, from (2.16) we deduce that

(λ2ρ1 − κ0l
2)ϕ = 0, a.e. in (a0, b0).

We have then two cases to discuss: λ = l
√

κ0
ρ1

, and λ 6= l
√

κ0
ρ1

.

Case 1. Suppose that λ 6= l
√

κ0
ρ1

, then

ϕ = 0 a.e. in (a0, b0).

Let X = (ϕ,ϕx, ψ, ψx, ω, ωx)T and

M =



0 1 0 0 0 0
−ρ1
κ λ2 + κ0

κ l
2 0 0 −1 0 −l − κ0

κ l
0 0 0 1 0 0
0 κ

b
−ρ2
b λ2 + κ

b 0 κ
b l 0

0 0 0 0 0 1
0 l + κ

κ0
l κ

κ0
l 0 −ρ1

κ0
λ2 + κ

κ0
l2 0

 .

Then system (2.10)-(2.12) can be written as

X ′ = MX, in (0, a0),

X(a0) = 0.
(2.18)

Using ordinary differential equation theory, we deduce that system (2.18) has the
unique trivial solution X = 0 in (0, a0) and ϕ = ψ = ω = 0 a.e in (0, a0). Same
argument as above leads us to prove that ϕ = ψ = ω = 0 a.e. in (b0, L) and
therefore U = 0.
Case 2. Suppose that λ = l

√
κ0
ρ1

. Then (2.10) can be rewritten as

κ(ϕx + ψ + lω)x +
κ0l

κ
ωx = 0 a.e. in (0, a0). (2.19)

Let X = (ϕx, ψ, ψx, ω, ωx)T and

M =


0 0 −1 0 −l − κ0

κ l
0 0 1 0 0
κ
b

−ρ2
b λ2 + κ

b 0 κ
b l 0

0 0 0 0 1
l + κ

κ0
l κ

κ0
l 0 −ρ1

κ0
λ2 + κ

κ0
l2 0


Then system (2.10)-(2.12) could be given as

X ′ = MX, in (0, a0),

X(a0) = 0.
(2.20)

Using ordinary differential equation theory, we deduce that system (2.20) has the
unique trivial solution X = 0 in (0, a0). This implies that ϕ = c, ψ = 0 and ω = 0
a.e in (0, a0). Since ϕ ∈ H2(0, L) ⊂ C1([0, L]) and ϕ(0) = 0, we conclude that
ϕ = 0 a.e in (0, a0). Same argument as above leads us to prove that ϕ = ψ = ω = 0
a.e in (b0, L) and therefore U = 0. The proof is complete. �
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3. Exponential Stability, in the case κ = κ0 and κ
ρ1

= b
ρ2

In this section, we consider system (1.1)-(1.4) under the equal speed propagation
conditions i.e. κ = κ0 and κ

ρ1
= b

ρ2
. We prove the following exponential stability

result.

Theorem 3.1. If κ = κ0 and κ
ρ1

= b
ρ2

then the semigroup etAj is exponentially
stable, i.e., there exist constant M ≥ 1, and ε > 0 independent of U0 such that

‖etAjU0‖Hj ≤Me−εt‖U0‖Hj , t ≥ 0, j = 1, 2. (3.1)

For this aim, we will use the frequency domain method. More precisely, using
Huang [8] and Pruss [16], inequality (3.1) hold if and only if the following two
conditions are satisfied:

(H1) iR ⊂ ρ(Aj),
(H2) supλ∈R ‖(iλ−Aj)−1‖ = O(1) .

We first check condition (H1). Since (I − Aj)−1 is compact and Aj has no pure
imaginary eigenvalues (Theorem 2.3), we deduce that condition (H1) is true. We
will prove condition (H2) by contradiction argument. Suppose that there exist
a sequence λn ∈ R and a sequence Un = (ϕn, ψn, ωn, un, vn, zn, θn) ∈ D(Aj),
verifying the following conditions

|λn| → +∞, (3.2)

‖Un‖Hj = 1, (3.3)

(iλnI −Aj)Un = (fn1 , f
n
2 , f

n
3 , g

n
1 , g

n
2 , g

n
3 , g

n
4 )→ 0 in Hj , j = 1, 2. (3.4)

Equation (3.4) can be written as

iλnϕ
n − un = fn1 (3.5)

iλnψ
n − vn = fn2 (3.6)

iλnω
n − zn = fn3 (3.7)

λ2
nϕ

n +
κ

ρ1
(ϕnxx + ψnx + lωnx ) +

κ0l

ρ1
(ωnx − lϕn) = −gn1 − iλnfn1 , (3.8)

λ2
nψ

n +
b

ρ2
ψnxx −

κ

ρ2
(ϕnx + ψn + lωn)− 1

ρ2
α(x)θnx = −gn2 − iλnfn2 , (3.9)

λ2
nω

n +
κ0

ρ1
(ωnxx − lϕnx)− κl

ρ1
(ϕnx + ψn + lωn) = −gn3 − iλnfn3 (3.10)

iλnθ
n − 1

ρ3
θnxx + i

T0

ρ3
λn(αψn)x = gn4 + T0ρ

−1
3 (αfn2 )x. (3.11)

Our goal is, using a multiplier method, to prove that ‖U‖Hj = o(1). This contra-
dicts equation (3.3). We will establish the proof by several Lemmas. For simplicity,
here and after we drop the index n.

Consider the function η ∈ C1([0, L]) such that 0 ≤ η ≤ 1, η = 1 on [a0 +ε, b0−ε]
and η = 0 on [0, a0] ∪ [b0, L], where 0 < a0 + ε < b0 − ε < L. We have the first
information.

Lemma 3.2. With the above notation, we have

‖ψx‖ = O(1), ‖ψ‖ =
O(1)
λ

, ‖ηψxx‖ = O(λ). (3.12)
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The proof of the above lemma follows from equations (3.5), (3.6), (3.7) and (3.9),
which lead to equations (3.12).

Lemma 3.3 (Dissipation). With the above notation, we have∫ L

0

|θx|2dx = o(1),
∫ L

0

|θ|2dx = o(1). (3.13)

Proof. Multiplying (3.7) by the uniformly bounded sequence U = (ϕ,ψ, ω, u, v, z, θ),
we obtain ∫ L

0

|θx|2dx = −Re((iλ−Aj)U,U)Hj = o(1). (3.14)

Finally, using Poincaré inequality, it follows the second asymptotic equality. The
proof is complete. �

Lemma 3.4. With the above notation, if ‖U‖ = o(1) on ]a1; b1[⊂]0, L[, then ‖U‖ =
o(1) on ]0;L[.

Proof. Let h ∈ H1
0 (0;L) be a given function.

(i) Multiply equation (3.8) by 2ρ1hϕx and integrate over [0;L], we obtain

− ρ1

∫ L

0

h′|λϕ|2 + ρ1[h|λϕ|2]L0 − κ
∫ L

0

h′|ϕx|2 + κ[h|ϕx|2]L0

+ 2 Re
{
κ

∫ L

0

hψxϕx + l(κ+ κ0)
∫ L

0

hωxϕx − κ0l
2

∫ L

0

hϕϕx

}
= 2ρ1 Re

{ ∫ h

0

g1ϕx + i

∫ L

0

(f1xh+ f1h
′)λϕ− iλ[f1hϕ]L0

}
.

(3.15)

Using (3.3) and (3.5), we deduce that ‖ϕ‖ = O(1)
λ and ‖ϕx‖ = O(1). Then using

the fact that ϕ(0) = ϕ(L) = 0, h(0) = h(L) = 0, ‖g1‖ = o(1), ‖f1‖ = o(1) and
‖f1x‖ = o(1) in (3.15), we obtain

− ρ1

∫ L

0

h′|λϕ|2 − κ
∫ L

0

h′|ϕx|2 + 2 Re
{
κ

∫ L

0

hψxϕx + l(κ+ κ0)
∫ L

0

hωxϕx

}
= o(1).

(3.16)
(ii) Multiply (3.9) by 2ρ2hψx and integrate over [0;L], we obtain

− ρ2

∫ L

0

h′|λψ|2 + ρ2[h|λψ|2]L0 − b
∫ L

0

h′|ψx|2 + b[h|ψx|2]L0

− 2 Re
{
κ

∫ L

0

hϕxψx + κ

∫ L

0

hψψx + κl

∫ L

0

hωψx +
∫ L

0

hα(x)θxψx
}

= 2ρ2 Re
{
−

∫ L

0

hg2ψx + i

∫ L

0

(f2xh+ f2h
′)λψ − iλ[f2hψ]L0

}
.

(3.17)

Using (3.3), (3.6) and (3.7) we deduce that ‖ψ‖ = O(1)
λ , ‖ω‖ = O(1)

λ and ‖ψx‖ =
O(1). Then using the fact that h(0) = h(L) = 0, ‖θx‖ = o(1), ‖g2‖ = o(1),
‖f2‖ = o(1) and ‖f2x‖ = o(1) in (3.17), we obtain

− ρ2

∫ L

0

h′|λψ|2 − b
∫ L

0

h′|ψx|2 − 2κRe
{ ∫ L

0

hϕxψx

}
= o(1). (3.18)
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(iii) Similarly, multiply (3.10) by 2ρ1hωx and integrate over [0;L], we obtain

− ρ1

∫ L

0

h′|λω|2 + ρ1[h|λω|2]L0 − κ0

∫ L

0

h′|ωx|2 + κ0[h|ωx|2]L0

− 2lRe
{
κ0

∫ L

0

hϕxωx + κ

∫ L

0

hϕxωx + κ

∫ L

0

h(ψ + lω)ωx
}

= 2ρ1 Re
{
−

∫ L

0

hg3ωx + i

∫ L

0

(f3xh+ f3h
′)λω − iλ[f3hω]L0

}
.

(3.19)

By a similar way as in (i) and (ii), it follows that

− ρ1

∫ L

0

h′|λω|2 − κ0

∫ L

0

h′|ωx|2 − 2l(κ+ κ0) Re
{ ∫ L

0

hϕxωx

}
= o(1). (3.20)

(iv) Adding (3.16), (3.18) and (3.20), we obtain

− ρ1

∫ L

0

h′|λϕ|2 − κ
∫ L

0

h′|ϕx|2 − ρ2

∫ L

0

h′|λψ|2

− b
∫ L

0

h′|ψx|2 − ρ1

∫ L

0

h′|λω|2 − κ0

∫ L

0

h′|ωx|2 = o(1).

(3.21)

(v) Let ε > 0 such that a1 + ε < b1 and define the function η̂ in C1([0;L]) by

0 ≤ η̂ ≤ 1, η̂ = 1 on [0; a1] and η̂ = 0 on [a1 + ε;L]

Then take h = xη̂ in (3.21) and using the fact that ‖U‖Hj = o(1) on ]a1, b1[, we
obtain

− ρ1

∫ a1

0

|λϕ|2 − κ
∫ a1

0

|ϕx|2 − ρ2

∫ a1

0

|λψ|2

− b
∫ a1

0

|ψx|2 − ρ1

∫ a1

0

|λω|2 − κ0

∫ a1

0

|ωx|2 = o(1).
(3.22)

It follows that ‖U‖Hj = o(1) on ]0, a1[.
(vi) Let ε > 0 such that b1 − ε > a1 and define the function η̃ in C1([0;L]) by

0 ≤ η̃ ≤ 1, η̃ = 1 on [b1, L] and η̃ = 0 on [0, b1 − ε].

Then, as in (v), take h = (x− L)η̃ in (3.21) and using the fact that ‖U‖Hj = o(1)
on ]a1, b1[, we obtain

‖U‖Hj = o(1) on ]b1, L[.
The proof is complete. �

Now we have information on ψ and ψx.

Lemma 3.5. With the above notation, we have∫ L

0

η|ψ|2 =
o(1)
λ2

,

∫ L

0

η|ψx|2 = o(1). (3.23)

Proof. First, multiplying (3.11) by ηψ̄x, we obtain

T0

∫ L

0

ηα|ψx|2 =
T0

2

∫ L

0

(ηα′)′|ψ|2 + Re
{
ρ3

∫ L

0

(η′θ + ηθx)ψ̄

+ i

∫ L

0

θxλ
−1η ¯ψxx +

i

λ

∫ L

0

η′θxψ̄x

}
+
o(1)
λ
.

(3.24)
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Using (3.13) and the fact that ‖ψ‖ = O(1)
λ , ‖ψx‖ = O(1) and ‖ηψxx‖ = O(λ) in

(3.24), we obtain ∫ L

0

η|ψx|2 = o(1). (3.25)

Next, multiplying (3.9) by ηψ̄, we obtain

ρ2

∫ L

0

η|λψ|2 = b

∫ L

0

η|ψx|2 + b

∫ L

0

η′ψxψ̄ +
∫ 1

0

[κ(ψ + lω) + αθx]ηψ̄

−
∫ 1

0

κ(η′ϕψ + ηϕψx) + o(1).

(3.26)

Using (3.13), (3.25) and the fact that ‖ψ‖ = O(1)
λ and ‖ω‖ = O(1)

λ in equation
(3.26), we obtain ∫ L

0

η|ψ|2 =
o(1)
λ2

. (3.27)

�

Now we have information on ϕ and ϕx.

Lemma 3.6. With the above notation, if κ
ρ1

= b
ρ2

, then∫ L

0

η|ϕ|2 =
o(1)
λ2

and
∫ L

0

η|ϕx|2 = o(1). (3.28)

Proof. (i) First, multiplying (3.8) by ηψx and integrating over ]0, L[, we obtain∫ L

0

ηλ2ϕψx +
κ

ρ1

∫ L

0

ηϕxxψx +
κ

ρ1

∫ L

0

η|ψx|2 +
κl

ρ1

∫ L

0

ηωxψx

+
κ0l

ρ1

∫ L

0

(ωx − lϕ)ηψx

=
∫ L

0

(−g1ηψx + iλf1xηψ + iλf1η
′ψ)− [iλf1ηψ]L0 .

(3.29)

From (3.3), (3.5) and (3.6) it is clear to see that sequences ωx, (ωx − lϕ), λψ are
uniformly bounded in L2(0, L). Then using Lemma 3.5 and the fact that ‖f1‖ =
o(1), ‖f1x‖ = o(1), ‖g1‖ = o(1), and that f1(0) = f1(L) = 0, we obtain that

−
∫ L

0

ηλ2ϕψx −
κ

ρ1

∫ L

0

ηϕxxψx = o(1). (3.30)

(ii) Multiply (3.9) by ηϕx and integrate over ]0, L[, we obtain

−
∫ L

0

λ2ψxηϕ−
∫ L

0

λ2ψη′ϕ+ [λ2ψηϕ]L0 −
b

ρ2

∫ L

0

ψxηϕxx

− b

ρ2

∫ L

0

ψxη
′ϕx +

b

ρ2
[ψxηϕx]L0 −

κ

ρI

∫ L

0

η|ϕx|2

+
Gh

ρ2

∫ L

0

(ψ + lω)ηϕx +
1
ρ2

∫ L

0

ηα(x)θxϕx

=
∫ L

0

(−g2ηϕx + iλf2xηϕ+ iλf2η
′ϕ)− [iλf2ηϕ]L0 .

(3.31)
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Using Lemma 3.5 and the fact that the sequences λϕ, ϕx, α(x)ϕx are uniformly
bounded in L2(0, L), we obtain∫ L

0

λ2ψxηϕ+
b

ρ2

∫ L

0

ψxηϕxx +
κ

ρ2

∫ L

0

η|ϕx|2 = o(1). (3.32)

(iii) Adding the real parts of (3.30) and (3.32) and using the condition κ
ρ1

= b
ρ2

we obtain ∫ L

0

η|ϕx|2 = o(1) (3.33)

Multiplying (3.8) by ηϕ and integrating over ]0, L[, we obtain

ρ1

∫ L

0

η|λϕ|2 = κ

∫ L

0

η|ϕx|2 + κ

∫ L

0

η′ϕxϕ− κ
∫ L

0

(ψx + lωx)ηϕ

− κ0l

∫ L

0

(ωx − lϕ)ηϕ+ o(1).

(3.34)

Using (3.33), (3.25), the fact that ‖ϕ‖ = O(1)
λ and the sequences ϕx, (ψx − lωx),

(ωx − lϕ) are uniformly bounded in L2(0, L) in (3.34), we obtain∫ L

0

η|ϕ|2 =
o(1)
λ2

. (3.35)

The proof is complete. �

Now we have information on ω and ωx.

Lemma 3.7. With the above notation, if κ = κ0 and κ
ρ1

= b
ρ2

, then∫ L

0

η|ω|2 =
o(1)
λ2

and
∫ L

0

η|ωx|2 = o(1). (3.36)

Proof. (i) First, multiply (3.8) by ρ1ηωx and integrate over ]0, L[, to obtain

− ρ1

∫ L

0

λ2ηϕxω − κ
∫ L

0

ϕxηωxx − κ
∫ L

0

ϕxη
′ωx

+ κ

∫ L

0

ψxηωx + (κ+ κ0)l
∫ L

0

η|ωx|2 − κ0l
2

∫ L

0

ϕηωx = o(1)

(3.37)

Using Lemmas 3.5 and 3.6 and the fact that ‖ωx‖ = O(1) in (3.37), we obtain

− ρ1

∫ L

0

λ2ηϕxω + (κ+ κ0)l
∫ L

0

η|ωx|2 − κ
∫ L

0

ϕxηωxx = o(1). (3.38)

(ii) Next, multiplying (3.10) by ρ1ηϕx and integrating over ]0, L[, we obtain

ρ1

∫ L

0

λ2ηωϕx + κ0

∫ L

0

ηωxxϕx − (κ+ κ0)l
∫ L

0

η|ϕx|2 − κl
∫ L

0

(ψ + lω)ηϕx = o(1).

(3.39)
Using Lemmas 3.5 and 3.6, and the fact that ‖ω‖ = O(1)

λ in (3.39), we obtain

ρ1

∫ L

0

λ2ηωϕx + κ0

∫ L

0

ηωxxϕx = o(1). (3.40)
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(iii) Adding the real parts of equations (3.38) and (3.40), and using the fact that
κ = κ0, we deduce that ∫ L

0

η|ωx|2 = o(1) (3.41)

Finally, as in (iii), Lemma 3.6, multiplying (3.10) by ηω̄, we deduce the first as-
ymptotic behavior equation in (3.36). The proof is complete. �

Proof of Theorem 3.1. Using Lemmas 3.3, 3.5, 3.6 and 3.7, we deduce that ‖U‖Hj =
o(1) on the subinterval [a0; b0]. Then using Lemma 3.4 we deduce that ‖U‖ = o(1)
on the interval [0;L], this contradicts equality (3.3). We deduce that the resolvent
of the operator Aj is uniformly bounded on the imaginary axis iR. This together
with the fact that iR ⊂ ρ(Aj) implies, under the equal speed propagation condi-
tions, the exponential stability of system (1.1)-(1.4) with either boundary Dirichlet-
Dirichlet- Dirichlet or Dirichlet-Neumann-Neumann conditions types. The proof is
complete. �

Remark 3.8. From the theory of elasticity, ρ1 = ρA, ρ2 = ρI, κ0 = EA, κ = κ′GA,
and b = EI, where ρ for density, E denotes the Young’s modulus of elasticity, G
for the shear modulus, κ′ for the shear factor, A for the cross-sectional area and I
for the second moment of area of cross-section. Then the equal speed propagation
conditions κ = κ0 or κ

ρ1
= b

ρ2
are equivalent to κ′G = E. But the two elastic

modulus are not equal since κ′G = E
2(1+µ) where µ ∈ (0, 1/2) is the Poisson’s ratio.

Thus, the exponential stability is only mathematically sound.

4. Polynomial stability in the general case

The thermoelastic Bresse system (1.1)-(1.4) with the boundary condition (1.5)
is not exponentially stable when κ 6= κ0 or ρ1

ρ2
6= κ

b (see [18], [7], [1]). The idea
is to find a real sequence (λn) with |λn| → ∞ and a sequence Un of elements of
D(A1) with ‖Un‖ = 1 such that ‖(iλn−A1)Un‖ = o(1). Then the resolvent of the
operator A1 is not uniformly bounded on the imaginary axes and the system is not
exponentially stable (see [8], [16]). Our main results are the following polynomial-
type decay rate.

Theorem 4.1. Assume that κ 6= κ0 and ρ1
ρ2
6= κ

b . Then there exists a constant
C > 0 such that for every initial data U0 = (ϕ0, ψ0, ω0, ϕ1, ψ1, ω1, θ0) ∈ D(Aj),
j = 1, 2, the energy of system (1.1)-(1.4) with boundary conditions (1.5) or (1.6)
verify the following estimation:

E(t) ≤ C 1√
t
‖U0‖2D(Aj) ∀t > 0. (4.1)

Following Borichev and Tomilov [4], (see also [11], [2]), a C0 semigroup of con-
tractions etAj on a Hilbert space Hj verify (4.1) if (H1) and

sup
λ∈R

1
|λ|4
‖(iλI −Aj)−1‖ < +∞ (4.2)

are satisfied. Condition (H1) was already proved in Theorems 2.3 and 3.1. Our goal
is to prove that ‖(iλ−Aj)−1‖ = O(|λ4|). By contradiction argument, suppose that
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there exist a sequence λn ∈ R and a sequence Un = (ϕn, ψn, ωn, un, vn, zn, θn) ∈
D(Aj), verifying the following conditions:

|λn| → +∞, ‖Un‖ = ‖(ϕn, ψn, ωn, un, vn, zn, θn)‖Hj = 1, (4.3)

λ4
n(iλnI −Aj)Un = (fn1 , f

n
2 , f

n
3 , g

n
1 , g

n
2 , g

n
3 , g

n
4 )→ 0 in Hj , j = 1, 2. (4.4)

Equation (4.4) can be written as

iλnϕ
n − un =

fn1
λ4
n

(4.5)

iλnψ
n − vn =

fn2
λ4
n

(4.6)

iλnω
n − zn =

fn3
λ4
n

(4.7)

λ2
nϕ

n +
κ

ρ1
(ϕnxx + ψnx + lωnx ) +

κ0l

ρ1
(ωnx − lϕn) = −g

n
1 + iλnf

n
1

λ4
n

, (4.8)

λ2
nψ

n +
b

ρ2
ψnxx −

κ

ρ2
(ϕnx + ψn + lωn)− 1

ρ2
α(x)θnx = −g

n
2 + iλnf

n
2

λ4
n

, (4.9)

λ2
nω

n +
κ0

ρ1
(ωnxx − lϕnx)− κl

ρ1
(ϕnx + ψn + lωn) = −g

n
3 + iλnf

n
3

λ4
n

, (4.10)

iλnθ
n − 1

ρ3
θnxx + i

T0

ρ3
λn(αψn)x =

gn4 + T0ρ
−1
3 (αfn2 )x
λ4
n

. (4.11)

Our goal is, using a multiplier method, to prove that ‖Un‖Hj = o(1), this contra-
dicts equation (4.3). We will establish the proof by several Lemmas. For simplicity,
here and after we drop the index n.

Using (4.3), (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10) we deduce that

‖ϕx‖ = O(1), ‖ϕ‖ =
O(1)
λ

, ‖ϕxx‖ = O(λ),

‖ψx‖ = O(1), ‖ψ‖ =
O(1)
λ

, ‖ψxx‖ = O(λ),

‖ωx‖ = O(1), ‖ω‖ =
O(1)
λ

, ‖ωxx‖ = O(λ).

Lemma 4.2 (Dissipation). With the above notation, we have∫ L

0

|θx|2dx =
o(1)
λ4

and
∫ L

0

|θ|2dx =
o(1)
λ4

. (4.12)

Proof. Multiplying (4.4) by the uniformly bounded sequence U = (ϕ,ψ, ω, u, v, z, θ),
we obtain ∫ L

0

|θx|2dx = −Re((iλ−Aj)U,U)Hj =
o(1)
λ4

. (4.13)

Finally, using Poincaré inequality, it follows the second asymptotic equality. �

Now we have the first information on ψ and ψx.

Lemma 4.3. With the above notation, we have∫ L

0

η|ψ|2 =
o(1)
λ4

and
∫ L

0

η|ψx|2 =
o(1)
λ3

, (4.14)

where η is the function defined in Theorem 3.1
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Proof. (i) We start by multiplying (4.11) by ηψ̄x, we obtain

T0

∫ L

0

ηα|ψx|2 =
T0

2

∫ L

0

(ηα′)′|ψ|2 + Re
{
ρ3

∫ L

0

(η′θ + ηθx)ψ̄

+ i

∫ L

0

θxλ
−1η ¯ψxx +

i

λ

∫ L

0

η′θxψ̄x

}
+
o(1)
λ5

.

(4.15)

Using equation (4.12) and the fact that ‖ψ‖ = O(1)
λ , ‖ψx‖ = O(1) and ‖ηψxx‖ =

O(λ) in (4.15), we obtain ∫ L

0

η|ψx|2 = o(1). (4.16)

Next, multiplying (4.9) by ηψ̄, we obtain

ρ2

∫ L

0

η|λψ|2 = b

∫ L

0

η|ψx|2 + b

∫ L

0

η′ψxψ̄ +
∫ 1

0

[κ(ψ + lω) + αθx]ηψ̄

−
∫ 1

0

κ(η′ϕψ + ηϕψx) +
o(1)
λ4

.

(4.17)

Using (4.12), (4.16) and the fact that ‖ψ‖ = O(1)
λ and ‖ω‖ = O(1)

λ in (4.17), we
obtain ∫ L

0

η|ψ|2 =
o(1)
λ2

. (4.18)

(ii) Multiplying (4.15) by λ2 and using (4.12), (4.18) and the fact that ‖ψxx‖ =
O(λ), we obtain ∫ L

0

η|ψx|2 =
o(1)
λ2

. (4.19)

(iii) Multiplying (4.17) by λ2 and using (4.12), (4.18), (4.19) and the fact that
‖λω‖ = O(1), ‖λϕ‖ = O(1), we obtain∫ L

0

η|ψ|2 =
o(1)
λ4

. (4.20)

In addition, using (4.12), (4.20) and the fact that ‖ω‖ = O(1)
λ , ‖ϕx‖ = O(1) in

(4.9), we obtain ∫ L

0

|ηψxx|2 = O(1). (4.21)

Finally, multiplying (4.15) by λ3, and using (4.20), (4.21) we deduce the second
asymptotic behavior equation in (4.14). �

Now we have the relation between ϕ and ψ.

Lemma 4.4. Let 1/2 ≤ γ ≤ 1. With the above notation, assume that∫ L

0

η|ψx|2 =
o(1)
λ2+2γ

. (4.22)

Then ∫ L

0

η|ϕx|2 =
o(1)
λ2γ

and
∫ L

0

η|ϕ|2 =
o(1)
λ2+2γ

. (4.23)
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Proof. Let lN =
∑N
k=0

1
2k

, we will prove by induction on N ∈ N that∫ L

0

η|ϕnx |2 =
o(1)
λγlN

. (4.24)

(i) Verification for N = 0. Multiplying (4.9) by ηϕ̄x and integrating over
]0, L[, we obtain

κ

∫ L

0

η|ϕx|2 = −ρ2

∫ L

0

λ2(ηψ)xϕ̄− b
∫ L

0

ληψxλ
−1ϕ̄xx

−
∫ L

0

(κψ + κlω + αθx)ηϕ̄x − b
∫ L

0

ψxη
′ϕ̄x +

o(1)
λ4

(4.25)

Using equations (4.12), (4.14) and the fact that ‖ϕxx‖ = O(λ), ‖ϕx‖ = O(1),
‖ϕ‖ = O(1)

λ and ‖ω‖ = O(1)
λ ) in (4.25), we obtain∫ L

0

η|ϕx|2 = o(1). (4.26)

Now, multiplying (4.25) by λγ . Since γ ≤ 1, then ‖λγω‖ = O(1) and ‖λγϕ‖ = O(1).
Using (4.12), (4.14), (4.22), (4.26) and the fact that ‖ϕxx‖ = O(λ), we obtain∫ L

0

η|ϕx|2 =
o(1)
λγ

. (4.27)

Hence, the asymptotic behavior formula (4.24) is true for N = 0.
(ii) Information on ϕ. In addition, multiplying (4.8) by ηϕ̄ and integrating

over ]0, L[, we obtain

ρ1

∫ L

0

η|λϕ|2 = κ

∫ L

0

(η|ϕx|2 + (η′ϕx − ηψx)ϕ̄)

+ l

∫ L

0

(κ+ κ0)ω(ηϕ̄)x + l2κ0

∫ L

0

η|ϕ|2 +
o(1)
λ4

.

(4.28)

Multiplying (4.28) by λγ . Then, using (4.27) and the fact that ‖λγω‖ = O(1) , we
obtain ∫ L

0

η|ϕ|2 =
o(1)
λ2+γ

. (4.29)

(iii) Induction. Suppose that the asymptotic behavior formula (4.24) is true
for the order N − 1, then we have∫ L

0

η|ϕx|2 =
o(1)
λγlN−1

. (4.30)

Now, multiplying (4.28) by λγlN−1 . Since λγlN−1 ≤ 2, then ‖λ
γ
2 lN−1ω‖ = O(1).

This implies that, using (4.14), (4.29), (4.30) and the fact that ‖ϕxx‖ = O(λ), we
obtain ∫ L

0

η|ϕ|2 =
o(1)

λ2+γlN−1
. (4.31)

On the other hand, using (4.31) and the fact that ‖ωx‖ = O(1) in (4.8), we obtain∫ L

0

η|ϕxx|2 = O(λ1− γ2 lN−1). (4.32)
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Noting that γ + γ
2 lN−1 = γlN and multiplying (4.25) by λγ+

γ
2 lN−1 . Then, using

(4.14), (4.22), (4.30), (4.31), (4.32), we obtain∫ L

0

η|ϕx|2 =
o(1)
λγlN

.

As a consequence, the asymptotic behavior (4.24) is true for all N ≥ 0.
(iv) Result on ϕx. Since limN→+∞ lN =

∑+∞
k=0

1
2k

= 2, we deduce the first
desired asymptotic behavior equation:∫ L

0

η|ϕx|2 =
o(1)
λ2γ

. (4.33)

(v) Result on ϕ. Multiplying equation (4.28) by λ2γ . Then, using equations
(4.29), (4.33) and the fact that ‖λω‖ = O(1), we deduce the second desired asymp-
totic behavior equation in (4.23). The proof is complete. �

Now we have the relation between ψ and ψx.

Lemma 4.5. Let 1
2 ≤ γ ≤ 1. With the above notation, assume that∫ L

0

η|ψx|2 =
o(1)
λ2+2γ

. (4.34)

Then we have ∫ L

0

η|ψ|2 =
o(1)
λ4+2γ

. (4.35)

Proof. Let lN =
∑N
k=0

1
2k

, we will prove by induction on N ∈ N that∫ L

0

η|ψ|2 =
o(1)
λ4+γlN

. (4.36)

(i) Verification for N = 0. Multiplying (4.17) by λ2+γ . Then, using (4.14),
(4.34), Lemma 4.4 and the fact that ‖ω‖ = O(1)

λ , we obtain∫ L

0

η|ψ|2 =
o(1)
λ4+γ

. (4.37)

Hence, the asymptotic behavior formula (4.36) is true for N = 0.
(ii) Induction. Suppose that the asymptotic behavior formula (4.36) is true for

the order N − 1, then we have∫ L

0

η|ψ|2 =
o(1)

λ4+γlN−1
. (4.38)

Multiplying (4.17) by λ2+(γ+ γ
2 lN−1). Since γ + γ

2 lN−1 ≤ 2 + 2γ and γ ≤ 1, then
using (4.12), (4.34), (4.38), Lemma 4.4, and the fact that ‖λω‖ = O(1), we obtain∫ L

0

η|ψ|2 =
o(1)

λ4+(γ+ γ
2 lN−1)

. (4.39)

Since γ + γ
2 lN−1 = γlN , we deduce the asymptotic behavior formula (4.35).

(iii) Result. Using the fact that limN→+∞ lN =
∑+∞
k=0

1
2k

= 2, we deduce the
asymptotic behavior result (4.35). �

Now we have the final information on ψ and ψx.
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Lemma 4.6. With the above notation, we have∫ L

0

η|ψx|2 =
o(1)
λ4

and
∫ L

0

η|ψ|2 =
o(1)
λ6

. (4.40)

Proof. Let l̂N =
∑N
k=1

1
2k

. We will prove by induction on N ∈ N?, that∫ L

0

η|ψx|2 =
o(1)

λ2+2l̂N
. (4.41)

(i) Verification for N = 1. Using Lemma 4.3 we deduce that the asymptotic
behavior equality (4.41) is true for N = 1.

(ii) Induction. Suppose that the asymptotic behavior equality (4.41) is true for
N − 1, then we have ∫ L

0

η|ψx|2 =
o(1)

λ2+2l̂N−1
. (4.42)

Then, applying Lemma 4.4 and Lemma 4.5 with γ = l̂N−1, we obtain∫ L

0

η|ϕx|2 =
o(1)

λ2l̂N−1
,

∫ L

0

η|ψ|2 =
o(1)

λ4+2l̂N−1
. (4.43)

On the other hand, using (4.43) and the fact that l̂N−1 ≤ 1, ‖λl̂N−1ω‖ = O(1) in
(4.9), we obtain

‖ψxx‖ =
O(1)

λl̂N−1
. (4.44)

Now, multiplying (4.15) by λ3+l̂N−1 . Then, using (4.12), (4.43) and (4.44), we
obtain ∫ L

0

η|ψx|2 =
o(1)

λ3+l̂N−1
. (4.45)

Using the fact that 3+ l̂N−1 = 2+2l̂N , we deduce the asymptotic behavior formula
(4.41) for all N ∈ N?.

(iii) Result. Using the fact that limN→+∞ l̂N−1 =
∑+∞
k=1

1
2k

= 1, we deduce
the first asymptotic behavior equation in (4.40). Then applying Lemma 4.5 with
γ = 1, we deduce the second asymptotic behavior equation in (4.40). The proof is
complete. �

Now we have information on ϕ and ϕx.

Lemma 4.7. With the above notation, we have∫ L

0

η|ϕx|2 =
o(1)
λ2

and
∫ L

0

η|ϕ|2 =
o(1)
λ4

. (4.46)

Proof. Using Lemma 4.6 we deduce the asymptotic behavior equations (4.46) by
applying Lemma 4.4 with γ = 1. the proof is complete. �

now we have information on ω and ωx.

Lemma 4.8. With the above notation, we have∫ L

0

η|ωx|2 = o(1) and
∫ L

0

η|ω|2 =
o(1)
λ2

. (4.47)
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Proof. Multiply (4.8) by ηωx. Then, using (4.40), (4.46) and the fact that ‖ωx‖ =
O(1), we obtain

(κ+ κ0)l
∫ L

0

η|ωx|2 = κ

∫ L

0

λϕxλ
−1ηωxx + o(1) (4.48)

Then, using (4.46) and the fact that ‖ωxx‖ = O(λ) in (4.48), we deduce the first
asymptotic behavior equation in (4.47). Finally, multiplying equation (4.10) by
ηω̄, we deduce the second asymptotic behavior equation in (4.47). The proof is
complete. �

Proof of Theorem 4.1. Using lemmas 4.6, 4.7 and 4.8, we obtain ‖U‖Hj = o(1) over
(a0, b0). Then by applying lemma 3.4, we deduce that ‖U‖Hj = o(1), over (0, L)
which is a contradiction to (4.3). This implies that ‖(iλ − Aj)−1‖ = O(λ4). This
together with the fact that iR ⊂ ρ(Aj) imply (4.1) (see [2, 4, 11]). The proof is
complete. �

Remark 4.9. The conditions κ 6= κ0 and ρ1
ρ2
6= κ

b considered in Theorem 4.1
describe the natural physical problem. All other speed wave conditions have only
mathematical sound. However, they do provide useful insight to the study of similar
models arising from other applications.

Remark 4.10. In the case κ = κ0 and κ
ρ1
6= b

ρ2
, by a similar way used in Theorem

4.1, we can prove that

E(t) ≤ C 1
t
‖U0‖2D(Aj) ∀t > 0. (4.49)

Noting that, in this case, technically, the process of the proof is much easier to that
of the natural general case of Theorem 4.1. In fact, we need to prove

sup
λ∈R

1
λ2
‖(iλI −Aj)−1‖ <∞.

From dissipation law we obtain∫ L

0

|θx|2dx =
o(1)
λ2

,

∫ L

0

|θ|2dx =
o(1)
λ2

.

This leads to ∫ L

0

|ηψx|2dx =
o(1)
λ2

,

∫ L

0

|ηψ|2dx =
o(1)
λ4

.

This implies ∫ L

0

|ηϕx|2dx = o(1),
∫ L

0

|ηϕx|2dx =
o(1)
λ2

.

Here, we can use the condition κ = κ0 in order to obtain∫ L

0

|ηωx|2dx = o(1),
∫ L

0

|ηωx|2dx =
o(1)
λ2

.
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